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2 An inverted index is typically composed of a vector containing alldistinct words of the text collection in lexicographical order (which iscalled the vocabulary) and, for each word in the vocabulary, a list ofall text positions in which that word occurs (which is called the list ofoccurrences). The search for a word in an inverted index �rst locatesthe word in the vocabulary and then retrieves its list of text positions.To search for a phrase or proximity pattern (where the words mustappear consecutively or close to each other, respectively), each wordis searched separately and the lists of occurrences are later intersectedtaking care of the consecutiveness or closeness of the word positionsin the text. Other recent proposals are presented in (Williams et al.,1999).The most important considerations to evaluate the e�ciency of anindexing scheme are its construction, updating and querying times, andits space requirements. Both the time and space requirements are afunction of the granularity of the index, which de�nes what is the unitof information represented. Three di�erent types of inverted indexescan be identi�ed by their granularity, going from the faster to processqueries, but slower to build the index and more space demanding, tothe slower to process queries, but faster to build the index and lessspace demanding.The �rst one is called a \word addressing inverted index". Appro-priately implemented, it is the fastest index to solve most queries. Ituses the simplest scheme, where the index points to all the positions ofall the words in the text. However, its construction time and the spacerequirement are higher. The occurrences take nearly 60% of the textsize. This can be reduced to 35% by omitting the stopwords from thevocabulary (Ara�ujo et al., 1997). Stopwords are articles, prepositions,and other words that carry no meaning and therefore do not appearin or that can be removed from user queries. Stopwords represent 40%to 50% of all the text words. However, 35% of extra space can stillbe a high space requirement for a large text collection, and thereforedi�erent techniques exist to reduce the space taken by the lists ofoccurrences.The second type is known as a \document addressing inverted in-dex". In a document addressing index the lists of occurrences do notpoint to the exact occurrences of the words but just to the documentswhere each word appears. This saves space because all the occurrencesof the same word in the same document are referenced only once, andthe pointers may be smaller because there are less documents than textpositions. Normal space requirements of document addressing indexesare around 25% of the text size. Single word queries are solved directlyin document addressing indexes, without access to the text. This is
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3because if a word appears in a document the whole document is re-trieved. However, phrase or proximity queries cannot be solved withthe information that the index stores. Two words can be in the samedocument but they may or may not form a phrase or be close. For thesequeries we must search directly the text of those documents where allthe relevant words appear.The third type, called a \block addressing index", goes one step fur-ther (Manber and Wu, 1994; Baeza-Yates and Navarro, 2000). It dividesthe text in blocks of �xed size (which may span many documents, bepart of a document or overlap with document boundaries). The indexstores only the blocks where each word appears. Since normally thereare much less blocks than documents, the space occupied by the indexis very small and can be chosen according to the user needs. On theother hand, almost any query must be solved using some sequentialsearching on the text because it is not known in which documents ofthe block the word appears. The index is used just as a device to �lterout some blocks of the collection that cannot contain a match.This last index scheme was �rst proposed in Glimpse (Manber andWu, 1994), which is a widely known system that uses a block addressingindex. One interesting use for Glimpse is to transparently index allthe �les of a user. The index takes little space and is kept updatedby periodic rebuilds, and it allows �nding, at any time, the user �lescontaining a given pattern. Glimpse is also used to index Web sites,providing fast search on their Web pages with a low overhead indextechnique.An orthogonal technique to reduce the space requirements of in-verted indexes is compression. The text and the index can be com-pressed to reduce space requirements. The key idea to reduce the sizeof inverted indexes is that the list of occurrences of each word is inincreasing order, and therefore the gaps between consecutive positionscan be stored instead of the absolute values. Then, compression tech-niques for small integers can be used. As the gaps are smaller for longerlists, longer lists can be compressed better. Recent work has shown thatdocument addressing indexes can be reduced to 10% of their originalsize without degrading the performance, and even the performance mayimprove because of reduced I/O (Witten et al., 1999).Text compression seems di�cult to combine with an inverted indexbecause of the need to access the text at random positions (for pre-sentation purposes) and to sequentially search parts of the text (whichis required in document and block addressing indexes). These needstraditionally demanded uncompressing the text from the beginninguntil reaching the desired part. Recent text compression techniques(Bentley et al., 1986; Mo�at, 1989), however, not only allow reducing
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4the text to 25% to 30% of its original size but also allows direct search-ing on the compressed text without decompressing (Turpin and Mo�at,1997; Moura et al., 2000), much faster than the same search done on theuncompressed text. Moreover, those compression techniques are basedon Hu�man coding where the symbol table is the vocabulary of thetext. This makes them couple well with an inverted index.Inverted index compression, block addressing and sequential searchon compressed text have not been combined up to now in a singlescheme, and this is precisely what we do in this work. We presenta compressed inverted index that indexes compressed text and usesblock addressing. We study specialized techniques to compress a blockaddressing index and study their performance with respect to the blocksize. The index is built by using an in memory compression schemethat improves the performance by reducing the I/O cost during indexconstruction (see also (Hawking, 1997)).If we use our scheme to index all the user �les (like Glimpse), theresult would be an improvement both in the indexing and searchingtimes. Furthermore, the overall space used by the compressed text plusthe compressed index take nearly one third of the original uncompressed�les without index. To make this arrangement transparent to the user,the system can be implemented as a compressed and indexed �le sys-tem. A layer between the applications and the �le system takes care ofcompressing and uncompressing the texts upon write and read opera-tions, respectively, so that editors, Web servers and other applicationswork transparently with the �les (as Doublespace in DOS or Windows).At the same time, the system keeps a small index that allows �ndingat any time the �les containing a given user query.We show that, for instance, 1 Gb of text can be indexed with only4% of overhead and, in warm state, search one word patterns in 1.6seconds (traversing less than 12% of the text) and phrase patterns inless than 0.5 seconds (traversing less than 4% of the text).This work is organized as follows. Section 2 presents the compres-sion technique based on Hu�man coding on words. Section 3 explainshow to search e�ciently on compressed text. Section 4 presents theblock addressing scheme. Section 5 presents techniques to compressthe occurrences of an inverted index, and our proposals specializedfor compressing block addressing indexes. Section 6 shows the com-plete scheme combining block addressing, index compression and textcompression. Section 7 presents some experimental results betweenthe combined approach and each isolated technique. Finally, Section8 presents conclusions and future work directions.
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52. Word-Based Byte-Oriented Hu�man CompressionFor large natural language texts used in an Information Retrieval (IR)context, the most e�ective compression technique is word-based Hu�-man coding (Hu�man, 1952; Bentley et al., 1986; Mo�at, 1989). Theidea of Hu�man coding is to assign a unique variable-length bit encod-ing to each di�erent word of the text, and compression is achieved byassigning shorter codes to words with higher frequencies. Compressionproceeds in two passes over the text. The encoder makes a �rst passover the text to obtain the frequency of each di�erent text word andperforms the actual compression in a second pass.Traditional implementations of the Hu�man method are character-based, i.e., adopt the characters as the symbols in the alphabet. Asuccessful idea towards merging the requirements of compression algo-rithms and the needs of IR systems is to consider that the symbols to becompressed are words and not characters (Bentley et al., 1986; Mo�at,1989). Words are the atoms on which most IR systems are built. Takingwords as symbols means that the table of symbols in the compressoris exactly the vocabulary of the text, allowing a natural integrationbetween an inverted index and a word-based Hu�man compressionmethod1.An important consideration is the size of the text vocabulary. Anempirical law widely accepted in IR is Heaps' Law (Heaps, 1978), whichstates that the vocabulary of a text of n words is of size V = O(n�),where 0 < � < 1 depends on the text. As shown in (Ara�ujo et al.,1997), � is between 0.4 and 0.6 in practice, so the vocabulary needsspace proportional to the square root of the text size. Hence, for largetexts the overhead of storing the vocabulary is minimal. Another usefullaw related to the vocabulary is the Zipf's Law (Zipf, 1949), whichstates that the frequency in the text of the i-th most frequent word is1=i� times that of the most frequent word, where � � 1 is a constantthat depends on the text. That is, in a text of n words the i-th mostfrequent word appears n=(i�H) times, whereH is a constant that makesthe frequencies to add up to n.A natural language text is composed of words and of separators.An e�cient way to deal with words and separators is to use a methodcalled spaceless words (Moura et al., 2000). If a word is followed by aspace, just the word is encoded. If not, the word and then the separatorare encoded. At decoding time, it is assumed that a space follows eachword, except if the next symbol corresponds to a separator. Figure 1presents an example of compression using Hu�man coding for the space-1 Some operations are ine�cient, however, e.g., a �le cannot be exported fromthe system in its current compressed form. paper.tex; 3/03/2000; 12:42; p.5



