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Abstract

Proximity searching is the problem of retrieving, from a given database,
those objects closest to a query. To avoid exhaustive searching, data structures
called indexes are built on the database prior to serving queries. The curse of
dimensionality is a well-known problem for indexes: in spaces with sufficiently
concentrated distance histograms, no index outperforms an exhaustive scan of
the database.

In recent years, a number of indexes for approximate proximity searching
have been proposed. These are able to cope with the curse of dimensionality
in exchange for returning an answer that might be slightly different from the
correct one.

In this paper we show that many of those recent indexes can be understood
as variants of a simple general model based on K-nearest reference signatures.
A set of references is chosen from the database, and the signature of each object
consists of theK references nearest to the object. At query time, the signature of
the query is computed and the search examines only the objects whose signature
is close enough to that of the query.

Many known and novel indexes are obtained by considering different ways
to determine how much detail the signature records (e.g., just the set of nearest
references, or also their proximity order to the object, or also their distances
to the object, and so on), how the similarity between signatures is defined,
and how the parameters are tuned. In addition, we introduce a space-efficient
representation for those families of indexes, making it possible to search very
large databases in main memory.

We perform exhaustive experiments comparing several known and new in-
dexes that derive from our framework, evaluating their time performance, mem-
ory usage, and quality of approximation. The best indexes outperform the state
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of the art, offering an attractive balance between all these aspects, and turn out
to be excellent choices in many scenarios. Our framework gives high flexibility
to design new indexes.

Key words: Proximity search, Searching by content in multimedia databases,
k nearest neighbors, Indexing metric spaces.

1. Introduction

Proximity searching is the problem of retrieving objects close to a given
query, from a possibly large collection (also called a database), under a (dis)-
similarity measure. It is an ubiquitous problem in computer science, with appli-
cations in machine learning, pattern recognition, statistics, bioinformatics, and
textual and multimedia information retrieval, to name a few. Many solutions
have been discussed in application papers, surveys [10, 16, 28, 50] and even
books [47, 57]. The trivial solution of comparing the query to each database
object is acceptable only when the collection is small and the comparison is in-
expensive. This sequential scan does not scale well to most realistic cases, where
it is necessary to preprocess the database to answer queries more efficiently.

The most popular query in applications is that of retrieving the k nearest
neighbors of a query, that is, the k database objects closest to it. In one di-
mension (i.e., objects are just numbers) the problem has a trivial solution in
time O(log n + k) using balanced search trees, but the nature of the problem
changes in more dimensions. In two dimensions, structures based on the Voronoi
diagram still allow O(log n)-time searching for the nearest neighbor [31]. This
has been generalized to the k nearest neighbors in O(log n + k) time, yet the
space grows to O(kn) [33]. However, those methods do not generalize to higher
dimensions. In δ dimensions, kd-trees [9] provide nearest-neighbor searches in
O(δn1−1/δ + k) time, for a database of n objects. As predicted by the com-
plexity formula, their practical performance is acceptable in low dimensions,
but already for dimension 5 or so they become slower than a sequential scan.
This is not just a shorcoming of kd-trees, but a general phenomenon that affects
every index, known as the curse of dimensionality.

In the case of strings, under Hamming or Levenshtein distances, some specific
techniques can be applied [12]. A well-known one is to cut the query string into
shorter ones that can be searched for with smaller radii (or even exactly). Such
techniques turn out to be useful in specific areas like computer vision [40].

The curse of dimensionality arises also in general metric spaces, where the
objects are not necessarily δ-dimensional points, but the distance function de-
fined on them is a metric. The empirical evidence shows that, the more con-
centrated is the histogram of the distances, the harder to index is the space
regardless of the index used. Those spaces are said to have high intrinsic di-
mension. This issue is well documented in the literature, for example by Pestov
[43, 44, 45, 46], Volnyansky and Pestov [55], Shaft and Ramakrishnan [48], In-
dyk [30], Samet [47], Hjaltason and Samet [28], Chavez et al. [16], Böhm et
al. [10], and Skopal and Bustos [50].
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It has been shown that the curse of dimensionality can be sidestepped by
relaxing the conditions of the search problem, so as to allow the algorithm to
return a “good approximation” to the actual answer. Then the quality of the
approximation becomes an issue. One possible measure is the degree of coinci-
dence between the true and the returned set of k nearest neighbors. Another is
the ratio of the distances between the query and the true versus the returned
kth nearest neighbor. For example, in δ-dimensional spaces it is possible to
return an element within 1 + ε times the distance to the true nearest neighbor
in time O(δ(1 + 6δ/ε)δ log n) [4]. Note that the curse of dimensionality is still
there, but it can be traded for the quality of the answer.

In the case of metric spaces, Chavez et al. [14] introduced a novel idea for
an approximate search index based on permutations. A set of references was
chosen from the database and each object was assigned a signature consisting
of ordering the references by increasing distance to the object. Then a query
was compared to the reference objects and its signature was computed. Prox-
imity between the query and the objects was then predicted without directly
measuring distances, but rather comparing the signatures. The index obtained
excellent empirical results in real-life applications, and opened a new fruitful
research area on this topic [2, 53, 18, 54].

In this paper we generalize upon all those ideas, introducing a framework
we call K-nearest references (K-nr). In K-nr, each object will be represented by
a subset of a set of references, and the signature computed from that subset of
references will be variable (e.g., it can consider or ignore the distance ordering
to the object, the precise distances, etc.). Depending on these choices, on how
we measure the distance between two signatures, and the parameter tuning, we
obtain known and new indexes. We also introduce a specific data representa-
tion that allows one to store the index within little space, this way enabling
maintaining larger databases in fast main memory. A number of specific al-
gorithms can be supported by the same data structure by fixing parameters
of the general framework, giving much flexibility to design and test new tech-
niques. Several speed/recall/memory/preprocessing tradeoffs can be obtained,
depending on the application.

We provide extensive experimental evidence showing how novel combinations
derived from our approach surpass the state of the art in several aspects. We
include in this comparison the best variants of Locality Sensitive Hashing (LSH)
[24].

The rest of the manuscript is organized as follows: Section 2 formalizes
the problem and recalls basic concepts and previous work. Section 3 describes
the K-nr framework and shows how it can be instantiated into all the existing
reference based indexes. New indexes are also proposed by plugging other com-
binations into the framework. Section 4 describes an efficient implementation of
K-nr indexes. The experimental setup is detailed in Section 5, and a thorough
set of experiments comparing the various aspects of K-nr indexes is presented in
Section 6. Section 7 compares K-nr indexes with the best LSH variants we are
aware of. We summarize our results in Section 8.
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2. Preliminaries

A metric space is a tuple (U, d) where U is the domain and d : U ×U → R+

is a distance, that is, for all u, v, w ∈ U it holds (1) d(u, v) = 0 ⇐⇒ u = v, (2)
d(u, v) = d(v, u), and the triangle inequality (3) d(u,w) + d(w, v) ≥ d(u, v).

A database will be a finite set S ⊂ U of size n, which can be preprocessed
to build an index. We are interested in solving k-nearest neighbor queries with
the index, that is, given a query q ∈ U , return a set k-nn(q) of k elements of S
closest to q. Typical values of k in applications is a few tens.

In this paper we focus primarily on approximate k-nn searches, where we
are allowed to return a set ak-nn(q) slightly different from k-nn(q). We will use
recall to measure the quality of approximation:

recall =
| ak-nn(q) ∩ k-nn(q)|

k
,

that is, the proportion of true answers found. Note that, since | k-nn(q)| =
| ak-nn(q)| = k, this concept coincides with both recall and precision mea-
sures in information retrieval [6]. Another measure is the proximity ratio,
(maxu∈ak-nn(q) d(u, q))/(maxu∈k-nn(q) d(u, q)), that is, how much farther from q is
the kth object found compared to the true kth nearest neighbor. However, this
is not a good measure in high-dimensional metric spaces, since all the distances
are similar and thus even a random answer can yield, on average, proximity
ratios close to 1 (we have verified this phenomenon in our experimental setup
as well).

2.1. Example Distance Functions

When the metric space is the δ-dimensional vector space, Minkowski’s Lp
distances are commonly used:

Lp(u, v) =

(
δ∑
i=1

|ui − vi|p
)1/p

,

where ui/vi are the ith components of the vectors u/v. An Lp evaluation re-
quires O(δ) basic operations. Three instances are used most often: the L1

distance (called Manhattan distance), the L2 distance (called Euclidean), and
the Maximum distance L∞ = max1≤i≤δ |ui − vi|.

In information retrieval, tf-idf vectors are used to represent documents [6],
and the proximity is measured with the cosine similarity,

Cos(u, v) =

∑δ
i=1 uivi√∑δ

i=1 u
2
i ·
√∑δ

i=1 v
2
i

.

