
Using Structural Contexts

to Compress Semistructured Text Collections ∗†

Joaqúın Adiego ‡§ Gonzalo Navarro ¶ Pablo de la Fuente ‖

Abstract

We describe a compression model for semistructured documents, called Structural Contexts
Model (SCM), which takes advantage of the context information usually implicit in the structure
of the text. The idea is to use a separate model to compress the text that lies inside each different
structure type (e.g., different XML tag). The intuition behind SCM is that the distribution of
all the texts that belong to a given structure type should be similar, and different from that of
other structure types.

We mainly focus on semistatic models, and test our idea using a word-based Huffman method.
This is the standard for compressing large natural language text databases, because random
access, partial decompression, and direct search of the compressed collection is possible. This
variant, dubbed SCMHuff, retains those features and improves Huffman’s compression ratios.

We consider the possibility that storing separate models may not pay off if the distribution
of different structure types is not different enough, and present a heuristic to merge models
with the aim of minimizing the total size of the compressed database. This gives an additional
improvement over the plain technique. The comparison against existing prototypes shows that,
among the methods that permit random access to the collection, SCMHuff achieves the best
compression ratios, 2–4% better than the closest alternative.

From a purely compression-aimed perspective, we combine SCM with PPM modeling. A
separate PPM model is used to compress the text that lies inside each different structure type.
The result, SCMPPM, does not permit random access nor direct search in the compressed
text, but it gives 2–5% better compression ratios than other techniques for texts longer than 5
megabytes.

Keywords: Text compression, Semistructured documents, Compressed text databases.

1 Introduction

Compression of large document collections not only reduces the amount of disk space occupied
by the data, but it also decreases the overall query processing time in text retrieval systems.

∗This work was partially supported by TIC2003-09268 project, MCyT, Spain (first and third authors); and Fonde-
cyt Grant 1-050493, Chile (second author).

†Preliminary versions of this article appeared in Proc. 10th International Symposium on String Processing and
Information Retrieval (SPIRE’03), pages 153–167, 2003; and Proc. 14th Data Compression Conference (DCC’04),
page 522, 2004 (poster).

‡Depto. de Informática, Universidad de Valladolid, Valladolid, Spain. jadiego@infor.uva.es
§Corresponding author.
¶Depto. de Ciencias de la Computación, Universidad de Chile, Santiago, Chile. gnavarro@dcc.uchile.cl
‖Depto. de Informática, Universidad de Valladolid, Valladolid, Spain. pfuente@infor.uva.es

1

Improvements in processing times are achieved thanks to the reduced disk transfers necessary to
access the text in compressed form. Since in the last decades processor speeds have increased much
faster than disk transfer speeds, trading disk transfer times by processor decompression times has
become an attractive choice. Moreover, recent research on “direct” compressed text searching, that
is, searching a compressed text without decompressing it, has led to a win-win situation where the
compressed text takes less space and is searched faster than the plain text (Witten et al., 1999;
Ziviani et al., 2000).

Compressed text databases pose some requirements to the eligible compression methods. The
most crucial is the need of random access to the text without decompressing it from the beginning.
This rules out adaptive compression methods such as Ziv-Lempel or PPM compression. On the
other hand, many semistatic methods yield poor compression. In the case of compressing natural
language texts, however, it has been shown that an excellent choice is a semistatic model that
considers the words, not the characters, as the source symbols (Moffat, 1989). Thanks to the
biased distribution of words (which follows a Zipf law (Zipf, 1949)), the use of this model coupled
with a Huffman coder (Huffman, 1952) gives compression ratios1 below 30%, much better than
those usually obtained with popular adaptive methods. It is even possible to switch to byte-
oriented Huffman coding, where each source symbol is coded as a sequence of bytes instead of bits.
Although compression ratios raise to 35% (which is still competitive), we have in exchange much
faster decoding and searching, which are essential features for compressed text databases. Finally,
the fact that the source alphabet and the vocabulary of the text collections coincide permits efficient
and highly sophisticated searching, both in the form of sequential searching and of compressed
inverted indexes over the text (Witten et al., 1999; Ziviani et al., 2000; Navarro et al., 2000; Moura
et al., 2000; Brisaboa et al., 2003).

