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Abstract. We present a data structure that stores a string s[1..n] over
the alphabet [1..0] in nHo(s) 4+ o(n)(Ho(s)+1) bits, where Hy(s) is the
zero-order entropy of s. This data structure supports the queries access
and rank in time O (Iglgo), and the select query in constant time. This
result improves on previously known data structures using nHo(s) +
o(nlgo) bits, where on highly compressible instances the redundancy
o(nlgo) cease to be negligible compared to the nHo(s) bits that encode
the data. The technique is based on combining previous results through
an ingenious partitioning of the alphabet, and practical enough to be
implementable. It applies not only to strings, but also to several other
compact data structures. For example, we achieve (7) faster search times
and lower redundancy for the smallest existing full-text self-index; (i7)
compressed permutations 7 with times for 7() and 7~ '() improved to
log-logarithmic; and (4¢%) the first compressed representation of dynamic
collections of disjoint sets.

1 Introduction

Search queries on strings have many important applications, to the point that
one is willing to sacrifice some additional space to index the string in order to
support the queries in less time. The most important queries serve as primitives
to implement many other operations, in particular pattern matching in full-
text databases (see, e.g., [18,7,14,19] for recent discussions): given a string s,
s.access(i) returns the ith character of s, which we denote si]; s.rank,(7) returns
the number of occurrences of the character a up to position ¢; and s.select,(7)
returns the position of the ith occurrence of a in s.

Wavelet trees [11] represent a string s[1..n] over alphabet [1..0] within nlgo+
o(nlgo) bits, where lg denotes the logarithm in base two. The indexing space
in o(nlg o) is considered asymptotically “negligible” compared to the nlgo bits
required to hold the main data, while providing support for the queries in time
O (Ig o). Later results [10] improved the times to O (Iglg o).

Regularities in the string permit further reductions in the space, from nlgo
bits down to nH(s) bits, where Hy(s) denotes the kth-order empirical entropy

* Funded in part by the Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile.
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Table 1. Recent bounds and our new ones for data structures supporting access, rank
and select. The first row holds for o = O (polylog(n)) and the second for o = o(n). The
space bound in the sixth row holds for k = o(log, n). The times of our Thm. 1 can be
refined into a more complicated formula (see also Cor. 1).

space (bits) access rank select
[8, Thm. 3.2] nHo(s) + o(n) 0(1) o) o (1)
SCon38 | ) bolnlg)  O(1+f)  0(+ge)  0(+ )
[10, Thm. 2.2] nlgo +o(nlgo) O (Iglgo) O (lglgo) o)
[10, Thm. 2.2] nlgo +o(nlgo) 0(1) O (lglgolglglgo) O (glgo)
[3, Lem. 4.1] nHo(s) + o(nlgo) O(lglgo) O (lglgo) o (1)
[3, Thm. 4.2] nHy(s) + o(nlgo) o0(1) o ((lg lgo)’lglglg a) O(Iglgolglglgo)
Thm 1 nHo(s) + o(n)(Ho(s) + 1) O(glgo) O (Iglgo) O (1)
Thm 1 nHo(s) + o(n)(Ho(s) + 1) O(1) O (glgolglglgo) O (Iglgo)

of s (i.e., the minimum self-information of s with respect to a kth-order Markov
source; see Manzini [15] for a definition and discussion). The challenge of com-
pressing the string while still supporting the queries efficiently was also achieved,
using as little as nHy(s) + o(nlgo) [11,8,3] and even nHy(s) + o(nlg o) bits [3]
(for any k = o(log, n)) while retaining the time complexities.

One problem with such space is that, on highly compressible data, the o(nlg o)
bits of the index are not always negligible compared to the space used to encode
the compressed data. Hence the challenge is to retain the efficient support for
the queries while compressing the index redundancy as well. In this paper we
solve this challenge in the case of zero-order entropy compression, that is, the
redundancy of our data structure is asymptotically negligible compared to the
zero-order entropy of the text, plus o(n) bits.