The angle between vectors is a distance, dC(u, v) = arccos simC .
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The Hamming distance is applied to strings of fixed length `. The strings
are aligned and we count the mismatches, that is,

dH(u, v) =
∑̀
i=1

{
0 if ui = vi,

1 if ui 6= vi.
(1)

Another interesting case is that of metric spaces of sets. A commonly used
distance on sets is one minus Jaccard’s coefficient, that is,

dJ(u, v) = 1− |u ∩ v||u ∪ v| .

2.2. Approximate Proximity Searching

The curse of dimensionality has motivated research on approximate indexes.
There exist generic techniques to convert a given exact index into approximate,
by essentially pruning the search process when a time budget is exceeded, and
prioritizing the progress of the search by exploring first the parts of the dataset
that are estimated to be more promising. These techniques may offer just
empirical or more formal guarantees, and the latter can be of the form of an
exact or probabilistic guarantee on the quality of the results. There is a large
number of such approaches in the literature; see Patella and Ciaccia [42] for an
exhaustive review.

Skopal [49] introduced an alternative model unifying both exact and approx-
imate proximity search algorithms. He also introduced the TriGen algorithm,
a method to convert a (dis)similarity function into a metric function with high
probability. This technique allows indexing general similarity spaces using met-
ric indexes.

Kyselak et al. [32] observed that most approximate methods optimize the
average accuracy of the indexes, but it is common to find very bad performances
on individual queries. They propose a simple solution to stabilize the accuracy.
The idea is to reduce the probability of a poor-quality result by using mul-
tiple independent indexes that solve the query in parallel, so that with high
probability at least one index achieves good quality on average for every query.

Even with these techniques, the search cost is generally too high for practical
applications. A new family of techniques designed to be approximate from the
beginning started with the Permutation Index (PI) [14] and now include the
Brief Permutation Index (BPI) [53], the Metric Inverted File (MIF) [2], the PP-
Index [18], and the Compressed Neighborhood Approximation Inverted Index
(CNAPP) [54]. All these techniques can be described from a common perspec-
tive, which is the focus of this paper. We defer their discussion to Section 3.1.

2.3. Locality Sensitive Hashing

Gionis et al. [24] introduced Locality Sensitive Hashing (LSH), a fast ap-
proximate proximity searching technique giving probabilistic guarantees on the
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quality of the result. The general idea of an LSH index is to find hashing func-
tions such that close items share the same bucket with high probability, while
distant items share the same bucket with low probability.

More formally, a family of hashing functions H = {g1, g2, · · · , gh}, gi : U →
{0, 1} is called (p1, p2, r1, r2)-sensitive if, for any p, q ∈ U ,

— if d(p, q) < r1 then Pr[hash(p) = hash(q)] > p1,

— if d(p, q) > r2 then Pr[hash(p) = hash(q)] < p2,

where hash(u) is the concatenation of the output of individual hashing functions
gi, following a fixed order, that is, hash(u) = g1(u)g2(u) · · · gh(u).

Notice that LSH gives guarantees in terms of distances, not in terms of
recall. To achieve the desired p1 and p2 values, many empty buckets may have
to be created (for potential queries of U that are far from any element in S).
This poses a memory problem, which can be alleviated by combining several
hashing function families. Still, high-quality indexes usually need high amounts
of memory.

LSH can be defined for general metric spaces, but the process of finding
suitable hashing functions gi is not trivial and has to be engineered for each
case. There exist simple LSH functions the Euclidean (L2), Hamming, Jaccard,
and Cosine distances [3, 24].

Data Sensitive Hashing (DSH) [23] is an LSH-based index, where hashing
functions are selected and weighted from a pool of hashes. The idea is to
generate a strong classifier based on several weak classifiers (hashing functions)
using the Boosting algorithm [22]. This methodology is in contrast with the
traditional uniform partitioning of the space used by other LSH techniques.
Notice that DSH is independent of the actual hashing functions, thus any LSH
function can be used.

DSH indexes are constructed to solve k nearest neighbor queries, thus they fit
better than LSH in our scenario. Gao et al. [23] compare DSH with traditional
LSH and other learning based methods, and show that DSH surpasses most of
them in memory, recall and speed.

3. The K-nr Framework

A Voronoi diagram [5] is built on a set R of two-dimensional points. It
partitions the plane into |R| regions. Each region is formed by the points closest
to one of the elements in R. The generalization of Voronoi diagrams to general
metric spaces is called a Dirichlet partition, and there are exact and approximate
metric indexes based on it [13, 17, 38, 34, 35]. In the Dirichlet partition of a set
of references R ⊂ S, each element of S is assigned to the partition corresponding
to the closest reference.

Lee [33] defined Kth order Voronoi diagrams, where the plane is partitioned
not only according to which element of R is closest to the point, but also which
is the second, third, . . ., Kth closest. We define analogously the Kth order
Dirichlet partition in a general metric space.
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Figure 1: Shared references as proximity predictors. Small black balls are objects in S and
big gray balls are references. A bad case is shown on the left, and a good (more likely one)
on the right.

Definition 3.1. Given a metric space on universe U , and a finite database
S ⊂ U , the Kth order Dirichlet partition induced by a set of references R ⊂ U
of size |R| = ρ is a function K-nn : U → RK that assigns to each u ∈ S the
tuple û = K-nn(u) = 〈r1, . . . , rK〉, such that ri is the ith closest element to u in
R. The tuple û is called the signature of u.

The key idea of the K-nr framework is to use the similarity between û and q̂
as an estimation of the closeness between u and q (see Figure 1). Formally, we
can define a K-nr index as follows.

Definition 3.2. A K-nr index is a tuple (U, d, S,R,K,K-nn, sim), where (U, d)
is a metric space, K-nn is a Kth order Dirichlet domain on the references R
of the database S, and sim : RK × RK → R+ is a similarity function between
signatures K-nn(·).

In the general spirit of examining a subset of promising elements of S to
solve an approximate proximity query, we will fix a parameter γ and examine
the γ elements u ∈ S whose signatures are most similar to that of q. More
precisely, the search follows these steps:

1. We compute the signature q̂ = K-nn(q).

2. We find the γ objects u ∈ S with maximum sim(û, q̂).

3. We evaluate d(q, u) for all those γ candidates and return the k closest ones
to q.

Therefore, the total number of distance computations is ρ+ γ, from steps 1
and 3, respectively. The major extra CPU work is related to how we find the γ
objects whose signature is closest to q̂, in step 2.

This general idea can be instantiated in several ways. The most important
decision is how we define sim. The better its ability to hint the actual closeness,
the more accurate will be the method for a given amount of work. The way
signatures are compared also dictates how much information must be stored on
them, which influences the space usage of the index. The complexity of com-
puting sim also influences the CPU cost of the algorithm. The other decisions
are the tuning of the parameters γ, ρ, and K.
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• A larger value of γ increases the time cost, but improves the quality of
the approximation.

• The size of R, ρ, can be between K and n. The larger it is, the costlier
it is to compute K-nn(q), but the K references of each object can be
chosen from a more representative set. Note, however, that if ρ is too
large compared to K, then even the signatures of close objects may be
different.

• The K value affects the space usage of the index. Generally, a larger K
value improves the quality of the approximation as it gives a finer-grained
signature. However, this depends on the way the similarity between sig-
natures is computed. Too fine-grained signatures may introduce noise and
distort the signficance of similarity functions. As an obvious example, if
sim is simply the number of common references in both tuples, regardless
of their position in the tuple, and we use K = ρ, then all the signatures
will be equal. A larger K also generally increases the CPU time needed
to find the γ candidates.

For simplicity we will relabel the elements of R as {1, . . . , ρ}. Next we show
how several existing indexes can be regarded as particular cases of the K-nr
framework, and later introduce new ones.

3.1. Existing Proximity Indexes as K-nr Instances

Our framework captures the behavior of at least five indexes found in the lit-
erature: Permutation Index [14], Brief Permutation Index [53], Metric Inverted
File [2, 1], Prefix Permutations Index [18, 19], and Succinct Nearest Neighbor
Search [54]. Below we describe them within the K-nr framework.

3.1.1. Permutation Index (PI)

Chavez et al. [14] introduced the idea of choosing a set of K database ele-
ments called the permutants and associating to each u ∈ S a signature formed
by the permutants sorted by increasing distance to u. That is, they associate
to each u a permutation Πu of [1..K]. This fits in our framework if we consider
the permutants as the set R of ρ = K references, so that all the references are
chosen in the signature, and thus K-nn(u) = Πu.