Although the area of natural language compressed text databases has gone a long way since
the end of the eighties, it is interesting that little has been done about considering the structure
of the text in this picture. Thanks to the widespread acceptance of SGML, HTML and XML as
the standards for storing, exchanging and presenting documents, semistructured text databases
are becoming the standard. Some compression techniques to exploit the text structure have been
proposed, such as XMill (Liefke and Suciu, 2000) and XMLPPM (Cheney, 2001). However, these
are not designed to permit searching the text. Others, like XGrind (Tolani and Haritsa, 2002),
permit searching but do not take much advantage of the structure.

Our goal in this paper is to consider the text structure in the context of a compressed text
database. We aim at taking advantage of the structure, while still retaining all the desirable
features of semistatic word-based Huffman compression. Our essential idea is to use separate
semistatic models to compress the text that lies inside different tags. For example, in an email
archive, a different model would be used for each of the fields From:, Subject:, Date:, Body:, etc.
This relies on the intuition that the text under similar structural elements (i.e., XML tags) should
follow a similar distribution, different from other texts. We call our general approach SCM (for
Structural Contexts Model), and call SCMHuff the specific compressor obtained with a word-based
byte-oriented Huffman coder.

The idea of using different models depending on the structural context has been anticipated in
most of the alternative structure-aware compressors mentioned above. Yet, those usually distinguish
among types of XML tags. For example, XMLPPM has four separate models, namely for elements,
attributes, characters, and others. Yet, our idea of using a different model for each different tag

1That is, the compressed text size as a percentage of the uncompressed size.

2

name has not been explored before as far as we know. Actually, XMLPPM does use this information
up to some extent. When it starts compressing the text under a new structural element, it feeds
the character model with a fake character identifying the tag name that contains the text. Note
that this is not the same as using a separate model for each tag name, as the fake character is
“forgotten” after a few characters 2.

Having to store all those different models may or may not pay off. In our example, coding
the dates separately is probably a good idea, but coding the subjects separate from the bodies is
probably not worth the extra space of storing two models (e.g., two Huffman trees). Hence we
also design a technique to merge the models if we can predict that this is convenient in terms of
compressed file length. As finding the optimal merging seems to be a hard combinatorial problem,
we design a heuristic to obtain a reasonably good merging from an initially separate set of models,
one per tag.

The SCM approach can be coupled with an adaptive model as well. In this case the only goal
is to use the contexts to improve compression, as the technique cannot be used for compressed text
databases. We implement this idea by using a different PPM model for each different structural
element (XML tag name). We call the resulting compressor SCMPPM.

Our experimental results show that SCMHuff compresses 2–4% better than other methods (in-
cluding plain word-based Huffman without structure, the best alternative semistatic method we
know of). Therefore our method is the best among those that permit random access to the text.
From a pure compression point of view, SCMPPM compresses 2–5% more than any other compres-
sor we tried, including the base PPM and structure-aware compressors like XMill and XMLPPM,
soon after the collection exceeds 5 megabytes. As explained, those space savings translate into I/O
time reductions.

2 Related Work

2.1 Standard Text Compression

In general, classic text compression methods (Bell et al., 1990; Moffat and Turpin, 2002) do not
take into account the structure of the documents they compress. Our aim is not to cover the whole
area but just to focus on three families of compressors that are relevant for this paper.

Text compression is usually divided into two kinds. Statistical compression is based on estimat-
ing source symbol probabilities and assigning them codes according to the probabilities. Dictionary
methods consist in replacing text substrings by identifiers, so as to exploit repetitions in the text.
Statistical compression is conceptually divided into two tasks. Modeling regards the text as a se-
quence of source symbols and assigns probabilities to them, possibly depending on their surrounding
symbols. Zero-order modeling assigns probabilities to the symbols regarding them in isolated form,
while k-th order modeling assigns their probabilities as a function of the k symbols preceding them.
Coding assigns to each source symbol a sequence of target symbols (its code), based on the proba-
bilities given by the model. The output of the compressor is the sequence of target symbols given
by the coder. Compression is semi-static when a single model is obtained for the whole text before
coding starts, so that all the occurrences of the same source symbol (in the same context) are
assigned the same code. Adaptive compression interleaves the modeling and coding tasks, so that
the model is built and updated as coding progresses. In adaptive compression, each new symbol

2From a personal communication with James Cheney.