For comparison, the representation by Golynski et al. [10] does not compress*

s and uses additional O (17; lé ‘;) = o(nlg o) bits, but offers log-logarithmic times

for the queries. Ferragina et al.’s wavelet tree [8] achieves zero-order compression
nlgolglgn
lgn

> = o(nlgo) bits, supporting the queries in O (1 + 1;%&)
time. Barbay et al. [3] obtain zero-order space and log-logarithmic times, but
their redundancy is still o(nlg o). See Table 1 for a summary of our bounds and
previous ones.?

In Section 2 we show how to combine the strengths of these data structures,

obtaining not only zero-order compressed space and log-logarithmic times, but

plus O (

! In terms of the usual entropy measures. It compresses to the k-th order entropy of
a different sequence (A. Golynski, personal communication).

2 When we write o(nlgo) bits we mean o(n)lgo. Although in some cases [10, 3] the
results are actually n o(lg o), we point out that this can be taken as o(n) lg o because,
if 0 = O (polylog(n)), one can use a structure by Ferragina et al. [8, Thm. 3.2] that
solves access, rank, and select in constant time using nHo(s) 4+ o(n) bits. Thus one
can assume o = w(1) at the very least. See also Footnote 6 of Barbay et al. [3].
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also compressed redundancy. The technique can be summarized as partitioning
the alphabet into sub-alphabets according to the characters’ frequencies in s,
storing in a multiary wavelet tree [8] the string that results from replacing the
characters in s by identifiers of their sub-alphabets, and storing separate strings,
each the projection of s to the characters of s belonging to each sub-alphabet,
this time using Golynski et al.’s [10] structure for large alphabets. We achieve a
data structure that stores a string s[1..n] in nHy(s) + o(n)(Hg(s) + 1) bits, thus
guaranteeing that the redundancy stays negligible even when the text is very
compressible. It supports queries in the times shown in Table 1 (rows 7 and 8
give two alternatives).

Then we consider various extensions and applications of our main result.
In Section 3 we show how our result can be used to improve an existing text
index that achieves k-th order entropy [8,3], so as to improve its redundancy
and query times. This way we achieve the first self-index with space bounded by
nHy(s)+o(n)(Hg(s)+1) bits, able of counting and locating pattern occurrences
and extracting any substring of s, within the time complexities achieved by either
of its predecessors. In Sections 4 and 5, respectively, we show how to apply our
data structure to store a compressed permutation, a compressed function and
a compressed dynamic collection of disjoint sets, while supporting a rich set of
operations on those. This improves or gives alternatives to the best previous
results [4,17,12]. We have approached these applications in such a way that
an improvement to our main result, however achieved, translates into improved
bounds for them as well.

2 Alphabet partitioning

Let s[1..n] be a sequence over effective alphabet [1..0], i.e., every character ap-

pears in s, so 0 < n. (At the end of the section we handle the case of large

[sla
a€ll..c] n

|s|q is the number of occurrences of the character a in s. Note that by convexity
we have nHy(s) > (0 —1)lgn+ (n—o+1)1g(n/(n— o +1)), a property we will
use later.

Our results are based on the following alphabet partitioning scheme. Let
mJ1l..0] be the sequence assigning to each character a € [1..0] the value

alphabets.) The zero-order entropy of s is Ho(s) =

lg ﬁ, where

mla] = Ng(n/|sla)lgn] < [1g°n] .

Let t[1..n] be the string over [I.. ﬂgQ n]] obtained from s by replacing each
occurrence of a by m[a, for 1 < a < ¢. For 0 < £ < [lg>n], let o4 be the number
of occurrences of ¢ in m or, equivalently, the number of distinct characters of
s replaced by ¢ in t. Finally, let s¢[1..]t|¢] be the string over [1..04] defined by
se[t.ranke(i)] = m.ranke(s[d]).