They explored various similarity measures between permutations, including
Spearman Footrule and Spearman Rho. Spearman Foortrule is defined as the
sum of the distances between the positions of the same permutant in both
permutations, and Spearman Rho as the sum of the squared distances. More
formally, let Π−1 denote the inverse permutation of Π, then

simPI−Foortule(û, v̂) = K2 − L1(Π−1u ,Π−1v ),

simPI−Rho(û, v̂) = K3 − L2
2(Π−1u ,Π−1v ).
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For each u, the index stores Π−1u instead of û, thus it can compute sim in
O(K) time. Thus the total storage space is Kn log ρ bits3 (recall that K = ρ in
this index, yet we give the complexities for the more general case of keeping the
K closest among ρ references). The fact that ρ = K severely limits the number
of references used, due to space considerations. For finding the γ candidates,
they simply scan the n signatures, comparing them with that of the query. Thus
the extra CPU time is O(Kn), which makes scalability an issue even after some
speedups achieved in subsequent work [21, 52]. Building the index requires ρn
distance computations, plus O(nρ logK) time to find the K smallest distances
to each element. The inverse permutations are built in O(Kn) additional time.

Overall, the PI achieves excellent quality of results with few distance compu-
tations, but it is useful only with relatively small databases where the distance
function is costly to compute.

3.1.2. Brief Permutation Index (BPI)

Introduced by Tellez et al. [53], this index encodes the permutations of the
PI in a much more compact form, which however loses some information. Each
signature is encoded as a bitvector of length K. The encoding is based on
measuring the displacement of the permutants with respect to the identity.
That is, when Π−1u (i) differs from i by more than m (for a parameter m) the
ith bit in the signature is set to 1, else to 0. The dissimilarity between two
signatures is their Hamming distance.

As a result, the index is much smaller and faster than the PI: it requires
only Kn bits, and the candidates can be obtained in O(Kn/w) time on a RAM
machine of w bits. The downside is that the similarity is coarser, and thus a
larger γ, and even a larger K, might be needed to obtain the same result quality.
The construction cost is the same as for the PI.

They achieve good results with m = ρ/2. Further, they observe that the
central permutants do not usually displace much, thus the central band of the
signatures contains mostly 0’s. Hence they remove the ρ/2 bits in the middle of
the bitmaps, halving the space.

Although computing the Hamming distance is way faster than with the PI,
a sequential scan can still be too costly. They presented later a variant where
the signatures themselves are indexed with Locality Sensitive Hashing [52]. The
speed increases noticeably, but since this indexed search for candidates is now
done approximately, the quality of the result is degraded (also, there is no
guarantee on such quality).

The BPI also fits in the K-nr framework. Conceptually, the signatures are
still permutations, but the similarity function between two permutations only

3Our logarithms are in base 2 by default.
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considers the following:

simBPI(û, v̂) =

K∑
i=1


0 if [|Π−1u (i)− i| ≤ m] 6=

[|Π−1v (i)− i| ≤ m],

1 otherwise,

where [c] is 1 if logical condition c holds and 0 if not. Now, given that sim
only needs limited information about the permutation, the index can be stored
within much less space, namely we only need to store, for each Πu(i), the bit
[|Π−1u (i)− i| ≤ m]. Then simBPI is K minus the Hamming distance between the
two bitmaps.

3.1.3. Metric Inverted File (MIF)

Amato and Savino [2, 1] presented a scalable version of the PI. They detach
the roles of K and ρ, so that the signature û stores only the ordering of the
K permutants closest to u. This allows using a much larger value for ρ while
the memory usage stays proportional to Kn. The similarity sim is computed
as a Spearman Footrule where some information is missing, namely, we only
know the differences in the positions of the permutants that are present in both
signatures. Otherwise, they use a penalty of ω, which can be set to, say, ρ:

simMIF(û, v̂) = ωK −
K∑
i=1

{
|i− j| if û(i) = v̂(j)

ω if û(i) 6∈ v̂.

If the signatures are stored as such, the space is Kn log ρ bits, but the
computation of sim takes O(K logK) time. If, instead, û is stored with the
references in increasing identifier order, sim can be computed in O(K) time. In
exchange, we need to store the reordered references and their original positions
in û, which requires Kn log(Kρ) bits.

However, the authors go much further. They show that an inverted index [6]
can be used to avoid scanning the signatures that have no elements in common
with q̂. More precisely, for each reference r ∈ R, they store a list of the elements
u ∈ S where r ∈ û. For each such u, the list stores the pair (u, i) such that
r = û(i). The signatures themselves need not be stored. The total space is
dominated by the Kn log(Kn) bits used by the lists.

At query time we only need to scan the lists of the references r ∈ q̂. A data
structure for set membership is initialized. For each pair (u, i) found in the list
of reference r = q̂(j) we search for u in the structure. If it is not found, we
insert it with score ω− |i− j|; otherwise we add ω− |i− j| to its current score.
At the end, we collect the γ elements u with highest score (equal to sim(û, q̂)),
and this forms the candidate set. If the data structure is a binary tree, the CPU
time is O(N log n), where N ≤ Kn is the number of times the elements of q̂
appear in the signatures of the database. A hash table, instead, obtains O(N)
average time.
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3.1.4. Prefix Permutations Index (PPI)

This approach [18, 19] is a variant of MIF that also stores the K-length prefix
of the permutation, but uses a different sim function. The similarity sim(û, v̂)
is simply the length of the prefix shared by û and v̂:

simPP(û, v̂) = max{i ∈ [0,K], û[1..i] = v̂[1..i]}.

The space usage can be as low as Kn log ρ bits and the similarity function can be
computed in O(K) time (and usually less). In exchange, the similarity function
is very coarse, which leads to low recall in the answers.

The authors show that much faster CPU times are obtained if the prefixes
are stored in a compressed trie data structure [6]. In this case a query q can be
solved by traversing the trie following the symbols of q̂ and exploring the nodes
found in decreasing depth order (i.e., from longest to shortest shared prefixes).
The compact trie is usually smaller than MIF’s inverted index.

3.1.5. Compressed Neighborhood Approximation Inverted Index (CNAPP)

All approaches described above use the order of the K nearest neighbors to
estimate proximity. Tellez et al. [54] disregard the order and only consider the
set itself. It is convenient to define

set(û) = {r ∈ [1..ρ], ∃i ∈ [1..K], û(i) = r}.

The similarity between two objects is defined as the cardinality of the intersec-
tion of the K nearest neighbors of the objects:

simCNAPP(û, v̂) = |set(û) ∩ set(v̂)|.

By storing the signature in increasing order of reference identifier, the intersec-
tion can be computed in O(K) time and the space to store the signature can
be reduced to nK log(ρ/K) +O(nK) bits. It is also possible to use an inverted
index exactly as in MIF, with the advantage that the lists need only store the
element u that contains each reference r and not the position where r appears in
û. Therefore the index requires nK log n bits. Various techniques to compress
the index, for example reordering the objects, are explored.

3.2. New Proximity Indexes from the K-nr Framework

From the discussion above, it is apparent that there are many more alter-
natives to explore. All it takes is to define a similarity function between sets
of K elements and we can have a new proximity index with improved time
performance and/or answer quality.

Observe that the reviewed indexes can be regarded as taking the K-nn signa-
ture either as vector (PI, BPI, MIF), or as a string (PP), or as a set (CNAPP).
We now explore some alternative signatures and similarity functions on vectors,
strings, and sets.
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3.2.1. Vectors

For vectors we tried two additional distance functions. The first one is similar
to that of MIF, but we use the partial L2 distance, instead of the partial L1,
over the inverse of the signature permutations. That is, it is equivalent to a
Spearman Rho similarity over the partial permutations:

simK-nr-Rho(û, v̂) = ω2K −
K∑
i=1

{
(i− j)2 if û(i) = v̂(j)

ω2 if û(i) 6∈ v̂.

Our second similarity function is loosely inspired in the cosine similarity
of the vector space model of information retrieval [6]. If we regard R as a
vocabulary and S as a set of documents, we can define the weight of a reference
r ∈ R for an object u ∈ S as follows:

wr(û) =

{
(K − i+ 1)/K if r = û(i)

0 otherwise.

Then the closer a reference r to an object u, the closer to 1 will wr(û) be. The
far references, and those not appearing in û, will have weight zero or close to
zero. The similarity can then be computed as a usual cosine similarity:

simK-nr−Cosine(û, v̂) =

∑ρ
r=1 wr(û)wr(v̂)

((K + 1)/2)2
,

where we note that weights wr can be computed from the signatures, and there-
fore we need to store just the K nearest references to each u. It is interesting to
notice that the index can be implemented with an inverted index just as MIF,
that is, storing for each r ∈ R the list of tuples (u,wr(û)) for which wr(û) > 0.
The time complexity is of the same order of the MIF index, but the space usage
is Kn log(Kρ) bits. An inverted index raises the required space to nK log(Kn)
bits.

3.2.2. Strings

The PPI regards the signatures as strings, and uses the longest shared prefix
as the measure of similarity. While convenient in terms of CPU time, this
similarity measure is very crude and achieves low recall. We introduce the use
of more refined similarity functions between strings, which are however costlier
to compute.