6less words method. The set of symbols in this case is f"a", "each","is", "for", "rose", ",t"g, whose frequencies are 2, 1, 1, 1, 3, 1,respectively. e��� XXX0 1 rosee��� XXX0 1e hhhh(((( 0 1eHH��each ,t0 1 iseHH��for 10 aOriginal text:Compressed text: 0010 0000 1 0001 01 1 0011 01 1for each rose, a rose is a roseFigure 1. Compression using Hu�man coding for spaceless words.The example also shows how the codes for the symbols are organizedin a so-called Hu�man tree. The Hu�man method gives a tree thatminimizes the length of the compressed �le, but many trees wouldhave achieved the same compression, e.g., left and right children canbe exchanged at any node. The preferred choice for most applicationsis the canonical tree, where the right subtree is never taller than theleft subtree, as is the case in Figure 1. Canonical trees allow more e�-ciency at decoding time with less memory requirement. Algorithms forbuilding the Hu�man tree from the symbol frequencies are described,for instance, in (Bell et al., 1990). They require O(V logV ) worst casetime, although due to the Zipf's distribution, the average time is linearin V .Decompression is accomplished as follows. The stream of bits inthe compressed �le is traversed sequentially. The sequence of bits readis used to traverse the Hu�man tree, starting at the root. Whenevera leaf node is reached, the corresponding word (which constitutes thedecompressed symbol) is printed out and the tree traversal is restarted.Thus, according to the tree in Figure 1, the presence of the code 0010in the compressed �le leads to the decompressed symbol "for".The original method proposed by Hu�man is mostly used as a binarycode. In (Moura et al., 2000) the Hu�man code assigned to each textword is a sequence of whole bytes and the Hu�man tree nodes havedegree 256 (called byte-oriented Hu�man compression), instead of 2.For example, a possible Hu�man code for the word "rose" could bethe 3-byte code \47 131 8". Experimental results presented in (Mouraet al., 2000) have shown that no signi�cant degradation of the compres-sion ratio is experienced by using bytes instead of bits when coding thewords of a vocabulary. On the other hand, decompression and searchingpaper.tex; 3/03/2000; 12:42; p.6



7of byte Hu�man code is faster than for binary Hu�man code, becausebit shifts and masking operations are not necessary.One important consequence of using byte Hu�man coding is thepossibility of performing fast direct searching on compressed text. Thesearch algorithm is explained in the next section. As seen in this work,this technique is not only useful to speed up sequential search, but itcan also be used to improve indexed schemes that combine invertedindexes and sequential search.3. Sequential Search on Compressed TextWe explain now how the compressed text can be searched (Moura et al.,2000). We start with a general technique that allows searching for verycomplex patterns and then consider possible speedups. The generaltechnique will be presented from the simplest to the most complexscenario. The �nal setup allows a large number of variants, which formsa language originally de�ned for Agrep (Wu and Manber, 1992).� Searching allowing errors (also called \approximate pattern match-ing"): given a query pattern and a number k, the system retrievesthe occurrences of words which can be transformed into the querywith up to k \errors". An error is the insertion, deletion or replace-ment of a character. For instance, searching "color" with k = 1retrieves "colour" as well.� Searching for classes of characters: each pattern position maymatchwith a set of characters rather than with just one character. Thisallows some interesting queries:� range of characters (e.g., t[a-z]xt, where [a-z] means anyletter between a and z);� arbitrary sets of characters (e.g., t[aei]xtmeaning the wordstaxt, text and tixt);� complements (e.g., t[�ab]xt, where �ab means any singlecharacter except a or b; t[�a-d]xt, where �a-d means anysingle character except a, b, c or d);� arbitrary characters (e.g., t�xt means any character as thesecond character of the word);� case insensitive patterns (e.g., Text and text are consideredas the same word).� Searching for regular expressions (exactly or allowing errors). Someexamples are: paper.tex; 3/03/2000; 12:42; p.7



8 � unions (e.g., t(e|ai)xt means the words text and taixt);� arbitrary number of repetitions (e.g., t(e|ai)*xt means thewords beginning with t followed by e or ai zero or more timesfollowed by xt);� arbitrary number of characters in the middle of the pattern(e.g., t.*xt). It is customary to denote .* as #.� Combining exact matching of some of their parts and approximatematching of other parts (e.g., <te>xt, with k = 1, meaning exactoccurrence of te followed by an occurrence of xt with 1 error).� Matching with nonuniform costs (e.g., the cost of insertions canbe de�ned to be twice the cost of deletions).3.1. A General Search TechniqueConsider the search for a single word. The preprocessing consists ofsearching for it in the vocabulary and marking the corresponding entry,that is, a leaf of the Hu�man tree. This search can be very e�cient ifbinary search or hashing is used.Next, we scan the compressed text, byte by byte, and at the sametime traverse the Hu�man tree downwards, as if we were decompressingthe text. Each time we reach a leaf of the Hu�man tree, we know thata word has been read, so we check if the leaf is marked, in which casewe report an occurrence. Be the leaf marked or not, we return to theroot of the Hu�man tree and resume the text scanning.If the pattern is not a simple word, we cannot perform a direct searchin the vocabulary. In this case the preprocessing phase corresponds toa sequential vocabulary search to mark all the words that match thepattern. Specialized sequential algorithms are used to search allowingclasses of characters, errors in the matches, regular expressions, multi-ple patterns and combinations. Since the vocabulary is small comparedto the text size (O(n�) size, recall Section 2), a sequential search is fea-sible (some alternatives are considered in Section 4). The text scanningphase is exactly as before, the only di�erence being that more than oneleaf of the Hu�man tree may be marked.Consider now the search for a phrase query. The phrase is a sequenceof elements, each one a simple or complex pattern. Trying to extendthe previous approach in a brute force fashion is not simple, becausepossible phrase occurrences may overlap with others, some words maymatch many phrase elements, etc.If a phrase has ` elements, we set up a bit mask of ` bits for eachword (i.e., leaf of the Hu�man tree). The i-th bit of word x is set ifpaper.tex; 3/03/2000; 12:42; p.8