Notice that, if both a and b are replaced by the same number in ¢, then
lg(n/|sl) —lg(n/|sla) < 1/1gn and so |s|q/|s|s < 21/'8™. Tt follows that, if a is
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replaced by £ in ¢, then o, < 2/187|s,|/|s|, (by fixing a and summing over all
those b replaced by ). Since

> Isla =lsel  and D sl = |se| = n,
a 14

Mg(n/lsla)lgn]=£

we have

nHy(t) + Z [se]lg oy
¢

<Slsillgm/lsh+> 3 Islalz (287 fsel /sl )
0

£ g(n/|sla)lgn]=¢

= lslalg(n/|sla) +n/lgn

=nHy(s) +o(n).

In other words, if we represent ¢ with Hy(t) bits per symbol and each s, with
lg o4 bits per symbol, we achieve a good overall compression. Thus we can obtain
a very compact representation of a string s by storing a compact representation
of t and storing each s, as an “uncompressed” string over an alphabet of size oy.

Now we show how our approach can be used to obtain a fast and compact
rank/select data structure. Suppose we have a data structure T' that supports
access, rank and select queries on ¢; another structure M that supports the same
queries on m; and data structures Si,. .., Spg2, that support the same queries
On 81, ..., 82 1. With these data structures we can implement

s.access(i) = m.selecty(sg.access(t.ranky(i))), where £ = t.access(i);
s.rank, (i) = sgp.rank.(t.ranky(z)), where £ = m.access(a) and ¢ = m.ranke(a);
s.select, (i) = t.selecty(sp.select (7)) where £ = m.access(a) and ¢ = m.rankg(a).

We implement T and M as multiary wavelet trees [8]; we implement each
Sy as either a multiary wavelet tree or an instance of Golynski et al.’s [10,
Thm. 2.2] access/rank/select data structure, depending on whether o, < lgn

or not. The wavelet tree for T uses at most nHy(t) + O (m%inf) bits and

operates in constant time, because its alphabet size is polylogarithmic. If Sy is

ISEIIg\Sz\lglgn>

implemented as a wavelet tree, it uses at most |s¢|Ho(s¢) + O ( Ten

bits? and operates in constant time for the same reason; otherwise it uses at most

|s¢|lgoe + O (Iféll%) < |s¢|lgoy + O (‘lsgel‘ggllgg"é) bits (the latter because o, >
|se] lglsel)

Iglglgn

lgn). Thus in either case the space for s, is bounded by |s¢|lg o, + O (

lgn
2
storing universal tables of size O (\/ﬁpolylog(n)) = o(n) bits. Therefore all of our

o(+) expressions involving n and other variables will be asymptotic in n.

and not , at the price of

3 This is achieved by using block sizes of length %
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bits. Finally, since M is a sequence of length o over an alphabet of size [1g?n],
the wavelet tree for M takes O (olglgn) bits. Because of the property we re-
ferred to in the beginning of this section, nHy(s) > (o — 1)lgn, this space is

Hy(s)O (nlé#). By these calculations, the space for T, M and the Sy’s adds

up to nHoy(s) + o(n)Ho(s) + o(n), where the o(n) term is O (m).

Depending on which time tradeoff we use for Golynski et al.’s data structure,
we obtain the results of Table 1. We can refine the time complexity by noticing
that the only non-constant times are due to operating on some string sy, where
the alphabet is of size oy < 2'/18"|s/| /||, where a is the character in question,
thus 1glg oy = O (Iglgmin(o,n/|s|a)).

Theorem 1. We can store s[l..n] over effective alphabet [1..0] in nHy(s) +
o(n)(Ho(s) + 1) bits and support access, rank and select queries in O (Iglgo),
O (Iglgo), and O (1) time, respectively (variant (i)). Alternatively, we can sup-
port access, rank and select queries in O (1), O (Iglgolglglgo) and O (Iglgo)
time, respectively (variant (ii)). Any of the o terms in these time complexities
is actually min(o,n/|s|,), where a stands for s[i] in the time of the access query,
and for the character argument in the time of the rank and select query.