The longest common subsequence (LCS) between two strings is the length of
the longest string that is a subsequence of both strings. It leads to the following
similarity function, which ranges between 0 and K:

simLCS(û, v̂) = LCS(û, v̂).

A slightly more refined function is the Levenshtein distance (Lev), which is the
minimum number of symbols that must be inserted, deleted, or substituted in
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two strings to make them equal. This leads to the following similarity function:

simLev(û, v̂) = K − Lev(û, v̂),

where we note that K is the maximum value Lev(û, v̂) can take, and thus simLev

ranges between 0 and K. Both measures can be computed in time O(K2) and
are explained in depth in many books and surveys [37]. The space complexity
of the index is nK log ρ in both cases because we store signatures of all objects.

3.2.3. Sets

CNAPP is an index that measures similarity by considering the symbols
shared between û and v̂, therefore regarding them as sets. CNAPP simply
uses simCNAPP = |set(û) ∩ set(v̂)|, which takes values in [0..K]. Other known
measures of similarity between sets used in information retrieval tasks [27, 6]
are the Jaccard coefficient,

simJaccard(û, v̂) =
|set(û) ∩ set(v̂)|
|set(û) ∪ set(v̂)| ,

and the Dice coefficient,

simDice(û, v̂) =
|set(û) ∩ set(v̂)|
|set(û)|+ |set(v̂)| ,

both giving values in [0, 1] and being easy to compute in O(K) time if we
represent set(û) as a sequence with the symbols of û in increasing order of
reference identifier. Since, however, in our scenario it holds |set(û)| = |set(v̂)| =
K, and |set(û) ∪ set(v̂)| = |set(û)|+ |set(v̂)| − |set(û) ∩ set(v̂)| = 2K − |set(û) ∩
set(v̂)|, both measures are monotonic with the basic CNAPP index.

4. Indexing K-nr Sequences

In this section we introduce a novel representation that is general for the
K-nr framework, and combines space efficiency with efficient filtering of the
candidates. Note that, in previous work, one must choose between storing the
sequences in raw form, generally using Kn log ρ bits but requiring Ω(Kn) time
to find the γ candidates, or using an inverted index, which is much faster to
spot the potential candidates but increases the space requirement to at least
Kn log n bits.

We propose the use of an Index on Sequences (IoS) to obtain both benefits,
space and time, simultaneously. Given the n signatures {K-nn(u), u ∈ S},
where we assume each u ∈ S is identified with a number i ∈ [1..n], we define a
string representation for the index:

T = K-nn(u1) · K-nn(u2) · . . . · K-nn(un),
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where ui ∈ S denotes the element whose identifier is i ∈ [1..n] and “·” represents
the string concatenation. Then T is a string of length N = Kn over alphabet
R, which we identify with the interval [1..ρ].

A plain representation of string T requires N log ρ bits. To support inverted
index functionality, and other operations useful for the K-nr framework, we need
a representation of T that efficiently answers these queries:

• Access(T, i) retrieves T [i].

• Rankr(T, i) counts how many times r ∈ [1..ρ] occurs in T [1..i].

• Selectr(T, j) returns the position of the jth occurrence of r ∈ [1..ρ] in T .

There are several proposals in the literature [26, 25, 20, 7, 8] that offer
different space/time tradeoffs for representing an IoS. For this problem, we use a
novel IoS representation described in the Appendix, which uses NH0(T )+O(N)
bits of space. Here, H0(T ) is the zero-order empirical entropy of T , that is,
H0(T ) =

∑
r∈R

Nr

N log N
Nr

, where Nr is the number of occurrences of r in T . In
the worst case, when the symbols distribute uniformly, Nr = N/ρ and nH0(T ) =
N log ρ. This representation supports Select in constant time and Rank and
Access in O(logN) time.

We describe now how this compressed representation is used to efficiently
support the various known and new indexes we have described within the K-nr
framework. It should be clear that indexes based on a sequential traversal of
the signatures are easily simulated using Access operations on T , since it holds

ûi(j) = Access(T,K · (i− 1) + j).

However, Rank and Select operations enable the simulation of much more so-
phisticated traversals.

4.1. K-nr-MIF, K-nr-Spearman-Rho, and K-nr-Cosine

An inverted index, like the one used in MIF to speed up queries, is easily
simulated using an IoS. Note that the inverted list of a reference r ∈ [1..ρ]
contains the database elements ui such that r appears in ûi. Therefore, the jth
element of the list of r can be simply computed as

List(r)[j] = dSelectr(T, j)/Ke,

since Selectr(T, j) is the position of the jth occurrence of r in a signature, and we
take the signature number instead of the position in T . Moreover, the position
of reference r in the corresponding signature is

Selectr(T, j)− (List(r)[j]− 1)K.

The length of the list is Rankr(T,N). Algorithm 1 describes the MIF procedure
using these primitives; we call the result K-nr-MIF. The procedure for K-nr-
Spearman Rho is analogous (just replace line 8 with v ← ω2 − (j − o)2).
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algorithm 1: K-nr-MIF: MIF algorithm with an IoS

Input: The query signature q̂ = k-nn(q), the sequence T , the penalty constant ω,
and the desired number of candidates γ.
Output: The set of candidate objects.

1: A← hash table storing object identifiers i ∈ [1..n] as keys and partial similarities
as values.

2: for all j ∈ [1..K] do
3: r ← q̂[j]
4: for all s ∈ [1..Rankr(T,N)] do
5: p← Selectr(T, s)
6: i← dp/Ke
7: o← p− (i− 1)K
8: v ← ω − |j − o|
9: if A contains key i, with value a then

10: Change its value to a+ v
11: else
12: Insert key i and value v to A
13: end if
14: end for
15: end for
16: Return the γ keys with highest values in A

To implement K-nr-Cosine, we only need a few changes. The denominator
constants can be ignored, as they divide all values by the same number. Now
we can use the same algorithm as for K-nr-MIF, with line 8 changed to v ←
(K−o+1) · (K− j+1). At the end, we return the γ keys u with highest values.

4.2. PPI

Algorithm 2 describes an implementation of this index using an IoS; we call
the result K-nr-PPI. We use Select to identify all the signatures that share the
first symbol with q̂. Then we subsequently filter the set with the next symbols
q̂[i], until the resulting set becomes smaller than desired. At this point, all the
best γ candidates, sharing a prefix of length i or more with q̂, are in C ′. If there
are less than γ such candidates in C ′, the next best ones are still in C \ C ′.

4.3. K-nr-Jaccard, K-nr-LCS, and K-nr-Lev

To compute the cardinality of intersections for CNAPP, we use a variant of
the inverted index based procedure used for K-nr-MIF, where in this case we
simply increment the values associated to the documents u each time we find
that û contains another reference present in q̂. Algorithm 3 gives the pseudocode
for this index, which we call K-nr-Jaccard.

It is not easy to effectively filter for similarities K-nr-LCS and K-nr-Lev using
an IoS. However, we can take advantage of the upper bound

LCS(û, v̂) ≤ |set(û) ∩ set(v̂)|,
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algorithm 2: K-nr-PPI: PPI algorithm with an IoS

Input: The query signature q̂ = k-nn(q), the sequence T , the penalty constant ω,
and the desired number of candidates γ.
Output: The set of candidate objects.

1: C ← ∅
2: r ← q̂[1]
3: for all j ∈ [1..Rankr(T,N)] do
4: p← Selectr(T, j)
5: if p mod K = 1 then
6: C ← C ∪ {p}
7: end if
8: end for
9: for all i ∈ [2..K] do

10: r ← q̂[i]
11: C′ ← ∅
12: for all p ∈ C do
13: if Access(T, p+ i− 1) = r then
14: C′ ← C′ ∪ {p}
15: end if
16: end for
17: if |C′| ≤ γ then
18: break
19: end if
20: C ← C′

21: end for
22: Return C′ and γ − |C′| further elements from C \ C′

where the order between symbols is disregarded on the right hand side. There-
fore, we can use the same algorithm for K-nr-Jaccard, but now sorting the final
set of candidates A by decreasing value. We traverse the consecutive candidates
u in the sorted A and compute LCS(û, q̂) for each. Those candidates are stored
in a final result set C sorted by decreasing value of LCS(û, q̂) and retaining only
the largest γ values found. If, at any moment, |C| = γ and the least value stored
in C is not smaller than the next upper bound to review in A, we can safely
stop and return C. Algorithm 4 gives the pseudocode. The filtering procedure
for simLev is exactly the same, as the same upper bound applies.

Even when this scheme is powerful enough to implement cascade filters, in
our case the signatures û must be reconstructed from T using Access in order
to apply LCS. We use a faster algorithm that uses the positions found with
Select to partially reconstruct the signatures, replacing those references not in
the query by a dummy reference. For this sake, when building the set A we
replace component a in the pairs (i, a) by a table mask of K ×K bits, so that
mask(j)[o] = 1 iff reference q̂[j] appears at position o in ûi. This is precisely
the precomputed table needed by a fast bit-parallel LCS computation algorithm
[29], which we integrate in Algorithm 5.
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algorithm 3: K-nr-Jaccard: CNAPP algorithm with an IoS

Input: The query signature q̂ = k-nn(q), the sequence T , the penalty constant ω,
and the desired number of candidates γ.
Output: The set of candidate objects.