9x matches the i-th element of the phrase query. Then, each elementi of the phrase in turn is searched in the vocabulary and marks thei-th bit of the words it matches with. Note that some elements may besimple words searched with binary search or hashing and others maybe complex patterns sequentially searched. Once this preprocessing hasconcluded, we scan the text as before. Each time we arrive to a leaf (i.e.,word) we retrieve its bit mask, which indicates which phrase elementsthe word matches.The search for phrases is organized using a nondeterministic automa-ton of `+1 states. This automaton allows moving from state i to statei+1 if the i-th element of the phrase is recognized. State zero is alwaysactive and occurrences are reported whenever state ` is activated. Theautomaton is nondeterministic because at a given moment many statesmay be active (i.e., many pre�xes of the phrase may have matched thetext).Each time we reach a leaf of the Hu�man tree, we send its bit maskto the automaton. An active state i � 1 will activate the state i onlyif the i-th bit of the mask is active. Therefore, the automaton makesone transition per word of the text. Figure 2 illustrates this phase forthe pattern "ro# rose is" with k = 1 (i.e., allowing 1 error per word,where "ro#" means any word starting with "ro"). For instance, theword "rose" in the vocabulary matches the pattern in positions 1 and2.
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10that a phrase spans more than one sentence, by taking into accountseparators that contain a period (\."). Those leaves of the Hu�mantree will have a bit mask composed of ` zeros and therefore no phraseoccurrence will contain them.The remaining problem is how to implement this automaton e�-ciently. The algorithm of choice is Shift-Or (Baeza-Yates and Gonnet,1992), which is able to simulate an automaton of up to w states (wherew is the length in bits of the computer word) performing a constantnumber of operations per text character. In our case, it means that wecan solve phrases of up to 32 or 64 words, depending on the machine,extremely fast. Longer phrases need the use of d`=we machine wordsfor the simulation but the technique is the same.The idea of the algorithm is to map each state of the automaton(except the �rst one) to a bit of the computer word. For each newtext word (i.e., reached leaf of the su�x tree), each active state canactivate the next one, which is simulated using a shift in the bit mask.Only those that match the current phrase element can actually pass,which is simulated by a bit-wise and operation with the bit mask foundin the leaf of the Hu�man tree. Therefore, with one shift and oneand operation per text word the search state is updated (the originalalgorithm uses the reverse bits for e�ciency, hence the name Shift-Or).The search time is therefore O(kn�+n) in the worst case, where the�rst term comes from searching the vocabulary and the second fromthe text search (O(1) operations per byte of the compressed text).3.2. Faster FiltersThe previous scheme is general and can cope with very complex search-ing. It is possible, however, to search faster. In particular, we areinterested in not examining all the characters of the compressed text.The simplest case to consider is the search for one single word. Inthis case, instead of the previous approach, we can simply �nd the wordin the vocabulary, get its compressed code, and search for the codein the compressed text directly with any standard pattern matchingalgorithm. The resulting algorithm is as fast as the fastest search onuncompressed text, with the additional bene�t of reduced I/O. In termsof elapsed time, the search is much faster if the text has to be read fromdisk.One problem to be solved is the possibility of false matches: thecompressed pattern can be present in the text just because it matchesinside the concatenation of other compressed codes. This is solved byeither using one bit of the bytes of the compressed codes to signal thebeginning of each code, or by setting up synchronization points in thepaper.tex; 3/03/2000; 12:42; p.10



11compressed text to which the codes are aligned. In the latter case eachpotential match must be followed by a veri�cation starting in the lastsynchronization point.We consider now more complex cases. In case of a single complexquery, we �nd all the codes of the matching words and perform amultipattern search in the compressed text. In the case of a phrase,we choose one element as a representative, search it directly in thetext, and verify the surrounding text of each match for complete phraseoccurrences. The element to search can be chosen trying to make thesearch faster (e.g., that with longest code or least codes to search for).The average time to search the text is improved with this scheme. Ifwe search for a single pattern, then it is possible to obtainO(n log(c)=c)time, where c is the length in bytes of the compressed pattern. Thecomplexity for a multipattern search has no closed expression (Baeza-Yates and R�egnier, 1990).4. Block AddressingBlock addressing is a technique to reduce the space requirements ofan inverted index. It was �rst proposed in a system called Glimpse(Manber and Wu, 1994). The idea is that the text is logically dividedin blocks, and the occurrences do not point to exact word positions butonly to the blocks where the word appears. Space is saved because thereare less blocks than text positions (and hence the pointers are shorter),and also because all the occurrences of a given word in a single textblock are referenced only once. Figure 3 illustrates a block addressingindex with r blocks of b words each (i.e., n = rb).Searching in a block addressing index is similar to searching in aword addressing one. The pattern is searched in the vocabulary anda list of blocks where the pattern appears is retrieved. However, toobtain the exact pattern positions in the text, a sequential search overthe qualifying blocks becomes necessary. The index is therefore usedas a �lter to avoid a sequential search over some blocks, while theothers need to be checked. Hence, the reduction in space requirementsis obtained at the expense of higher search costs.At this point the reader may wonder what is the advantage of point-ing to arti�cial blocks instead of pointing to documents (or �les), thisway following the natural divisions of the text collection. If we considerthe case of simple queries (say, one word), where we are required toreturn only the list of matching documents, then pointing to docu-ments is a very adequate choice. Moreover, as shown in (Baeza-Yatesand Navarro, 2000), it may reduce space requirements with respect topaper.tex; 3/03/2000; 12:42; p.11
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IndexFigure 3. A block addressing index.using blocks of �xed size. Also, if we use blocks of �xed size and packmany short documents in a logical block, we will have to traverse thematching blocks (even for these simple queries) to determine whichdocuments inside the block actually matched.However, consider the case where we are required to deliver the exactpositions which match a pattern. In this case we need to sequentiallytraverse the qualifying blocks or documents to �nd the exact positions.Moreover, in some important types of queries such as phrases or prox-imity queries, the index can only tell that two words appear in the sameblock, and we need to traverse it in order to determine if they form aphrase.In this case, pointing to documents of di�erent sizes is not a goodidea because larger documents are searched with higher probability andsearching them costs more. In fact, the expected cost of the search isdirectly related to the variance in the size of the pointed documents.This suggests that if the documents have di�erent sizes it may be agood idea to (logically) partition large documents into blocks and toput small documents together, such that blocks of the same size areused.Block addressing was analyzed in (Baeza-Yates and Navarro, 2000),where an important result is analytically proved and experimentallyveri�ed: a block addressing index may yield sublinear space overheadand at the same time sublinear query time. Traditional inverted indexespaper.tex; 3/03/2000; 12:42; p.12