Moreover, by implementing S, as a wavelet tree whenever oy < (Ign)'elelen,
we ensure to achieve the complexities of wavelet trees if those are better than

the ones given above. That is, for example, O (min (1 + fgglg‘fn Jglg og)) instead

of just O (Iglgoy). We can similarly match the complexity O (lglg oy lglglgoy).

Note that, if we do this, the complexities that were O (1) become O (1 + 1}5%) .

Corollary 1. All the time complezities up to O (Iglgo) in variants (i) or (it)

of Theorem 1 can be made O (min (1 + lglgl;n,lg lg a)). Alternatively, all time

complezities in variant (ii) can be made O (min (1 + lé‘%gan,lglgalg lglga>).

As in Theorem 1, the o term is actually min(o,n/|s|s).

In the most general case, s is a sequence over an alphabet Y which is not
an effective alphabet, and ¢ symbols from X occur in s. Let X’ be the set of
elements that occur in s; we can map characters from X’ to elements of [1..0]
by replacing each a € X' with its rank in X’. All elements of X’ are stored in
the indexed dictionary data structure described by Raman et al. [20], so that
the following queries are supported in constant time: for any a € X’ its rank
in X’ can be found (for any ¢ ¢ X’ the answer is —1); for any ¢ € [1..0] the
i-th smallest element in X’ can be found. The indexed dictionary of Raman et
al. [20] uses olg(ep/o) + o(o) + O (Iglg i) bits of space, where e is the base of
the natural logarithm and p is the maximal element in X’; the value of i can be
specified with additional O (lg i) bits. We replace every element in s by its rank
in X', and the resulting string is stored using Theorem 1. Hence, in the general
case the space usage is increased by olg(eu/o) + o(o) + O (lg ) bits and the
asymptotic time complexity of queries remains unchanged.
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3 Reduced redundancy on self-indexes

Our result can be readily carried over self-indexes. These also represent a se-
quence, but they support other operations related to text searching. A well
known self-index [8] achieves k-th order entropy space by partitioning the Burrows-
Wheeler transform [6] of the sequence and encoding each partition to its zero-
order entropy. Those partitions must support queries access and rank. By using
Theorem 1(i) to represent such partitions, we achieve the following result, im-
proving previous ones [8, 10, 3].

Theorem 2. Let s[1..n] be a string over alphabet* [1..0]. Then we can repre-
sent s using nHy(s) + o(n)(Hg(s) + 1) bits of space, for any k < (alog,n) — 1
and constant 0 < « < 1, while supporting the following queries: (i) count the
number of occurrences of a pattern p[l..m] in s, in time O (mlglgo); (ii) lo-
cate any such occurrence in time O (lgnlglglgnlglgo); (iii) extract s[l,r] in
time O ((r —1)1glgo 4+ lgnlglglgnlglgo). The lglgo times can be reduced to

o (1 + 1;%;2) if convenient.

For these particular locating and extracting times we are sampling one out
of every lgnlglglgn text positions, which maintains our lower-order space term
o(n) at O (n/lglglgn). Compared to Theorem 4.2 of Barbay et al. [3], we reduce
the redundancy from o(n)lgo to o(n)(Hg(s) +1). Our improved locating times,
however, just owe to the denser sampling, which they could also use.