3

is encoded using the current model and therefore different occurrences of the same source symbol
may be assigned different codes.

Semi-static compression requires two passes over the text, as well as storing the model together
with the compressed file. On the other hand, adaptive compression cannot start decompression at
arbitrary file positions, because all the previous text must be processed so as to learn the model
that permits decompressing the text that follows.

Lempel-Ziv. Lempel-Ziv compression is a dictionary method based on replacing text substrings
by previous occurrences thereof. The two most famous algorithms of this family are called LZ77
(Ziv and Lempel, 1977) and LZ78 (Ziv and Lempel, 1978). A well-known variant of the latter is
called LZW (Welch, 1984).

LZ77 maintains a window of the last N processed characters. In each step, it reads the longest
possible string s from the input that also appears in the window. If s is of length ℓ, it is followed
by character a in the input, and it was found at window position p (counting right to left), then
the compressor outputs the triple (p, ℓ, a). Thus input string sa is replaced by the triple, and
compression is obtained if the triple needs less bits than the string itself. Once this is done, the
window is shifted forward by ℓ+1 positions and the algorithm resumes the scanning just past string
sa.

In principle the use of a longer window improves compression because it makes more likely
to find longer strings for replacement. However, the representation of position p requires log2 N
bits, which worsens as N grows. In practice the most convenient window size is not very long (for
example, 64 kilobytes). This considers not only the achievable compression but also the time and
space cost of searching the window for strings.

Decompression of LZ77 compressed files is extremely fast and simple. The compressed text is
basically a sequence of triples (p, ℓ, a). For each such triple we must copy ℓ characters starting p
positions behind the current output position, and then output a. Well-known representatives of
LZ77 compression are Info-ZIP’s zip and GNU’s gzip.

Other variants, such as LZ78 and LZW, restrict somehow which previous strings can be refer-
enced. This is done for efficiency reasons of different types, for example to improve compression
time or to improve the compression ratio. A well-known representative of LZW is Unix’s compress.

The Lempel-Ziv family is the most popular to compress text because it combines compression
ratios around 35% on plain English text with fast compression and decompression. However,
Lempel-Ziv compressed text cannot be decompressed at random positions, because one must process
all the text from the beginning in order to learn the window that is used to decompress the desired
portion.

Huffman. Huffman coding (Huffman, 1952) is designed for statistical compression. It assigns a
variable-length code to each source symbol, trying to give shorter codes to more probable symbols.
Huffman algorithm guarantees that the code assignment minimizes the length of the compressed
file under the probabilities given by the model.

A common usage of Huffman coding is to couple it with semi-static zero-order modeling, taking
text characters as the source symbols and bits as the target symbols. That is, on a first pass over
the text, character frequencies are collected, then Huffman codes (variable-length bit sequences)
are assigned to the characters, and finally each character occurrence is replaced by its codeword in
a second pass over the text. This combination, that we call “Huffman compression” for shortness,

4

reaches the zero-order entropy of the text up to one extra bit per symbol. Being semi-static,
Huffman compression permits easy decompression of the text starting at any position.

Huffman compression is not very popular on natural language text because it achieves poor
compression ratios compared to other techniques. However, the situation changes drastically when
one uses the text words, rather than the characters, as the source symbols (Moffat, 1989). The
distribution of words is much more skewed than that of symbols, and this permits obtaining much
better compression ratios than character-based Huffman compressors. On English text, character-
based Huffman obtains around 60% compression ratio, while word-based Huffman is around 25%
(Ziviani et al., 2000). Actually, similar compression ratios can be obtained by using Lempel-Ziv on
words (Bentley et al., 1986; Horspool and Cormack, 1992; Dvorský et al., 1999).