13pointing to words or documents achieve only the second goal. It isshown in (Baeza-Yates and Navarro, 2000) that in order to obtain aspace overhead of �(n), it is necessary to set b = �(n(1�)=(1��)), inwhich case the query time obtained is O(n�+n1��+�b). In the formula,� is related to the query complexity: O(n�) vocabulary words matchthe query, where � = 0 for exact queries and 0 < � < � for complexqueries. The time complexity is sublinear for  > 1 � (1� �)(� � �).In practice, O(n0:85) space and query time can be obtained for exactqueries.Of course there is not an \optimal" block size but a space-timetradeo� related to b. The case b = O(1) corresponds to word addressingindexes, whose space requirements are O(n) and their time for a singleword query is O(n� + n1��+�) (about O(n0:5) for exact searching).The other extreme, b = 
(n), means that just the vocabulary is stored,needing O(n�) (about O(n0:5)) space and O(n) search time.5. Index CompressionWe show in this section how to compress inverted indexes in order toachieve signi�cant space reduction and also allow fast access to theinverted lists. We also describe in this section a simple technique toimprove the compression when using block addressing. The idea is toavoid storing the lists of words that appear in almost all the text blocks,therefore reducing the size of the index and the amount of processingin queries.Comprehensive works showing how to compress inverted indexescan be found on the literature (Lino� and Stan�ll, 1993; Mo�at andBell, 1995; Witten et al., 1999) and block addressing is just a typeof inverted index. All these previous works are therefore useful here.The techniques used to compress inverted indexes can be classi�ed inparameterized and non-parameterized. Parameterized techniques, suchas Golomb codes (Golomb, 1966), produce di�erent outputs depend-ing on their parameters, so that one can adjust the coding scheme tothe characteristics of the input to compress. Non-parameterized codingschemes do not need any information about the elements to be coded, sotheir output is �xed for each input. When using parameterized coding,the necessity of previous knowledge about the input requires two passeson the list of symbols to be coded, which can be a drawback if we areinterested in good performance (in particular, the inability to generatethe inverted list directly in compressed form may translate into higheri/o at indexing time). These two passes could be merged with the twopasses that we need to obtain an approximation of the parameters, butpaper.tex; 3/03/2000; 12:42; p.13



14decompression would be slower anyway. Further, the best parameter-ized coding methods produce just slight better compression ratios whencompared against the best non-parameterized methods. Our main focuswhen building block addressing indexes is to improve the performance.Therefore we use a non-parameterized scheme in this work.Previous studies have already shown the best non-parameterizedmethods that can be used in inverted index compression (Mo�at andBell, 1995; Witten et al., 1999). For the sake of completeness we repeathere four important concepts: the gaps, Unary coding, Elias- coding,and Elias-� coding.Gaps: The block numbers are assigned incrementally during theparsing of the text, the pointers in each inverted list are in ascendingorder. Each non-initial pointer can then be substituted by the di�erence(or gap) from the previous number of the list. Since processing is usuallydone sequentially starting from the beginning of the list, the originalblock numbers can always be recomputed through sums of the gaps.The lists are now composed by smaller integers and we can obtainbetter compression using an encoding that represents shorter values infewer bits.Unary coding: A simple scheme codes an integer x in (x� 1) one-bits followed by a zero-bit and therefore is calledUnary code. The unarycodes for numbers 1 to 10 are shown in Table I.Elias- coding: Elias (Elias, 1975) studied other variable-lengthencodings for integers. Elias- code represents an integer x by theconcatenation of two parts, a unary code for 1 + blog xc followed bya code of blog xc bits corresponding to x� 2blogxc in binary. The totalcode length is thus 1+2blog xc. Some examples are presented in Table I.Elias-� coding: The other coding scheme introduced by Elias is the� code, in which the pre�x indicating the number of bits in the secondpart is coded in Elias- code rather than unary. The Elias-� code foran integer x requires 1 + 2blog log 2xc+ blogxc bits. As Table I shows,for small values of x, Elias- codes are shorter than Elias-� codes, butthis situation is reversed as x grows. We will present experiments usingboth methods to compress the index in this work.In particular, these techniques can be combined with methods thatallow direct access to the list at periodic intervals (Witten et al., 1999),which permits speed up of phrase and conjunctive queries involving verylong and very short lists. We do not use these techniques in the presentwork.
paper.tex; 3/03/2000; 12:42; p.14



15Table I. Sample codes for integers.Integer x Unary Elias- Elias-�1 0 0 02 10 100 10003 110 101 10014 1110 11000 101005 11110 11001 101016 111110 11010 101107 1111110 11011 101118 11111110 1110000 110000009 111111110 1110001 1100000110 1111111110 1110010 110000105.1. Improving the Index CompressionThe techniques presented in the previous section were developed tocompress document or word addressing indexes. Special features ofthe block addressing indexes can be used to improve the compressionwithout signi�cant changes in the performance of the system.In blocking addressing, many words can appear in more than half ofthe blocks. This phenomenon is not common in document or word ad-dressing indexes, but can occur frequently in block addressing indexeswhen large block sizes are used. In these cases, a simple idea to improvethe index compression is to represent the list of non-occurrences of thesemore frequent words. That is, if a word occurs in more than half of theblocks then we store the block numbers where it does not occur. Wewill call these lists complemented lists.An alternative form to compress those words would be to use runlength compression on the gaps (which would be 1 at least half ofthe times). The economy of space is very similar because the lengthof each run of \ones" is precisely the value of the gap in the com-plemented list minus 1. For instance, if there are 100 blocks and theword appears in all but the 32nd and 61st, then its list of gaps is[1; 1; :::; 1; 2; 1; 1; :::; 1; 2; 1:::; 1]. Run length compression on the list ofgaps yields h1; 31ih2; 1ih1; 28ih2; 1ih1; 39i, in the format h number, rep-etitions i. On the other hand, the complemented list is [32; 61], and thelist of gaps is [32; 29]. Note that run length compression needs to storemore information than that of the gaps in the complemented list.A second advantage is that complemented lists can be operated upone�ciently without converting them into normal lists. We describe laterhow to perform Boolean operations among normal and complementedpaper.tex; 3/03/2000; 12:42; p.15



16lists in time proportional to their normal or complemented represen-tations. Depending on the operation, the result is left in normal orcomplemented form.In inverted indexes it is common to not index the stopwords to savespace. Since stopwords will most probably appear in all the blocks, wecan index them at almost zero cost. Moreover, we need to keep themin the vocabulary for decompression purposes.5.2. In-Memory Bucket CompressionIn other compressed inverted schemes (Witten et al., 1999) the genera-tion of the inverted list proceeds in a �rst stage and their compressionin a second stage. This is not only because the compression is para-metric in some cases, but also because of the way in which the listsare generated. In a �rst step, the text is traversed and the occurrencesare generated in text order. Later, the occurrences are sorted by theword they represent. Therefore, only after this �nal sorting the lists areseparated by words and the gaps can be generated in order to compressthe lists.As we are using a non-parameterized coding scheme, we do not needglobal information about the list in order to compress it. An additionaldecision that allows the lists to be generated in memory already intheir compressed form is that we do not generate the occurrences intext order and later sort them, but we generate them already separatedby word. To do this, we store a separate list of occurrences of each word(since we already know the vocabulary) and each new text occurrenceis added at the end of the occurrence list of the corresponding word.Therefore, we can compute the gaps and store them in compressed formon the y.The technique of generating the occurrences in unsorted form �rstis sometimes preferred because of space reasons: storing a list of oc-currences for each word may be a waste of space because either toomany pointers have to be stored or too much empty space has to bepreallocated. This is especially important because, by Zipf's Law, manywords have very few occurrences. Storing separate lists, on the otherhand, have the advantage of avoiding the �nal sort, which saves time.When combining this with compression, another advantage for separatelists appears: the lists can be generated in compressed form and there-fore they take less space. This improved space usage translates alsointo better indexing time because more text can be indexed in memorywithout resorting to disk. Other indexing schemes that avoid sortingthe occurrences are presented in (Hawking, 1997; Mo�at, 1992; Harmanet al., 1992). paper.tex; 3/03/2000; 12:42; p.16