4 Compressing permutations

We now show how to use access/rank/select data structures to store a com-
pressed permutation. We follow Barbay and Navarro’s notation [4] and improve
their space and, especially, their time performance. They measure the compress-
ibility of a permutation 7 in terms of the entropy of the distribution of the
lengths of runs of different kinds. Let 7 be covered by p runs (using any of the
previous definitions of runs [13,4, 16]) of lengths runs(mw) = (ni,...,n,). Then
H(runs(m)) = >_ ¢ lg - < lgp is called the entropy of the runs (and, because
n; > 1, it also holds nH (runs(m)) > (p — 1)lgn). We first consider permuta-
tions which are interleaved sequences of increasing or decreasing values as first
defined by Levcopoulos et al. [13] for adaptive sorting, and later on for compres-
sion [4], and then give improved results for more specific classes of runs. In both
cases we consider first the application of the permutation 7() and its inverse,
771(), to show later how to extend the support to the iterated applications of
the permutation, 7%(), extending and improving previous results [17].

Theorem 3. Let m be a permutation on n elements that consists of p inter-
leaved increasing or decreasing runs, of lengths runs(m). We can store m in
2nH (runs(m)) + o(n)(H (runs(r)) + 1) bits and perform w() and 7= () queries
in O (min (1 + lep

Iglgn?

Iglg p)) time.

4 Again, [1..0] does not need to be the effective alphabet (see paragraph after Thm. 1).
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Proof. We first replace all the elements of the rth run by r, for 1 < r < p.
Let s be the resulting string and let s’ be s permuted according to , that is,
§'[r(#)] = s[i]. We store s and s’ using Theorem 1(¢) and store p bits indicating
whether each run is increasing or decreasing. Notice that, if (i) is part of an
increasing run, then s’.rank,p; (7 (i) = s.rankg; (i), so

(i) = ' .selectgp;) (s.rankgp; () ;

if m(i) is part of a decreasing run, then s’.rankyp;(7(i)) = s.rank,y(n) + 1 —
s.rankg;(4), so

(i) = s .select,[; (s.rank,p;)(n) + 1 — s.rankg) (7))

A 77Y() query is symmetric. The space of the bitmap is p € o(n)H (runs(r))
because nH (runs(m)) > (p — 1) 1gn. O

We now consider the case of runs restricted to be strictly incrementing (41)
or decrementing (—1), while still letting them be interleaved: such runs were not
directly considered before.

Theorem 4. Let w be a permutation onn elements that consists of p interleaved
strictly incrementing or decrementing runs. For any constant € > 0, we can store
7 in nH (runs(m)) + o(n)(H (runs(m)) + 1) + O (pn€) bits and perform () queries

in O (min (1 + l;%gpn7lg Ig P)) time and 7 1() queries in O (1/€) time.

Proof. We first replace all the elements of the rth run by r, for 1 < r < p,
considering the runs in order by minimum element. Let s € {1,...,p}" be the
resulting string. We store s using Theorem 1(); we also store an array containing
the runs’ lengths, directions (incrementing or decrementing), and minima, in
order by minimum element; and store a predecessor data structure containing the
runs’ minima as keys with their positions in the array as auxiliary information.
The predecessor data structure is based on Lemma 4 of Andersson’s paper [1].
It is an nf-ary trie where the keys are sought considering elgn bits per trie
node, and hence found in O (1/e€) time. Each of the p elements may require
O ((1/e)n1gn) bit space for the nc-size children arrays along its O (1/€)-length
path. By slightly adjusting e the space is O (pn®) bits. With these data structures,
we can retrieve a run’s data given either its array index or any of its elements.

If 7(7) is the jth element in an incrementing run whose minimum element
is m, then 7(i) = m + j — 1; on the other hand, if 7 (7) is the jth element of a
decrementing run of length ! whose minimum element is m, then 7 (i) = m+1—j.
It follows that, given i, we can compute (i) by using the query j = s.rankg; (7)
and then an array lookup at position s[i] to find m, ! and the direction, finally
computing 7() from them. Also, given 7 (i), we can compute ¢ by first using a
predecessor query to find the run’s array position r, then an array lookup to
find m, [ and the direction, then computing j = 7(i) — m + 1 (increasing) or
j=m+1—7(i) (decreasing), and finally using the query i = s.select,.(j). O
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Notice that, if m consists of p contiguous increasing or decreasing runs, then
71 consists of p interleaved incrementing or decrementing runs. Therefore, The-
orem 4 applies to such permutations as well, with the time bounds for 7() and