1: A← hash table storing object identifiers, i ∈ [1..n] as keys and partial
similarities as values.

2: for all j ∈ [1..K] do
3: r ← q̂[j]
4: for all s ∈ [1..Rankr(T,N)] do
5: i← dSelectr(T, s)/Ke
6: if A contains key i, with value a then
7: Change its value to a+ 1
8: else
9: Insert key i and value 1 to A

10: end if
11: end for
12: end for
13: Return the γ keys with highest values in A

It is not hard to see the similarity between Algorithms 3 and 5. We combine
both methods into a new variant, called K-nr-JaccLCS, that uses

simJaccLCS(û, v̂) = LCS(û, v̂)/K + |set(û) ∩ set(v̂)|,

which is easily computed by storing both a and mask in the tuples associated
to key i.

5. Experimental Methodology

The main outcome of our work is a set of indexes for proximity searching.
Our experiments will show that they successfully deal with various demand-
ing real-world scenarios. We measure the cost of our indexes in terms of the
following parameters:

— The number of distances computed to answer a query. This is at most ρ +
γ, but we reduce the ρ component by using an index that allows finding
the K nearest references to query q better than with a linear scan (this
enables using much larger ρ values). The structure is a variant of the Spatial
Approximation Tree (SAT) [38] where the construction algorithm is changed
so that the candidates to neighbors are inserted from farthest to closest to
the node [15]. Note that this index is built only on the set R of references,
not on the whole dataset, so it is small.

— The CPU time. Even when this depends on many parameters (e.g., hard-
ware, programming language, compilers, operating system, etc.), it gives
a clear real-life sense of the performance for practitioners. Under similar
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algorithm 4: K-nr-LCS algorithm with an IoS

Input: The query signature q̂ = k-nn(q), the sequence T , and the desired number of
candidates γ.
Output: The set of candidate objects.

1: A← final A set of Algorithm 3
2: Sort A by decreasing value
3: C ← ∅ (a min-priority queue of maximum size γ)
4: for all (key i, value a) ∈ A do
5: if |C| ≥ γ ∧ min(C) ≥ a then
6: break
7: end if
8: l← LCS(ûi, q̂)
9: C ← C ∪ {(ui, l)} with key l

10: if |C| > γ then
11: Remove key min(C) from C
12: end if
13: end for
14: Return C

testing conditions, it is an important way to compare indexes without dis-
regarding the cost to find the candidate sets.

— The memory usage. The storage requirement is an important factor to con-
sider in practice. Many metric indexes care little about space usage, storing
several integers per object. Most of our indexes, instead, use just a few bits
per object, allowing the storage of much larger databases in main memory.

— The quality of the results, measured in terms of recall.

In all our queries we have used the value k = 30, that is, we retrieve the
30 nearest neighbors of the queries, as this is a common value in multimedia
information retrieval scenarios.

5.1. Developing and Running Environment

All the algorithms were written in C#, with the Mono framework (http://
www.mono-project.org). Algorithms and indexes are available as open source
software in the natix library (http://www.natix.org, and http://github.

com/sadit/natix/). Unless another setup is indicated, all experiments were
executed on a 16 core Intel Xeon 2.40 GHz workstation with 32GiB of RAM,
running CentOS Linux. The entire databases and indexes were maintained in
main memory and without exploiting multiprocessing capabilities of the work-
station.

5.2. Description of the Datasets

In order to give a rich description of the behavior of our techniques, we select
several real-world databases and generate synthetic ones, as detailed below. It
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algorithm 5: K-nr-LCS algorithm with an IoS. Bitwise operations & (and) and | (or)

are used, and ab means b repetitions of bit a. Sometimes mask(j) is used as a single

K-bit value.

Input: The query signature q̂ = k-nn(q), the sequence T , and the desired number of
candidates γ.
Output: The set of candidate objects.

1: A← hash table storing partial signatures, i ∈ [1..n] as keys and a small table of
K strings of K bits as values

2: for all j ∈ [1..K] do
3: r ← q̂[j]
4: for all s ∈ [1..Rankr(T,N)] do
5: p← Selectr(T, s)
6: i← dp/Ke
7: o← p− (i− 1)K
8: if A does not contain key i with table mask then
9: Insert key i with a table mask with all zeros

10: end if
11: mask(j)[o]← 1
12: end for
13: end for
14: for all (i,mask) ∈ A do
15: V ← 1K

16: for all j ∈ [1..K] do
17: t = V & mask(j)
18: V ← ((V + t) | (V − t))
19: end for
20: llncs← 0 {The length of the longest common subsequence}
21: while V 6= 0 do
22: V ← V & (V − 1)
23: llncs← llncs+ 1
24: end while
25: Associate llncs to key i in A
26: end for
27: Select the final set of items as in Algorithm 4
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Name µ
2σ2 dmax µ σ

Documents 982.99 1.57 0.985 0.022
Colors 8.59 1.38 0.302 0.032
Colors-hard 36.32 1.73 0.390 0.073
CoPhIR 19.31 32,682 0.357 0.096
RVEC-4-1M 11.22 1.80 0.426 0.138
RVEC-8-1M 20.21 2.19 0.509 0.112
RVEC-12-1M 29.78 2.55 0.546 0.096
RVEC-16-1M 38.21 2.81 0.580 0.087
RVEC-20-1M 45.39 2.95 0.607 0.082
RVEC-24-1M 55.17 3.21 0.615 0.075

Table 1: Statistics of our datasets. The mean and the standard deviation, µ and σ respectively,
are given relative to the maximum distance, dmax. Value µ

2σ2 is the intrinsic dimension as
defined by Chavez et al. [16].

is worth noticing that even if our datasets are vector spaces, we never use the
coordinates to discard elements; we use the distance as a black box. This allows
us to work with the data while disregarding its representation; all we need is a
distance function to index the data.

— Documents. This database is a collection of 25,157 short news articles from
TREC-3 collection of the Wall Street Journal 1987-1989. We use their tf-idf
vectors, taken from the SISAP project, www.sisap.org. We use the angle
between the vectors as the distance measure [6]. We remove 100 random
documents from the collection and use them as queries (thus these 100 doc-
uments are not indexed in the database). The objects are vectors of hundred
thousands coordinates. Figure 2a shows the histogram of distances. This
dataset has a very high intrinsic dimension in the sense of Chavez et al. [16],
that is, µ

2σ2 where µ is the mean and σ is the standard deviation of the his-
togram, see Table 1. Even finding the nearest neighbor of a query requires
reviewing the entire database in most exact metric indexes. As a reference,
a sequential scan needs 0.23 seconds.

— Colors. This is a set of 112, 682 color histograms (112-dimensional vectors)
from SISAP, using the L2 distance. To obtain the query set, we chose 200
histogram vectors at random. Figure 2b shows the histogram of distances.
A harder scenario, Colors-hard, is obtained by retaining the same space but
applying a perturbation of ±0.5 to one random coordinate of each query.
Figure 2c shows the histogram of distances. Note that the difficulty comes
from perturbing the query set, since the perturbation is a third of the maxi-
mum distance. The intrinsic dimension grows four times compared to queries
extracted from the dataset without perturbations (the Colors dataset), see
Table 1. A sequential scan on this database takes 0.064 seconds.

— CoPhIR is a 10-million-object subset of the CoPhIR database [11]. Each
object is a 208-dimensional vector and we use the L1 distance. Each vector
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Figure 2: Histograms of distances of our datasets.
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Figure 3: Memory usage of the indexes on CoPhIR.

is a linear combination of five different MPEG7 vectors [11]. We remove
200 vectors at random from the database to use them as queries. Figure 2d
shows the histogram of distances. The complexity of this database comes
from its size, since the concentration around the mean is not so large. A
sequential scan takes approximately 23 seconds.

— RVEC. In order to study the performance as a function of the dimensionality
of the datasets, we generate random datasets over six different dimensions:
4, 8, 12, 16, 20, and 24 coordinates. These databases are named with the
pattern RVEC-*-1M and use L2 distance. Each vector was generated ran-
domly in the unitary hypercube of the appropriate dimension. Table 1 shows
that their intrinsic dimension is larger than twice the number of explicit co-
ordinates. The query set contains 200 vectors generated at random, so query
sets and datasets are disjoint with high probability.

6. Empirical Tuning and Performance Results of K-nr

6.1. Space Usage

Comparing two indexes with the same number of references is not fair when
their space usage per reference is very different. Figure 3 is a log-log plot that
illustrates how different are the scales of memory usage across different indexes
on CoPhIR. The results are similar with the other collections.