17We propose now an e�cient approach to store the lists of occurrencesof each word that tries to adapt to the typical word frequencies. Theidea is to represent the list of occurrences of each word by using alinked list where each node is a bucket of occurrences. These bucketsare composed by a pointer to the next bucket of the term and by astream of bits that represents a portion of the compressed list of thisterm. The next bucket pointed has the same structure and continuesthe stream of bits.An important decision in this scheme is the size of the buckets.They should be large enough to compensate the extra space used bythe pointer to the next bucket, and should be small enough to reducethe extra memory lost with the empty spaces on the last bucket of eachterm. After some experiments, we have chosen to use 8 bytes for the�rst bucket of each term and 16 byte buckets for the remaining bucketsof each term. The reason to use a smaller �rst bucket is that manyterms can occur just once on the whole collection. So, using a smaller�rst bucket saves memory in these terms.Figure 4 shows an example with the list of the occurrences of a term tthat has appeared at the blocks [1; 5; 10; 12; 14; 20; 30].Using the codingscheme shown in the last section, this list is converted in the list ofgaps [1; 4; 5; 2; 2; 6; 10]. Using the Elias- coding scheme the list of gapsis converted into the stream of bits 01100011001100100110101110010.Using a �rst bucket size of 32 bits and the remaining buckets with 64bits, the buckets for this term are as shown in Figure 4.The empty space in the two buckets is the space to represent thepointer to the next bucket in the linked list. This pointer can be rep-resented in dlog be bits, where b is the number of buckets that can �tin the memory bu�er. In the example of Figure 4, these pointers wererepresented in 20 bits, allowing up to 220 buckets in the main memory.
011000110011 00100110101110010

First Block Second BlockFigure 4. Linked list of buckets used with the in-memory compression scheme.This in-memory bucket compression technique allows us to indexlarge texts by making just one pass on the text to generate the index.It is general and can be applied in the construction of any kind ofinverted index, such as in word and document addressing indexes. Ifthe whole index cannot be placed in memory, we need to dump thepartial list to disk and make a second pass to merge the dumps asdescribed in (Mo�at and Bell, 1995). paper.tex; 3/03/2000; 12:42; p.17



18 6. An Integrated ApproachWe present in this section our combined design which includes textcompression, block addressing and index compression into a singleapproach. The resulting structure is as follows (see Figure 5):Vocabulary: �rst, we have the vocabulary of the whole collection,which is useful both as the symbol table of the Hu�man coding inuse and as the inverted index vocabulary. The canonical Hu�mantree comprises a small extra structure which, added to the vocab-ulary, is all we need to search and decompress the text. Recall thatthere are also a few separators which are present in the Hu�mantree but are not searchable.Occurrences: for each vocabulary word we have a list of the blockswhere the word appears. The list is in increasing block numberand is compressed using the techniques of Section 5. Despite thatseparators are kept in the vocabulary for decompression purposes,we do not build their lists of occurrences. Another common choicein inverted indexes is to �lter the words (e.g., map letters to lower-case, apply stemming, etc. (Baeza-Yates and Ribeiro-Neto, 1999))which we cannot do here because we could not recover the original�le. Instead, this �ltration is done on the y at search time.Block structure: the blocks form a logical layer over the natural �lestructure of the collection, so that the �les are not physically splitor concatenated. This is implemented as a list of the �les of thecollection, so that the position of a �le in that list is a sort ofidenti�er. We also keep a list of the r blocks used. All the blockshave the same number of words and span a continuous range in thelist of �le identi�ers, not necessarily matching the �le boundaries.For each block we store the identi�er of the last �le that it spansin the list, and the o�set of the last byte in that �le that belongsto the block.Text �les: each original �le in the collection is compressed as a sepa-rate �le (although a single Hu�man coding is used for the wholecollection).The space of this index is analyzed in (Baeza-Yates and Navarro,2000), where it is shown that the vocabulary takes O(n�) space and theoccurrences take O(rb�) space (since, by Heaps' Law, each new blockhas O(b�) di�erent words, and one reference for each of them exists inthe lists of occurrences). The lists of blocks and �les are negligible inpaper.tex; 3/03/2000; 12:42; p.18
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CompressedVocabulary BlockCanonical

structureoccurrencesHuffman tree text files
CompressedFigure 5. The structure of our index.size. On the other hand, the occurrences are compressed now, whichreduces their space by a factor independent of n (and therefore thespace is still O(rb�)). As shown in (Baeza-Yates and Navarro, 2000),the � value for small blocks is larger than its asymptotic value, but itconverges very close to it for relatively small blocks.6.1. ConstructionThe index can be e�ciently built if we notice that many processes canbe merged in a single pass over the text. The Hu�man compressionneeds two passes over the text, and in the same two passes we are ableto build the index. The index construction process has three stages.6.1.1. Stage 1The �rst stage corresponds to �nding all the global information ofinterest. This is: determine the set of �les to index and the number ofblocks to use; compute the vocabulary of the whole collection and thefrequencies of each word; and determine which lists will be representedby their complement. This requires a simple linear pass over the text,and the memory required is that of storing the vocabulary (the list of�les can be output to disk as they are found). At the end of this pass,we have computed the list of �les and the vocabulary of the text withits frequencies. At the end we also know the total number of words inthe collection and therefore, we can de�ne the number of blocks r.Next, we need to collect two di�erent frequency parameters. The �rstone is the number of times that each word occurs and the second one isthe number of blocks in which each word occurs. The �rst one is neededpaper.tex; 3/03/2000; 12:42; p.19



20by the Hu�man algorithm, while the second one is used to determinewhether the list of the word will be stored in simple or complementedform. These statistics are also useful for relevance ranking. While thenumber of times that a word occurs is easy to compute, the numberof blocks requires a little care: we store for each word the last blockwhere it appeared and the number of blocks where it already appeared.We know which is the current block because we increment it each timeb new words are read. Hence, for each occurrence of a word we checkwhether it already appeared in the current block or not. In the secondcase, we increment the number of blocks where it appeared and updatethe last block where the word was seen.Finally, before moving to the next stage we run the Hu�man al-gorithm on the vocabulary and build the canonical Hu�man tree. Wereplace the frequency information of each vocabulary word by the com-pressed code it has been assigned. The tree itself can immediately beswapped out to disk (although it is very small anyway). On the otherhand, any data structure used to build the vocabulary, i.e., to e�ciently�nd the words, should be kept in memory as it will be of help in thesecond stage. The vocabulary can be stored in memory by using a hashtable or a trie in order to provide O(1) average or worst-case accesstime, respectively.6.1.2. Stage 2The second stage does the heavier part. Each text �le of the collectionis compressed, in the order dictated by the list of �les. Each word (orseparator) of the text is searched in the vocabulary (this is why we needthe data structures to search the words) and its Hu�man code is outputto the compressed �le. When we �nish with a �le, the compressedversion replaces the original one.At the same time, we construct the lists of occurrences. Each time aword is found and we output its compressed code, we add an entry toits list of occurrences, which is represented as shown in Section 5.2. Ofcourse the entry is not added if it has already appeared in that block,so we store for each word the last block it appeared in. Recall alsothat the inverse process is done for words whose occurrence list is tobe stored in complemented form: if a word appears in a block and theprevious block it appeared is neither the current nor the previous one,then we add to its list all the block interval between the current blockand its last occurrence (all the last non occurrences of its word).The current block number is incremented each time b new wordsare processed. At this time, we add a new entry to the list of blockspointing to the current �le being processed and store the number ofbytes already written in the compressed version of the �le. This listpaper.tex; 3/03/2000; 12:42; p.20