7~ 1() queries reversed, which yields the following corollary:

Corollary 2. Let w be a permutation on n elements that consists of p contigu-
ous increasing or decreasing runs. For any constant € > 0, we can store 7 in
nH (runs(m)) + o(n)(H (runs(m)) + 1) + O (pn®) bits and perform m() queries in

O (1/€) time and 7=1() queries in O (min (1 + 1glipn,lg lg p)) time.

If 7’s runs are both contiguous and incrementing or decrementing, then so
are the runs of 7!, In this case we can store 7 in O (pn¢) bits and answer
7() and 7= 1() queries in O (1) time. To do this, we use two predecessor data
structures: for each run, in one of the data structures we store the position j
in 7 of the first element of the run, with 7(j) as auxiliary information; in the
other, we store m(j), with j as auxiliary information. To perform a query 7 (%),
we use the first predecessor data structure to find the starting position j of the
run containing i, and return m(5) +i—7j. A 7~ 1() query is symmetric. Decreasing
runs are handled as before.

Corollary 3. Let w be a permutation on n elements that consists of p contiguous
incrementing or decrementing runs. For any constant € > 0, we can store m in
O (pn©) bits and perform 7() and 7=1() queries in O (1/€) time.

We now show how to achieve exponentiation (7*(i), 7#=*(i)) within com-
pressed space. Munro et al. [17] reduced the problem of supporting exponenti-
ation on a permutation 7 to the support of the direct and inverse application
of another permutation, related but with quite distinct runs than 7. Expressing
their result as a succinct index and combining it with any of our results does
yield a compression, but one where the space depends of the lengths of both
the runs and cycles of w. The following construction, extending the technique
from Munro et al. [17], retains the compressibility properties of 7 by building a
companion data structure that uses small space to support the exponentiation,
thus allowing the compression of the main data structure with any of our results.

Theorem 5. Suppose we have a data structure D that stores a permutation 7
onn elements and supports queries w() in time g(m). Then for any t < n, we can
build a succinct index that takes O ((n/t)lgn) bits and, when used in conjunction
with D, supports 7 () and 7=%() queries in O (t g(m)) time.

Proof. We decompose 7 into its cycles and, for every cycle of length at least ¢,
store the cycle’s length and an array containing pointers to every tth element
in the cycle, which we call ‘marked’. We also store a compressed binary string,
aligned to 7, indicating the marked elements. For each marked element, we record
to which cycle it belongs and its position in the array of that cycle.

To compute 7 (i), we repeatedly apply 7() at most ¢ times until we either
loop (in which case we need apply 7() at most ¢ more times to find 7*(i) in the
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loop) or we find a marked element. Once we have reached a marked element,
we use its array position and cycle length to find the pointer to the last marked
element in the cycle before 7*(i), and the number of applications of 7() needed
to map that to 7%(i) (at most t). A 7=F query is similar (note that it does not
need to use 7 1()). O

As an example, given a constant € > 0 and a value ¢t < n, we can combine
Corollary 2 and Theorem 5 to obtain a data structure that stores Sadakane’s ¥
function [21] for s in nHy(s) + o(n)(Ho(s) + 1) + O (on® + (n/t)1gn) bits and
supports ¥*() and ¥—*() queries in O (1/e +t) time; these queries are useful
when working on compressed suffix arrays and trees.

5 Compressing functions and dynamic collections of
disjoint sets

Hreinsson, Krgyer and Pagh [12] recently showed how, given X = {xy,...,2,} C
[U] and f : [U] — [l..0], where [U] is the set of numbers whose binary rep-
resentations fit in a machine word, they can store f restricted to X in com-
pressed form with constant-time evaluation. Their representation uses at most
(1+8)nHo(f)+n min(pmax +0.086, 1.82(1 — pmax)) + 0o(o) bits, where § > 0 is a
given constant and pmax is the relative frequency of the most common function
value. We note that this bound holds even when o > n.