First, it is clear that PI can only be used on very small databases. It uses
over 300 times more memory than the most compact indexes when the number
of references grows. This is because it stores ρn values, as opposed to just Kn
(we use K = 7, which will turn out to be a good value). With a smaller constant,
BPI has the same problem. While it takes roughly 10 times less space than PI,
this is still about 30 times more space than the most compact indexes.

Figure 3 also compares the space used by an explicit inverted index (as in
the original MIF structure) as opposed to our space-efficient version based on
an IoS. On MIF, an explicit inverted index uses 1.3–2.5 more space than an
IoS (the inverted index always uses log(Kn) bits per entry, whereas the IoS
uses log(Kρ), thus the space grows slowly towards the right of the plot). The
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least space demanding indexes are those implemented using an IoS (K-nr-MIF,
K-nr-PPI, K-nr-Cosine, K-nr-Jacc, K-nr-LCS, and K-nr-JaccLCS). They do not
even need to store the position of the references within the signatures, and thus
use only log ρ bits per entry.

6.2. Quality of the Results

Figure 4 shows recall versus search time as the number of references ρ grows
from 64 to 2048, with γ = 1% (left) and 3% (right), and K = 7. We show one
real-life dataset per row. In CoPhIR-10M we use smaller ρ values for indexes
with high memory requirements (PI and BPI) in order to keep them in RAM.
We show all the described techniques except K-nr-S-Rho, which performed very
similarly to K-nr-MIF (called simply MIF in the plots), and K-nr-Lev, which was
always inferior to K-nr-LCS. As a control value, we also show the performance
of a sequential scan (Seq).

Most of the indexes improve their recall as ρ grows, until reaching around
0.90–0.95. The exceptions are K-nr-PPI (called simply PPI in the plots), which
is unable to improve beyond a low recall value, and PI and BPI, which on most
datasets do not reach high recall values for lack of available memory. The time,
on the other hand, grows with ρ for the indexes that use K = ρ (i.e., PI and
BPI). For the other indexes, which use K � ρ, there is a ρ value that yields an
optimum time performance.

Indexes PI and BPI are also generally outperformed by most indexes, unless
the number of references is very low and so is the recall, an irrelevant niche. An
important exception occurs on the CoPhIR dataset, where PI achieves perfect
or almost perfect recall, and BPI matches it with γ = 3%. Both achieve much
better recall (albeit being slower) than the other indexes.

The other indexes require about the same time for the same value of ρ,
but K-nr-Cosine (cos) obtains clearly better recall for the same time cost (the
difference is more notorious for γ = 1%). An exception, on Colors-hard, are K-nr-
JaccLCS (jacc-lcs) and K-nr-MIF, which are second-best in the other datasets
and here outperform K-nr-Cosine. Seen in terms of time performance, on the
other hand, CNAPP generally outperforms the others in time for a given recall,
being slower in some cases than K-nr-Jaccard (jacc). K-nr-PPI is even faster for
the recall values it reaches, which are unfortunately very low. As γ increases
(3%), most methods tend to perform similarly.

The fact that the time performance has an optimum value can be explained
as follows. First, as ρ increases, the amount of shared references with q̂ decreases,
and thus the inverted lists are shorter and less CPU time is needed to find the
best γ candidates. On the other hand, for sufficiently large ρ, the number of
distance computations, even with the speedup of the SAT structure, becomes
dominant and the search becomes slower. This shows up on Documents, where
the distance computation is most expensive.

The effect on recall is bit more complicated. Initially, increasing ρ improves
recall because it allows the K closest references to different elements to become
distinct. However, when ρ grows beyond some limit, the K closest references
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(a) Documents with γ = 1% (left) and γ = 3% (right)
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(b) Colors-hard with γ = 1% (left) and γ = 3% (right)
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(c) CoPhIR-10M with γ = 1% (left) and γ = 3% (right). Here PI uses ρ = 16, 32, 64,
128, and BPI ρ = 64, 128, 256, 512.

Figure 4: Search time versus recall as a function of ρ = 64,128,256,512, 1024, 2048, 4096,
8192, 16384, on three real-world datasets.
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Figure 5: Performance on increasing dimensionality on random vectors (RVEC-*-1M). Each
point at the curves refers to a different dimension value (4, 8, 12, 16, 20, and 24). As the
dimension grows, time increases and recall decreases in the curves. We use K = 7 and ρ = 2048
(except PI and BPI, which use 16 and 256 references, respectively).

to different elements start having empty intersection and are not useful to hint
closeness. As we can see, however, our structures surpass 0.90 and even 0.95 of
recall, within an order of magnitude less time than a sequential scan.

6.3. Performance on Increasing Intrinsic Dimension

Figure 5 shows the performance when dimension grows. For this experiment
we use RVEC-*-1M datasets; statistics and shapes are shown in Table 1 and
Figure 2. In this experiment PPI was left out to improve clarity, focusing on the
indexes that produce high recall values. Each subfigure represents a different
γ (0.3%, 1%, and 3%). The recall degrades as dimension grows, going from
1.0 in dimension 4 to 0.4–0.8 in dimension 24 (the degradation is slower for
larger γ). This is the same phenomenon observed in other approximate indexes:
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Figure 6: Comparison for increasing dataset sizes, on CoPhIR. Each point in the curves refers
to a different value of n (105, 3 × 105, 106, 3 × 106, and 107, left to right). We use K = 7,
ρ = 2048 (except on BPI and PI, which use 512 and 128 references, respectively). We plot
the search time relative to the sequential scanning time.

they perform much better than the exact indexes (with low error ratio) on high
dimensions, but they also worsen as the dimension grows. In the worst scenario,
where γ = 0.3 and dimension 24, K-nr-Cosine, K-nr-MIF and K-nr-JaccLCS
perform best, but still obtain low quality. As γ increases to 3%, however, recall
improves up to 0.8. However, as γ increases, the search time gets close to a
sequential scan.

6.4. Performance on Increasing Dataset Sizes

Figure 6 compares the performance of the techniques when n increases, on
CoPhIR-10M. Each curve plots the performance for n = 35, 106, 3 × 106, and
107, dividing the time by that of the sequential scan. An interesting effect as n
grows and fixing γ as a percentage of n (1% and 3%) is that recall improves as
n grows. The time, instead, stays more or less stable around a small fraction
of the sequential search time. As in other experiments, PI and BPI are too
slow compared to a sequential scan. The other indexes are much faster and all
perform similarly.

6.5. Varying the Length of K-nn(q)

We have described K as a parameter used at construction and search time.
In principle, it is possible to use a signature for query q whose length, κ = |q̂| =
|K-nn(q)|, is different from K. This can increase CPU time, but not memory
(indeed we do not need to rebuild the index to change κ), and it yields further
flexibility. While not all similarity functions for signatures are easily adapted to
the case κ 6= K, we study this idea for the particular case of K-nr-Jaccard, where
the size of the intersection between signatures of different sizes makes perfect
sense, and values K and κ are easily modified at construction and search time,
respectively.
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Figure 7: Performance varying κ and γ on real-world and synthetic datasets. The indexes use
K = 7 and ρ = 2048. We use κ = 6, 9, 12, 15, 18. Increasing κ yields increased time. Each
curve corresponds to a a different γ value.

Figure 7 shows the results. The experiment considers fixed K = 7 and
ρ = 2048, and varying κ = 6, 9, 12, 15, and 18. Each curve in the figure shows
the performance for a different γ value (0.1%, 0.3%, 0.45%, 0.6%, 1%, and 3%).
We show three real-world datasets and RVEC-16-1M.

It is clear that search time increases with κ, as this makes the construction of
q̂ slower and also Algorithm 3 (modified to support Jaccard with independent
K and κ) performs more iterations. Recall, on the other hand, increases up
to an optimum and then decreases again, which can be seen especially for low
γ values. This is because many items not really close to q appear in q̂, and
their intersections with the signatures of the elements introduce noise. There
is no clear rule to select κ, but experimental results show that small values are
sufficiently good for all the tested datasets. Yet, larger datasets like CoPhIR-
10M and RVEC-16-1M make good use of larger κ values. In general, varying κ
we obtain combinations of recall and search time that are not possible by just
varying γ.
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6.6. Tuning the K-nr Indexes

The flexibility of K-nr indexes is one of the sources of their great potential,
but also may be problematic for an end-user. In this section we provide a simple
guide to find a competitive tuning, even if not the optimal one.

Once we have chosen an index from the K-nr family, we must decide on the
values K, ρ, γ, and, if the index permits it, κ.

Parameter γ is the easiest to set. It is related to the amount of work, in
terms of distance computations, we are willing to perform. This is usually set
to a small percentage of the database, say 1% or 3% as in this paper. Increasing
γ always improves the quality of the answer.