21can be sent to disk as it is generated and will be used to map a blocknumber to the physical position of the block in the collection.At the end, the list of occurrences is sent to disk in its compressedform. Separately, we save the vocabulary on disk with pointers to theplace where the list of occurrences of each word starts in the �le of theoccurrences.The problem with the above scheme is that, despite the fact that theindex needs little space, we may not be able to store all the occurrencelists in memory at construction time. This is the only problematicstructure, as the rest either is small enough or it can be bu�ered.The occurrences, on the other hand, cannot be sent to disk as theyare generated because all the �nal entries of the �rst list should comebefore those of the second list. The solution chosen is that each timethe memory is �lled we store all the occurrences computed up to nowon disk and free their space in memory, starting again with an emptylist.6.1.3. Stage 3At the end of Stage 2, we will have a set of partial occurrence lists whichhave to be merged in the order given by the words they correspond to.All the lists of each word are concatenated in the order they weregenerated. So some auxiliary information has to be stored with thepartial lists to help identify the word they belong to: a word identi�erand the length of the list is enough.6.1.4. AnalysisCollecting the vocabulary of the text can be done in linear time pro-vided adequate data structures are used (e.g., a trie of the words toguarantee worst case linear time or a hash table for average lineartime). Hu�man construction can be done in linear expected time if thewords follow some statistical rules widely accepted in text retrieval, asshown in (Moura et al., 1999). The other processes of the �rst stageare also of linear time and negligible in practice.The second stage is also linear if we use the discussed data structuresto �nd the text words in the vocabulary. The compressed codes outputtotal less space than the text itself (so they take also linear time) andadding the block numbers to the end of the lists of occurrences is alsoconstant time per text word.What is not linear is the third stage that merges the lists. If we haveO(M) memory available for index construction, then O(n=M) partialoccurrence lists will be generated and will have to be merged. By usingheapsort, the total merge takes O(n log(n=M)) time. This third stagecan be avoided by resorting to virtual memory, but writing partial listspaper.tex; 3/03/2000; 12:42; p.21



22to disk and merging them is much faster in practice. It is interestingto see that the merge phase will commonly not be needed because weuse in-memory compression and block indexes tend to be small. Forexample, using a machine with 100 Mb of RAM and a 500 words blocklength (a small block size), we are able to index a collection size closeto 1 Gb without needing Stage 3.6.2. SearchingWe describe now the search process using our index, which can bedivided in three steps. We �rst explain the search of a single elementand then show how to search phrases.6.2.1. Step 1The �rst step of the search is to �nd the query pattern in the vocabulary(be it a single word, a regular expression, allowing or not errors, etc.).The data structures used at indexing time can be kept to speed up thissearch, or we can resort to sequential or binary search to save space2.This is done exactly as explained in Section 3. At the end, we have alist of words that match the query, and we have built the binary masksfor each of them (in case of phrase searching).6.2.2. Step 2This is where we take advantage of the block information, which cannotbe done in simple sequential searching. The query pattern has beenmatched to a set of vocabulary words (just one if we search for a singleword). We take the list of blocks where each of the words occur andmerge all them into a single list, which is ordered by increasing blocknumber. None of the blocks excluded from this �nal list can contain anoccurrence of the query element.Since the lists to merge are in compressed form we decompress themon the y at the same time we merge them. For each new list elementto read, we decode the bits of the compressed representation of the gapand add that gap to the last element of the list that has already beenprocessed.The other technique we used to reduce the size of the lists is thecomplementation of long lists. The operation on complemented listscan be done very fast, in time proportional to the complemented list. Iftwo complemented lists `c1 and `c2 have to be merged, the complementedresult is (`1[`2)c = `c1\`c2, i.e., we intersect their complements and have2 Note, however, that the words cannot be simultaneously sorted alphabeticallyand in the order required by the canonical Hu�man tree, so at least an extraindirection array is required. paper.tex; 3/03/2000; 12:42; p.22



23the complement of the result. Similarly, if they have to be intersectedwe apply (`1 \ `2)c = `c1 [ `c2. If `1 is complemented and `2 is not, thenwe proceed by set di�erence: (`1 [ `2)c = `c1 � `2 and `1 \ `2 = `2 � `c1.6.2.3. Step 3The �nal step is the sequential search on the blocks, to �nd the exactdocuments and positions where the query occurs. Only the blocks thatare mentioned in the list of occurrences of the matched words need tobe searched. The block structure is used to determine which portionsof which �les are to be sequentially traversed.The search algorithm is exactly the same as for sequential search-ing without index. However, we have a new choice with respect tothe multipattern Boyer-Moore search. In the sequential setup, all thecompressed codes of the matching words are simultaneously searched,since there is no information of where each di�erent word appears. It isclear that the search performance degrades as the number of patternsto search grows.With the index we have more information. We know in which blockeach vocabulary word matched. Imagine that the query matched wordsw1 and w2. While w1 appears in blocks b1 and b2, w2 appears in blocksb2 and b3. There is no need to search w2 in b1 or w1 in b3. On the otherhand, b2 has to be searched for both words. We can therefore make adi�erent (and hopefully faster) search in each text block. The price isthat we need di�erent pattern preprocessing for each block (becausethe set of patterns to search for depends on the block), which could becounterproductive if the blocks are very small. This idea is mentionedin (Baeza-Yates and Navarro, 2000), but not tested.6.2.4. Phrase searchA query may not be just a pattern but a sequence of patterns, eachone being a word, a regular expression, etc. The main idea to searchphrases is to take the intersection of the occurrence lists of the involvedblocks. This is because all the elements of the phrase must appear inthe same block (we consider block boundaries shortly). We proceed asbefore with each pattern of the phrase: the list of occurrences of eachpattern is obtained by making the union of all the list of the vocabularywords that match the pattern. Once we have the list for each pattern ofthe phrase, we intersect all the lists, and perform the sequential searchonly on the blocks where all the patterns appear at the same time.Unlike the case of simple elements, we may search blocks that have nooccurrences of the complete query.A natural question at this point is how can we avoid losing phrasesthat lie at block boundaries, since the intersection method will fail. Thispaper.tex; 3/03/2000; 12:42; p.23



24can be solved by letting consecutive blocks overlap by a few words. Atindexing time we determine that we will allow searching phrases of atmost ` words. Therefore, if a block ends at the i-th word of a document,the next one does not start at word i+ 1 but at i+ 2� `. This causesa very small overhead and solves elegantly the problem, since everyphrase of ` words or less appears completely inside a block. The mainproblem is that we limit at indexing time the longest phrase that canbe searched. For words longer than ` we can modify the list intersectionprocess, so that two contiguous blocks are veri�ed if the �rst words ofa phrase appears in the �rst block and the last words in the secondblock. This, however, is much more expensive.Another solution is to slightly relax the rule that the blocks areexactly b words long and move block boundaries a little to make themmatch with the end of a sentence (i.e., a separator containing a period).In this case no phrase can cross the block boundaries and there is noneed to make blocks overlap or to limit beforehand the length ` of thephrases to search. On the other hand, parsing the text is a bit morecomplicated.Even more sophisticated searching, such as proximity search (i.e., asequence of ` words that must appear in correct order in an interval of`0 text words), can be accommodated in a very similar way. Only thesequential searching changes (see (Moura et al., 2000) for techniquesto search diverse sophisticated patterns), and the block boundaries aremade overlap in `0 � 1 words.6.2.5. AnalysisWe now analyze the performance of the search process. The �rst step(vocabulary search) has already been analyzed in Section 3: a phrase ofj elements takes O(jn�) or O(jkn�) time depending on the complexityof the search.The second step is the merging and/or intersection of lists. Firstconsider one-word queries, which are analyzed in (Baeza-Yates andNavarro, 2000) (recall Section 4). Since each word has an occurrence listofO(n1��) average length, the cost to merge the lists isO(n1��+� logn).The cost to intersect the lists of a phrase of j such patterns isO(jn1��+�logn), because since the lists are stored in compressed form we need totraverse all of them. Recall, however, that very long lists are compressedby representing their complement and these representations can bee�ciently handled.However, the cost of the �rst and second steps is negligible comparedto that of the third step. Since we know already the search cost on atext of a given size, what remains to be determined is the percentageof text that has to be traversed when a block index is used. First wepaper.tex; 3/03/2000; 12:42; p.24