Notice that, in the special case where X = [1..n] and o < n, we can achieve
constant-time evaluation and a better space bound using Theorem 1. We can
also find all the elements in [1..n] that f maps to a given element in [1..0] (using
select), find an element’s rank among the elements with the same image, or the
size of the preimage (using rank), etc.

Theorem 6. Let f: [1..n] — [1..0] be a surjective function.” We can represent
f using nHo(f)+o(n)(Ho(f)+1) bits so that any f(i) can be computed in O (1)
time. Moreover, each element of f~1(a) can be computed in O (Iglg o) time, and
|f~1(a)| requires time O (Iglg o lglglg o). Alternatively we can compute f(i) and
|f~1(a)| in time O (Iglgo) and deliver any element of f~1(a) in O (1) time.

We omit the other improvements of Theorem 1 and Corollary 1 for concise-
ness. We can also achieve interesting results with our theorems from Section 4,
as runs arise naturally in many real-life functions. For example, suppose we de-
compose f(1),..., f(n) into p interleaved non-increasing or non-decreasing runs.
Then we can store it as a combination of the permutation 7 that stably sorts the
values f(i), plus a compressed rank/select data structure storing a binary string
b[l.n+ o0+ 1] with o + 1 bits set to 1: if f maps ¢ values in [1..n] to a value j in

® So that [1..0] is the effective alphabet size of string f. General functions with image
of size ¢’ < o require O (¢'1g(c/0’)) + o(c) extra bits, or we can handle them using
O (olglgn) bits with our structure M.
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[1..0] then, in b, there are i bits set to 0 between the jth and (j + 1)th bits set
to 1. Therefore,
f (@) = b.rank (b.selecty(m()))

and the theorem below follows immediately from Theorem 3. Similarly, f~*(a) is
obtained by applying 7~1() to the area b.rankq (b.select1 (a))-+1 ... b.rank(b.select;
(a + 1)), and |f~!(a)| is computed in O (1) time. Notice that H(runs(m)) =
H(runs(f)) < Ho(f), and that b can be stored in O (o1g 2) + o(n) bits [20].

Corollary 4. Let f : [1..n] — [1..0] be a surjective function® with f(1),..., f(n)
consisting of p interleaved non-increasing or non-decreasing runs. Then we can
store f in 2nH (runs(f)) + o(n)(H (runs(f)) + 1) + O (o1g2) bits and compute
any f(i), as well as retrieve any element in f~1(a), in O (Iglg p) time. The size
|f~1(a)| can be computed in O (1) time.

We can obtain a more competitive result if f is split into contiguous runs,
but their entropy is no longer bounded by the zero-order entropy of string f.

Corollary 5. Let f : [1..n] — [1..0] be a surjective function with f(1),..., f(n)
consisting of p contiguous non-increasing or non-decreasing runs. Then we can
represent f in nH (runs(f))+o(n)(H (runs(f))+1)+O (pn®)+O (o lg ) bits, for
any constant € > 0, and compute any f(i) in O (Iglgo) time, as well as retrieve
any element in f~(a) in O (1/€) time. The size |f~1(a)| can be computed in
O (1) time.

Finally, we now give what is, to the best of our knowledge, the first result
about storing a compressed collection of disjoint sets. The key point in the next
theorem is that, as the sets in the collection C are merged, our space bound
shrinks with the entropy of the distribution sets(C') of elements to sets.

Theorem 7. Let C' be a collection of disjoint sets whose union is [1..n]. For
any constant € > 0, we can store C' in (1 + ¢)nH (sets(C)) + O (|C|1lgn) + o(n)
bits and perform any sequence of m union and find operations in a total of
O ((1/e)(m +n)lglgn) time.