Let us now consider parameter K. Since K is the signature length of the
objects stored in the database, this parameter impacts directly on the space
used by the index (which is O(Kn) words), and also in its CPU speed, since
comparing two signatures takes at least O(K) time. If we compare all the
signatures directly with that of the query, this implies O(Kn) extra CPU time.
If, instead, we index the signatures to avoid the sequential scan, K determines
the dimensionality of the mapped space, which also impacts on the CPU time
needed to find the suitable candidates.

On the positive side, a larger K improves the recall of the algorithm, up to a
certain point. After that point, however, recall does not improve and may even
degrade due to noise. In general, due to memory restrictions, K has to be chosen
to be a small integer, and the turning point in the recall is not reached. For
example, along this paper we have used a fixed K = 7, which roughly means
storing 7 short integers per database element. This yields a reasonable sized
index and a good enough recall.

Parameter ρ impacts on the number of distance computations at query time,
as we compute ρ distances to map query q to the space of the references. Since
the total number of comparisons is ρ + γ, it is advisable to set ρ to a small
fraction of γ (say, 10%–20% of γ), so that the cost to map q is not too significant
compared to the γ distance computations invested in improving the answer.
Since γ is usually large in absolute terms, this rule of thumb allows for fairly
large values of ρ, sufficient to have a representative set of references from where
to choose the best K. For example, if we have 1 million objects (n = 106) and
set γ to 3% of n, γ = 30, 000, we can use ρ = 2, 000 references without impacting
much (15%) on the total number of distance computations. Along this paper
we have many times used ρ = 2048.

Finally, we have parameter κ, on indexes that permit using it. This param-
eter allows us to trade recall for CPU time, for a fixed K value, by using a
signature of length κ 6= K for the query. Then the CPU time usually becomes
at least O(κn), but in exchange we can improve recall without increasing the
memory usage (K) nor the number of distance computations (ρ+ γ).

To better choose κ we need a training set of queries Q. The use of such a
set to tune indexes is common in the literature, and is typical, for example, in
LSH indexes. Given Q, and having chosen the other parameters, we increase κ
until we reach the desired recall level on Q, or we reach the maximum allowed
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extra CPU time. For example, we have experimented with κ values from 6 to
18 in the previous section.

7. Comparison with Hashing-based Indexes

In this section we compare a good representative of K-nr indexes, K-nr Cosine,
with the most prominent state-of-the-art alternatives: indexes based on hashing.

In order to test LSH we used the E2LSH tool4, from Alex Andoni. It auto-
matically optimizes an LSH index for the available memory. In order to be fair,
since LSH offers distance-based rather than recall-based guarantees, we used it
to search by radius (i.e., return any element within distance r to the query),
setting r as the average radius of the 30-th nearest neighbor. To avoid extreme
or uninteresting cases, we removed queries yielding empty answers and those
with more than 1000 answers.

DSH, instead, is a nearest neighbor index, which must be optimized to search
for a particular number k of near neighbors. We created the DSH index for the
case k = 30, which is the case we test. We use the implementation distributed
by the DSH authors5 [23].

We manually optimized DSH indexes in two parameters, (i) the hash family
width h, and (ii) the number of hashing families L. The goal was to obtain a
balance between recall and time. As for other LSH based indexes, the general
optimization procedure consists in optimizing h for speed within the available
memory and probabilistic constraints. Instead, DSH was not much sensitive to
h for our query sets. Thus, for DSH we set h to make the index fast enough,
and then increased L to improve the recall rate.

Our comparison testbeds are Colors-hard and CoPhIR-1M, two databases cre-
ated from real-world processes. We excluded Documents from the comparison
because the LSH and DSH implementations only support Euclidean distance.
Moreover, according to its authors, LSH [24] makes no sense on datasets fol-
lowing a uniform distribution, thus we also excluded RVEC. We normalize our
CoPhIR-1M dataset to have coordinate values between [−1, 1] and fix the dis-
tance to be L2 (CoPhIR-1M uses L1 in our other benchmarks). This involves
changing the 16-bit integers that store distances to floating point numbers.

We selected K-nr Cosine to represent K-nr methods; it was constructed with
K = 7 and ρ = 2048, and κ was set to K in the search step. Construction times
are high, but amenable to parallelization. We demonstrate this by parallelizing
the construction among the 16 available cores. Queries, instead, always use a
single core.

While our implementations are written in C# and run under the Mono
virtual machine, E2LSH and DSH are written in C++, and run in native form,
thus they have an advantage of around 3X. In order to give a full picture of

4http://www.mit.edu/~andoni/LSH/
5http://www.comp.nus.edu.sg/~dsh/download.html
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memory preprocessing search speedup review recall parameters
(MB) time time (sec)

K-nr Cos. 1.7 14 sec 0.005 12.793 0.033 0.896 K = 7 ρ = 2048
DSH 1.4 35 sec 0.022 0.886 0.057 0.295 L = 1 h = 15
DSH 2.6 40 sec 0.048 0.408 0.120 0.658 L = 2 h = 15
DSH 3.8 44 sec 0.064 0.310 0.161 0.796 L = 3 h = 15
DSH 5.0 50 sec 0.084 0.234 0.210 0.931 L = 4 h = 15
LSH 100 1 min 0.029 0.691 - 0.886 L = 36 h = 8
LSH 300 3 min 0.021 0.926 - 0.700 L = 153 h = 14
LSH 1000 4 min 0.024 0.831 - 0.852 L = 595 h = 20

– Sequential K-nr construction takes 4 min.
– The C# seq time is 0.063 seconds.
– The C++ seq time is 0.020 seconds.
– DSH indexes selected its L hashing families
among 200 families.

– The LSH search radius is 0.491 (average radius
of the 30-th NN).
– LSH indexes were constructed with a success
probability of 0.9.
– LSH indexes used 188 queries.

Table 2: Performance comparison between K-nr Cosine, LSH, and DSH for the Colors-hard
dataset. For hashing methods, h is the number of hashing functions, and L the number of
families of hashing functions. Column “review” refers to the fraction of the database compared
with the query; this is not reported by the LSH software.

the performance, we report both the absolute times and speedup. The latter is
computed with respect to the sequential scan in its own implementation.

As a side note, modifying our datasets from 16-bit integers to floating point
numbers improved all the search times, due to internal processor optimizations.

Colors-hard

Table 2 compares the K-nr Cosine with LSH and DSH on the Colors-hard
dataset. We use our standard setup for K-nr, which is not optimal (it achieves
0.90 recall). We allow K-nr-cosine to review at most 3% of the database. We use
the achieved recall to adjust the probabilities of LSH, that is, we ask to E2LSH
to optimize for a success probability of 0.9, a query radius of 0.491 (the average
radius of the 30-th NN), and use our Colors-hard queries (removing those not
matching our fairness criteria for LSH). We allow E2LSH+ to use 100, 300, and
1000 MB of memory (E2LSH+ was unable to use less memory). For DSH, we
set h = 15, since it was not sensitive to larger h values, thus we were unable to
get better search times. We allow DSH to use up to 4 hashing function families,
since that matches the performance of K-nr Cosine.

Even with the C#-vs-C++ handicap, K-nr Cosine achieves the best absolute
search time, being more than 4 times faster than the second-best (LSH-300MB)
while using 0.5% of its memory. The third-best, coming close, is DSH L = 1,
which uses slightly less memory than K-nr Cosine, but its extremely low recall
renders it useless. K-nr Cosine is also unbeatable in speedup, being almost 13
times faster than a sequential search programmed in C#. In fact, no DSH or
LSH variant outperforms a sequential search programmed in C++. DSH L = 4
is able to reach higher recall than K-nr Cosine, yet at the price of reviewing a
large fraction of the dataset (over 20%), which translates into high search times
(more than 16 times slower than K-nr Cosine).

The preprocessing time needed for K-nr Cosine is about 4 minutes, which
becomes less than 14 seconds when parallelized over our 16-core hardware.
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memory preprocessing search speedup review recall parameters
(MB) time time (sec)

K-nr Cos. 15 5 min 0.072 13.694 0.030 0.954 K = 7 ρ = 2048
DSH 5.1 10 min 0.849 0.325 0.130 1.000 L = 1 h = 15
LSH 1000 5 min 0.318 0.869 - 0.913 L = 15 h = 4
LSH 3000 15 min 0.093 2.972 - 0.897 L = 120 h = 12
LSH 9000 30 min 0.031 9.033 - 0.892 L = 496 h = 18

– Sequential K-nr construction takes 80 min.
– The C# seq time is 0.980 seconds.
– The C++ seq time is 0.276 seconds.
– DSH indexes selects its L hashing families
among 300.

– The LSH search radius is 0.6112 (average radius
of the 30-th NN).
– LSH indexes were constructed with a success
probability of 0.94.
– LSH indexes used 216 queries.