25consider one-word patterns. Since a block of b words has O(b�) di�erentwords, and O(n�) random words out of O(n�) vocabulary words areselected by the search, the probability that the block gets a selectedword and hence is searched is O(b�n���). Since there are r blocks andthe cost to traverse them is O(b), we have that the total search cost isO(brb�n���) = O(n1��+�b�). When b tends to 1 the cost approachesthat of word addressing indexes (Ara�ujo et al., 1997).Phrase searching is much better, however. As shown in (Ara�ujo et al.,1997) using Zipf's Law, the shortest list among 2 or more randomwordshas constant length. This means that on average we will search O(1)blocks for phrase searching, which is O(b) time. The cost to intersectthe lists is similar to that of the union, because they are sequentiallyprocessed.To summarize, the total search cost is O(n� + n1��+�b�) for singlepatterns and O(n� + n1��+� + b) for phrases. We have considered kand j as constants to simplify the �nal complexity.6.3. UpdatingThe �nal issue is how to update this index when documents are added,removed, or modi�ed. Procedures to update a normal inverted indexare well known (Brown et al., 1994), but there are extra complicationswith a block index.Removing a document cannot be simply handled by removing allreferences to it in the occurrence lists, since we only point to blocks thatcontain the document or overlap with it (we could remove completeblocks if they are totally contained in the removed document). Analternative is to reindex the block, but it is expensive and the block isof di�erent size now, which is not incorrect but may degrade the perfor-mance. Inserting new documents can be handled by adding new blocksas they are needed, although the document has to be compressed andindexed and its occurrence lists merged with those of the whole index.On the other hand, as shown in (Baeza-Yates and Navarro, 2000), theblock size b should grow (sublinearly) as the text size grows.The best choice to handle updates in this type of index is periodicreindexing (Manber and Wu, 1994). That is, the index is completelyrebuilt at periodic intervals (say, daily or weekly). This choice implysome limitations on the update frequency and the maximal size of thedatabase. In between, we handle the updates in a manner that makesthem very light. This is paid with a slight degradation of the indexperformance between periodic rebuilds.Deletions: the document is marked as deleted in the list of documentsand physically deleted. Nothing else is altered in the index. Whenpaper.tex; 3/03/2000; 12:42; p.25



26 the block has to be sequentially traversed, that document is ofcourse skipped. This makes it possible that the block is traversedfor some words that are not anymore in it. On the other hand,removing �les from the collection is very fast.Insertions: there are two good choices. A �rst one is to compress the�le, add it to a last incomplete block of the index or create a newblock for it, and add the entry of this block to all the lists of thewords that appear in the new document. This fully integrates thedocument in the collection but takes some time. Another choice isto add the identi�er of the document to a special block which is notindexed and therefore is included in every sequential search. Thisis equivalent to having the new �les not indexed and search themsequentially all the times until the next rebuild. This degradesslightly the performance but makes insertions very fast. The indexcan be forced to rebuild when the user determines it or when theextra block becomes too large.Replacements: the best way to handle a replacement is as a deletionfollowed by an insertion.Another complication comes from the fact that we are compress-ing the text. Even in the case of periodic rebuilds, we would like toavoid recompressing the whole text too frequently. Therefore, we tryto handle incremental modi�cations to the Hu�man codes. Not onlydo the changes alter the frequencies of the words (and hence alter theoptimality of the code we are using) but also new words could appearthat have no representation in the Hu�man tree.A �rst choice is to leave a placeholder in the tree. A fake word offrequency zero is created, and its node is used when new words appear.Each time the placeholder is used, a new one must be created. On theother hand, words that totally disappear can be discovered when theiroccurrence list becomes null, and their place in the tree can be left asa placeholder for new words to be added.At the beginning one can expect that the words that appear and/ordisappear have very low frequency, and therefore a technique of place-holders yields negligible degradations in compression. However, as thechanges accumulate over the time, a mechanism must be devised torecover the optimality of Hu�man codes. A �rst choice is periodicrecompression of the database (the period can be quite large in prac-tice, as shown in (Mo�at et al., 1997) and in Section 7.4). A morechallenging alternative is to perform small modi�cations in the tree tokeep it optimal and to minimize the number of �les that need to berecompressed. This is an open research issue that we are pursuing.paper.tex; 3/03/2000; 12:42; p.26



27An alternative method studied in (Mo�at et al., 1997) is the useof escape codes. New words without representation in the Hu�mantree are represented explicitly in the text (preceding them with a spe-cial byte). This scheme also needs a method to avoid compressiondegradation as changes accumulate along time. They show in (Mof-fat et al., 1997) that this is also a good idea for all the words withvery low frequency, since putting them in the tree does not improvethe compression, and taking them out of the tree reduces a lot thevocabulary.This, however, does not merge well with an inverted index scenario,since we should keep anyway the words in the vocabulary to avoidtraversing the whole text for each word not found in the (incomplete)vocabulary. Even worse, those infrequent words are the most interestingones for IR and the most frequently searched. Finally, the vocabularysizes should not be a problem at all in current computer servers. Manyof these problems can be solved by, in addition to using escape codes,keeping track in the vocabulary of the new words appeared.7. Experimental ResultsWe present in this section some experimental results to evaluate thee�ectiveness of the combined approach. For the tests we have usedliterary texts from the TREC collection (Harman, 1995). We havechosen one gigabyte from the following texts: ap - Newswire (1989),doe - Short abstracts from DOE publications, fr - Federal Register(1989),wsj - Wall Street Journal (1987, 1988, 1989) and ziff - articlesfrom Computer Selected disks (Zi�-Davis Publishing). All the collectionis put in a single �le. We considered a word as a contiguous string ofcharacters in the set fA: : :Z, a: : :z, 0: : :9g separated by other charactersnot in the set fA: : :Z, a: : :z, 0: : :9g. All the tests were run on a PCPentium II 400 MHz with 256 megabytes of RAM running Linux andnot performing other tasks. The disk uses an interface SCSI ULTRADMA-33. We show elapsed times.7.1. Construction Time and SpaceWe start by evaluating the time and space to build the index as afunction of the block size, to determine the e�ectiveness of the in-memory compression technique. Figure 6 shows the time and mainmemory requirements to construct the index and compress the textsof the collection when varying the block size from 500 to 10000 words.The RAM requirements include all the structures used by our imple-mentation: the space to store the vocabulary, the data used by thepaper.tex; 3/03/2000; 12:42; p.27



28compression algorithm and the space used to keep the list of bucketsfor each term of the collection.As can be seen, the index for 1 Gb can be built in around 11 minutesand uses 90 to 140 Mb of RAM (to build it with less RAM we wouldneed to build partial indexes and merge them). The di�erences whenthe block size grows are due to the reduction in the number of entriesof the index. Just compressing the text takes about 8 minutes, but justindexing would need about 10 minutes, as the main cost is the textparsing and this is shared by the compressor and the indexer.We have also included the time to index the same collection usingMG (the block size is controlled by adding arti�cial document termi-nators inside the unique �le at appropriate intervals). As can be seen,MG is 3.5 to 4 times slower.Glimpse is not included in this comparison because we cannot con-trol the block size except by actually splitting the input in real �les.This slows down the indexing time at a point that makes any compar-ison useless.
0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