Proof. We first use Theorem 1 to store the string s[1..n] in which each s[i] is
the representative of the set containing ¢. We then store the representatives in a
standard disjoint-set data structure D [22]. Together, our data structures take
nH (sets(C)) + O (|C|1gn) + o(n)(H (sets(C)) + 1) bits. We can perform a query
find(¢) on C by performing D.find(s[i]), and perform a union(i, j) operation on
C by performing D.union(D.find(s[i]), D.find(s[j])).

For our data structure to shrink as we union sets, we keep track of H (sets(C))
and, whenever it shrinks by a factor of 14 ¢, we rebuild our entire data structure
on the updated values s[i] « find(s[i]). First, note that all those find operations
take O (n) time because of path-compression [22]: Only the first time one accesses
a node v € C it may occur that the representative is not directly v’s parent.

5 Otherwise we proceed as usual to map the domain to the effective one.



Alphabet Partitioning 11

Reconstructing the structure of Theorem 1 takes also O (n) time: As we need
just access on s, we need only rank and access on our multiary wavelet tree and
access on the sy sequences. Thus the latter are implemented simply as arrays
and the former are also easily built in linear time for these two queries [8].
Since H (sets(C)) is always less than Ign, we rebuild only O (log,, lgn) =
O ((1/e)1glgn) times. Finally, the space term o(n)H (sets(C)) is absorbed by
eH (sets(C)) by slightly adjusting e. O

6 Conclusions and future work

We have presented the first zero-order compressed representation of strings ef-
ficiently supporting queries access, rank, and select, so that the redundancy of
the compressed representation is also compressed. That is, our space for string
s[1..n] over alphabet [1..0] is nHy(s) + o(n)(Ho(s) + 1) instead of the usual
nHy(s) + o(n)lgo bits. This is very important in many practical applications
where the data is highly compressible and the redundancy would otherwise dom-
inate the overall space.

In the full paper we will work on several improvements and further applica-
tions. First, we can reduce the dependence on the alphabet size from O (o 1glgn)
to O (o) by storing a length-restricted Shannon code in O (o) bits [9] instead
of the data structure M. To avoid the O (1) extra redundancy per character
associated with using a length-restricted prefix code, we replace each charac-
ter in s whose codeword length is at most lglgn by a distinct number in t.
This increases the alphabet size of ¢ by at most lgn; calculation shows that
our space bound increases by an O (1 + 1/1glgn)-factor and, thus, remains at
most nHy(s) +o(n)(Ho(s)+1). Second, given any constant ¢, we can reduce the
min(o,n/|s|,) in our time bounds by a factor of (lgn)¢; to do this, we further
partition each sub-alphabet into (Ign)¢ sub-sub-alphabets. Third, our alphabet
partitioning techniques yields a compressed representation of posting lists of
sizes (n1,...,n,) which supports access, rank and select on the rows in time
O (Iglgo), and uses total space for data and index proportional to the entropy
H(ny,...,ny) of the distribution of those sizes (if the posting lists refer to the
words of a text, this is also the zero-order word-based entropy of the text). This
is achieved by encoding the string of labels encountered during a row-first traver-
sal, writing a special symbol (e.g. $) at each change of row. This improves the
space of previously known data structures [2], and improves the time complexity
of previous compression results [5].

Naturally, the next challenge ahead is to obtain a data structure using space
nHy(s)4+o(n)(Hy(s)+1) bits rather than nHy(s)+o(n) 1g o, while still supporting
the queries access, rank, and select, in reasonable time. Note that Barbay et al. [3]
achieve nHy(s) 4+ o(n)lg o for such a structure: we have reduced the redundancy
to o(n)(Hg(s) + 1) for the case k = 0 and for self-indexes, but not for the basic
problem in the general case where k = o(log, n).

Acknowledgments. Many thanks to Djamal Belazzougui for helpful comments
on a draft of this paper.
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