However, the text in natural language is not only made up of words. There are also punctu-
ation, separator, and other special characters. The sequence of characters between every pair of
consecutive words is called a separator. Separators must also be considered to be symbols of the
source alphabet. In (Moffat, 1989) they use the so-called separate alphabets model, where words and
separators are modeled separately. As every word is followed by a separator and vice-versa, once
it is known whether the text starts with a word or a separator, no further information is necessary
to decode the stream of codes from the two different alphabets.

Word-based Huffman compression has other advantages. Not only the text can be compressed
and decompressed efficiently, as a whole or in parts, but it is also possible to search it without
decompressing, faster than when searching the uncompressed text (Ziviani et al., 2000). Also, this
type of compression integrates very well with information retrieval systems, because the source
alphabet is equivalent to the vocabulary of the inverted index (Witten et al., 1999; Navarro et al.,
2000; Moffat and Wan, 2001). One of the best known systems in the public domain relying on
word-based Huffman is the MG system (Witten et al., 1999).

K-th order models. These models assign a probability to each source symbol as a function of
the context of k source symbols that precede it. They are used to build very effective compressors
such as Prediction by Partial Matching (PPM) and those based on the Burrows-Wheeler Transform
(BWT).

PPM (Cleary and Witten, 1984) is a statistical compressor that models the character frequencies
according to the context given by the k characters preceding it in the text, and codes the characters
according to those frequencies using arithmetic coding (Witten et al., 1987). PPM is adaptive, so the
statistics are updated as compression progresses. The larger k, the more accurate is the statistical
model and the better the compression, but more memory and time is necessary to compress and
decompress.

More precisely, PPM uses k + 1 models, of order 0 to k, in parallel. It usually compresses using
the k-th order model, unless the character to compress has never been seen in that model. In this
cases it switches to a lower-order model until the character is found.

The BWT (Burrows and Wheeler, 1994) is a reversible permutation of the text that puts
together characters having the same k-th order context (for any k). Local optimization over the
permuted text obtain results similar to k-th order compression (for example, by applying move-to-
front followed by Huffman or arithmetic coding).

PPM and BWT usually achieve better compression ratios than other families (around 20%
on English text), yet they are much slower to compress and decompress, and cannot decompress
arbitrary portions of the text collection. Well known representatives of this family are Seward’s

5

bzip2, based on the BWT, and Shkarin/Cheney’s ppmdi (Shkarin, 2002) and Bloom/Tarhio’s ppmz,
two PPM-based techniques.

2.2 Structured Text Compression

There exist a few approaches specifically designed to compress structured text, taking advantage
of its structure.

XMill (Liefke and Suciu, 2000). Developed at AT&T Labs, XMill is an XML-specific com-
pressor designed to exchange and store XML documents. Its compression approach is not intended
for directly supporting querying or updating the compressed documents. XMill is based on the
zlib library, which combines Lempel-Ziv compression with a variant of Huffman. Its main idea is
to split the file into three components: elements and attributes, text, and structure. Each com-
ponent is compressed separately. Another Lempel-Ziv based compressor, cutting the structure
at some depth and using plain Lempel-Ziv compression for the subtrees, is commercial XMLZip
(http://www.xmls.com).

XMLPPM (Cheney, 2001). This is a PPM-like compressor, where the context is given by the
path from the root to the tree node that contains the current text. XMLPPM is an adaptive com-
pressor that does not permit random access to individual documents. The idea is an evolution over
XMill, as different compressors are used for each component, and the XML hierarchy information
is used to improve compression.

XCQ (Levene and Wood, 2002) and Exalt (Toman, 2004). These are compression methods
based on separating structure from data, and then using grammar-based compression for the struc-
ture. In XCQ, the tree shape is compressed using the DTD information, while the text is compressed
using a standard Lempel-Ziv software such as gzip. In Exalt, both elements are compressed using
grammar-based methods. In particular, zero-order prediction depending on the structural context,
plus arithmetic coding, is used for the tags. Other grammar-based techniques can be found in
(Tarhio, 2001), as well as in XML-Xpress, a commercial software (http://www.ictcompress.com)
that compresses well when the DTD is known.