T
im

e 
(s

ec
on

ds
)

Size of the block (hundreds of words)

MG
Ours

90

95

100

105

110

115

120

125

130

135

140

145

0 10 20 30 40 50 60 70 80 90 100

S
iz

e 
(M

b)

Size of the block (hundreds of words)

Main Memory UsedFigure 6. Time to build di�erent indexes in seconds (left) and main memory usagein Mb for our index (right), for varying block size.7.2. Compression Ratio and Space OverheadWe consider now the space overhead of the �nal index. Figure 7 (left)shows the number of bits per entry used under Elias-� and Elias-.This decreases as the block size grows because the gap values tendto be smaller for larger blocks, which reduces the number of bits torepresent the index entries by using Elias coding. The plot shows thatthere is little di�erence between both methods.The right part of Figure 7 shows the size of the index as a functionof the block size. The index size reduces quickly as the block size growsdue to two main reasons. The �rst one is the reduction of bits perentry explained above. The second is that the number of index entriesis reduced as the block size grows. paper.tex; 3/03/2000; 12:42; p.28



29The �gures also show the gain in compression obtained by using com-plemented lists, which is modest. We use Elias- with complementedlists from now on.
5

5.5

6

6.5

7

7.5

0 10 20 30 40 50 60 70 80 90 100

B
its

 p
er

 e
nt

ry

Size of the block (hundreds of words)

Gamma with complemented lists
Gamma without complemented lists

Delta with complemented lists

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

S
iz

e 
(%

 o
f t

he
 te

xt
)

Size of the block (hundreds of words)

Gamma with complemented lists
Gamma  without complemented lists

Delta with complemented listsFigure 7. Bits per entry (left) and size of the compressed index as a percentage ofthe uncompressed text (right) when varying the block size.7.3. Search TimeWe consider the search time now.We measured it by randomly choosingpatterns from the text. We have experimented patterns with 1, 2 and 3words, averaging over 40 patterns of each pattern size. Figure 8 showsthe time for exact and approximate searching with block sizes varyingfrom 500 to 10000 words. Our sequential search algorithm used is thefast �lter described in Section 3.2, where the false matches problem issolved by using synchronization points.Search times do not include loading the vocabulary, so they corre-spond to a running server which has the vocabulary already loaded inmemory and answers requests from users (warm state).
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

T
im

e 
(s

ec
on

ds
)

Size of the block (hundreds of words)

1 word
2 words
3 words

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

T
im

e 
(s

ec
on

ds
)

Size of the block (hundreds of words)

1 word
2 words
3 wordsFigure 8. Time in seconds for exact searching (left) and allowing one error (right)for patterns with 1,2 and 3 words and varying the block sizes.Figure 9 shows the amount of text traversed for the same experi-ments. As can be seen, a small percentage of the text is traversed evenpaper.tex; 3/03/2000; 12:42; p.29



30for a very small index. In particular, the search time and percentageof traversed text drops quickly when we search for phrases, since thenumber of blocks where all the involved words appear is much smaller.
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31Table II. Comparison of search time (in seconds for 1 Gb).Exact searchingWords Agrep Cgrep Glimpse (7%) Our index (7%)1 18.82 11.35 14.97 4.572 17.00 10.52 7.70 3.433 16.81 9.94 2.98 3.28With 1 errorWords Agrep Cgrep Glimpse (7%) Our index (7%)1 71.01 12.37 42.40 6.172 72.01 11.73 16.94 4.503 67.05 11.45 8.84 4.37sequential searching are much higher in warm state, as it is evidentfrom Figures 8 and 9.As a �nal observation, we note that Glimpse is faster than ours forexact searching of phrases of 3 words. This is due to the fact that, forsu�ciently long phrases, the amount of text to traverse sequentially isso small that the only parameter of interest is the overhead in �ndingthe few relevant blocks. Glimpse is more e�cient than our prototypein this aspect.7.4. Updating the TextWe �nish by showing some experiments about the behavior of the com-pression ratios when the text is updated. From the techniques discussedin Section 6.3, we have implemented the one leaving a special escapesymbol in the Hu�man tree as an escape code, and code the new stringsusing a foxed-length code of 3 bytes following the escape symbol. A listof the newly inserted words is kept and the search algorithms can bealtered to account for the escape codes.Figure 10 (left) shows how deletions a�ect the compression quality.The di�erent TREC texts under considerations were �rst compressedseparately. Then, we removed text from each of the collections untilthey become of 10 Mb each. As can be seen, the compression ratioskeep basically constant, which means that the frequency of the wordsin the total texts are approximated very well by those in a small fractionof the texts.The right part of Figure 10 shows how the successive insertions a�ectthe compression quality in the wsj �le. We �rst compress, respectively,10%, 40% and 70% of the �le and then insert the rest using the alreadypaper.tex; 3/03/2000; 12:42; p.31



32existing codes (and escape codes for the new words). The curve of 100%permits comparing against the optimal compression. For example, weobtain about 30% compression for the whole wsj, but if we build theHu�man codes for only the �rst 10% of the text and then insert therest using those codes, the compression ratio raises to 30.7%. This iscertainly a modest price.
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33compressed text which permits direct search. In particular we haveproposed new index compression techniques that are speci�c of blockaddressing indexes. The integration of these ideas still needs �ne tuningas there are many parameters involved, but our experimental resultssuggest that block size should be around 4,000 words for 1 Gb. At thispoint we have a reasonable trade-o� between index space and searchtime.Using a block size of 4,000 words, the index just needs 40 Mb (3.75%of the text size) and could even be cached in memory. In addition,during construction time, only 104 Mb are needed (which representsabout 10% of the text size). On the other hand, the search time inwarm state is less than 1.6 seconds for one word, and less than 0.5seconds for more words, which is quite reasonable. The percentage oftext traversed with this space overhead is around 4%-12%. The overallresult is that the index and the text can be compressed into less than40% of the original text size alone, achieving searching times of a fewseconds for 1 Gb. We have also shown that our index is up to 7 timesfaster than Glimpse.A number of issues are still open, such asBoolean queries: how to e�ciently do Boolean operations in our in-verted indexes? Document addressing has clear advantages here,as the operation can be translated into set operations on the listsof occurrences. Our smaller index can still be used to operated listsof blocks as a pre-�lter to reduce the text that has to be scanned.Structured text: can we add support for structural queries, at leastto limit the occurrences to occur inside a given text �eld? As shownin (Baeza-Yates and Navarro, 1996; Baeza-Yates et al., 1998), in-verted indexes can signi�cantly help in supporting structured textqueries by indexing (real or virtual) structural tags as distinctwords and translating structural queries into operations regardingwords or tags followed by other words or tags. A block addressingindex can, in the same way, help �lter out blocks that cannotcontain such an occurrence.Flexible pattern matching: how can we use the block addressing in-dex to �lter out text for more sophisticated pattern matching, suchas approximate searching at the word level, described in (Mouraet al., 2000)?E�cient updating: how to reect in the index the updates that thetext collection undergoes? Although periodic rebuilding works,paper.tex; 3/03/2000; 12:42; p.33
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