Table 3: Performance comparison between K-nr Cosine, LSH, and DSH for the CoPhIR-1M
dataset. For hashing methods, h is the number of hashing functions, and L the number of
families of hashing functions. Column “review” refers to the fraction of the database compared
with the query; this is not reported by the LSH software.

CoPhIR-1M

Table 3 compares the performance of K-nr Cosine, LSH, and DSH on the
CoPhIR-1M dataset. As for Colors-hard, we use a simple parameter selection for
K-nr, that is, K = 7 and ρ = 2048, based on the experimental study of the
previous section. We obtained a recall of 0.954 reviewing 3% of the database.
Thus, we fix the success probability of E2LSH to be 0.94, based on average
recall of other K-nr methods for n = 106, as shown in Figure 6. For LSH we
used a radius of 0.6112, the average radius of the 30-th NN. We allow E2LSH
to use 1000, 3000, and 9000 MB of memory (E2LSH+ was unable to effectively
use less or more). For DSH, we set h = 15 since, as for Colors-hard, DSH does
not improve when h increases. We use L = 1 for DSH, since it already achieves
perfect recall, yet at the cost of reviewing 13% of the database, which translates
into the highest absolute search time.

In this benchmark, LSH-9000MB achieves the best absolute search time,
followed by K-nr Cosine. Precisely, LSH-9000MB is 2.3 times faster than K-nr
Cosine, yet it uses 600 times more memory. Note, however, that the difference
in time performance may be due to the use of C# versus C++: in terms of
relative times, K-nr Cosine reaches a speedup over 13, which becomes only 9 for
LSH-9000.

Finally, the preprocessing time of K-nr Cosine is its worst feature, since it
needed 80 minutes to index the CoPhIR-1M dataset. When parallelized over 16
cores, however, this became 5 minutes.

8. Summary and Perspectives

We have presented a novel framework for approximate proximity search algo-
rithms, called K Nearest References (K-nr). The framework consists in choosing
a subset R of ρ reference objects from the database, and mapping the original
proximity problem to a simpler space where each object is represented by a
signature built from the K nearest references to it. Then a fixed number γ of
candidates are obtained according to the similarity between the signatures of
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the objects and that of the query q, and the actual query is directly compared
to the obtained candidates.

Our framework encompasses disparate proximity indexes such as the Per-
mutation Index (PI) [14], the Brief Permutation Index (BPI) [53], the Metric
Inverted File (MIF) [2], the PP-Index (PPI) [18], and the Compressed Neigh-
borhood Approximation Inverted Index (CNAPP) [54]. We also give several
examples of how novel indexes can be easily derived from the framework, by
designing new similarity functions from the signatures.

Our second contribution is a generic support for implementing K-nr indexes.
We show that by representing the sequence of signatures using a compressed
format that answers certain basic queries, we can provide not only direct access
to the signatures but also inverted-index functionality, which is useful to speed
up a number of K-nr indexes while reducing, instead of increasing, the space
usage. This allows recasting various existing indexes that are known to be very
effective (e.g., MIF) into a space-efficient representation that allows handling
larger databases in main memory. We also study other generic mechanisms to
improve K-nr indexes, such as varying the signature size of the query.

Some of the new indexes we design, for example those based on cosine similar-
ity or on a combination of Jaccard coefficient and longest common subsequences
between the signatures, turn out to outperform the state of the art in several
cases. In particular, we show that hashing based indexes (LSH and DSH), the
most clear competitors in this scenario, are outperformed as well: those that
slightly outperform our indexes in recall or time, are outperformed by a large
margin in either space, time, or recall, depending on the case. The K-nr indexes
are slower than LSH and DSH at construction; we have shown that this can be
alleviated by parallelizing the construction across the cores of the processor.

8.1. Future Work

We tried other possible improvements that did not give good results. In
particular, using several independent indexes did improve recall on low-recall
indexes like PPI, but increased the time to a point where techniques like K-nr-
Cosine outperformed it in speed and recall using a single index. We believe,
however, that improvements are still possible.

We have shown how the choice of the signature and its similarity function
impacts not only on the quality of the approximate answers, but also in the space
and extra CPU time required by the index. For example, K-nr-MIF achieves
good quality, which is matched by K-nr-Jaccard while using less space. However,
K-nr-PPI is much faster than both, but the quality of its answers is much lower.
The quest for effective similarity measures that can be operated efficiently and
with a compact index, say as effective as K-nr-Jaccard but as fast as K-nr-PPI,
is open. Also, other representations for the signatures, different from the one
we have chosen, may significantly speed up the search. As an example, full-
text indexes [39] can represent the signatures even in more compressed form
than the way we have studied in this paper, and allow retrieving very fast all
the signatures containing a certain substring or prefix. This makes them an
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excellent choice for K-nr-PPI (in exchange, accessing individual signatures is
slower).

We have studied only static scenarios, where the database does not undergo
insertions and deletions of objects. Future research will extend our indexes in
order to support dynamic scenarios. In principle, inserting and deleting objects
in S without affecting the set of references R is rather simple (one can just
mark an object as deleted if it turns out to have been chosen as a reference),
and therefore supporting a small degree of updates is not problematic. When
massive insertions are carried out, however, the structure of the reference set
R may become inadequate, and a complete reorganization may be required.
Similarly, just marking removed elements may become inadequate upon massive
deletions.

Our techniques use only main memory to store both the index and the
database. Compression is used to increase the chance of fitting larger databases
in main memory. With sufficiently large databases, however, it will be necessary
to resort to secondary memory. In this scenario, a classical inverted index
performs better than the compressed representation of the signatures we have
advocated, and a different data organization is necessary. Various compressed
and disk-friendly inverted index organizations are known [56]; studying their
applicability to the proximity search scenario is also future work. Parallel and
distributed deployments are also a valid choice that deserves attention.

Appendix A: Indexing Sequences

There exist several Indexes of Sequences (IoS) with different space/time
tradeoffs [26, 25, 20, 7, 8]. These represent a sequence T [1..N ] over alphabet
[1..ρ] while supporting operations Access, Rank, and Select. Note that an IoS
acts as a representation of T , as it can recover any T [i] via operation Access.
We introduce a novel representation, XLB [51], that turns out to be convenient
for our scenario, characterized by a large alphabet size ρ.

A general technique [25] to handle this problem is to reduce it to representa-
tions of binary sequences, where the problem is simpler. Consider, for example,
a large binary matrix M [1..ρ][1..N ], such that M [r][i] = 1 iff T [i] = r. This
matrix has exactly N 1s out of ρN cells, exactly one 1 per column. Consider
further its row-wise concatenation into a single bitvector P [1..ρN ]. Then,

Rankr(T, i) = Rank1(P, (r−1)ρ+i)−Rank(P, (r−1)ρ)

Selectr(T, i) = Select1(P, i+Rank(P, (r−1)ρ))−(r−1)ρ

are easily solved by resorting to binary operations on P (note that it is conve-
nient to precompute and store the ρ values Rank(P, (r−1)ρ)). Two problems
have precluded going further in this line in existing solutions: (1) operation
Access is not easily supported in time less than O(ρ); (2) P has too many 0s,
which complicates its efficient representation.
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To support Access, we consider a permutation Π on [N ] that simulates an
inverted index on M :

Π(i) = Select1(P, i) mod ρ,

that is, Π(i) tells the column of M (or position in T ) where the ith 1 of M
lies. Note that Π needs not be stored; any cell can be computed using the
formula above. Further, note that Π−1(i) tells the rank of the 1 in P that
corresponds to T [i]. Munro et al. [36] show how, given access to Π in O(1) time,
an extra data structure using N/t bits provides access to Π−1 in time O(t logN).
Once we know Π−1(i), a further binary search among the precomputed values
Rank(P, (r−1)ρ) yields the row of M where Π−1(i) falls in O(log ρ) additional
time. Therefore, we answer Access(T, i) in O(logN) time using O(N) further
bits (note that N = Kn > ρ).

The remaining challenge is to represent P efficiently. We use a representa-
tion [41] that requires NH0(P ) + O(N) bits, where H0(P ) = log ρN

N + O(1) =
log ρ+O(1) is the zero-order entropy of the bitvector. This structure, requiring
in total N log ρ+O(N) bits, answers Select1(P, i) in O(1) time and Rank1(P, i)
in time O(log ρ).

Therefore, we support operations Rankr(T, i) in time O(log ρ), Selectr(T, i)
in time O(1), and Access(T, i) in time O(logN), using N log ρ + O(N) bits of
space. To further reduce the space, we can represent each row of M as a separate
bitvector of length N and Nr bits set, where Nr is the number of occurrences
of symbol r in T . Then the overall space becomes∑

r∈[1..ρ]

Nr log
N

Nr
+O(Nr) = NH0(T ) +O(N),

that is, the representation becomes a zero-order compressed representation of
T . In exchange, operation Rank on the bitvector of row r takes time O(log N

Nr
),

which can be bounded by O(logN).
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