XGrind (Tolani and Haritsa, 2002). This compressor is interesting because it directly sup-
ports queries over the compressed files. An XML document compressed with XGrind retains the
structure of the original document, permitting reuse of the standard XML techniques for process-
ing the compressed document. Structure tags are represented in numeric form, while the text is
compressed using character-oriented Huffman. A similar idea is explored in XMillau (Girardot and
Sundaresan, 2000).

LZCS (Adiego et al., 2004; Adiego et al., 2006) This compressor uses an idea similar to
LZ77, restricted to replacing whole subtrees. This permits the compressed text being accessed,
searched, and navigated without decompressing it. Yet, the technique is oriented to highly struc-
tured documents (such as e-commerce exchanges, for example) and it does not perform well on
general semistructured data.

6

3 Structural Contexts with a Semistatic Model

Our first contribution is a structure-aware compressor that permits random access and direct search-
ing on the compressed text. For this sake, we build on a semistatic Huffman coder, as it has given
the best results on natural language texts. Our ideas, however, can be adapted to other encoders.
Let us call dictionary the set of source symbols together with their assigned codes.

An encoder based on the separate alphabets model (see Section 2) must use two source symbol
dictionaries: one for all the separators and the other for all the words in the texts. This idea is
still suitable when we handle semistructured documents, but we can extend the mechanism to do
better.

In most cases, natural language texts are structured in a semantically meaningful manner. This
means that we can expect that, at least for some tags, the distribution of the text that appears
inside a given tag differs from that of another tag. In our example of the Introduction, where the
tags correspond to the fields of an email archive, we can expect that the From: field contains names
and email addresses, the Date: field contains dates, and the Subject: and Body: fields contain
free text.

In cases where the words under one tag have little intersection with words under another tag,
or their distribution is very different, the use of separate alphabets to code the different tags is
likely to improve the compression ratio. On the other hand, there is a cost in the case of semistatic
models, as we have to store several dictionaries instead of just one. In this section each tag uses a
separate dictionary. Section 4 considers the way to group tags under a single dictionary.

3.1 Compressing the Text

We compress the text with word-based Huffman (Huffman, 1952; Bentley et al., 1986). The text
is seen as an alternating sequence of words and separators, where a word is a maximal sequence of
alphanumeric characters and a separator is a maximal sequence of non-alphanumeric characters.

Besides, we will take into account a special case of words: tags. A tag is a code embedded
in the text which represents the structure, format or style of the data. A tag is recognized from
surrounding text by the use of delimiter characters. A common delimiter character for an XML or
SGML tag are the symbols ’<’ and ’>’. Usually two types of tags exist: start-tags, which mark the
first part of a container element, ’<...>’; and end-tags, which mark the end of a container element,
’</...>’.

Tags will be wholly considered (that is, including their delimiter characters) as words, and will
be used to determine when to switch dictionaries at compression and decompression time.

3.2 Model Description

The structural contexts model (as the separate alphabets model) uses one dictionary to store all the
separators in the texts, independently of their location. Also, it assumes that words and separators
alternate, otherwise, it must insert either an empty word or an empty separator. There must be
at least one word dictionary, called the default dictionary. The default dictionary is the one in use
at the beginning of the encoding process. If only the default dictionary exists for words then the
model is equivalent to the separate alphabets model.

Figure 1 shows the general SCM scheme, and Algorithm 1 shows the generic pseudocode for
a modeling, coding, or decoding pass over the text. For compression we make a modeling and a

7

coding pass over the text. In the first pass, the text is modeled and separate dictionaries are built
for each tag and for the default and separators dictionary. These are based on the statistics of
words under each tag, under no tag, and separators, respectively. In the second pass, the texts are
encoded according to the model obtained. Decompression reads the model and decodes the text in
a single pass.

SCM Processor

Store/Code/Decode

Store/Code/Decode

Store/Code/Decode

Store/Code/Decode

Documents
Structured/Compressed

Documents
Compressed/Structured

Output Stream

Default Context

Structural Context 1

Structural Context 2

Structural Context N

Figure 1: General SCM scheme.

Algorithm 1 (Dictionary Switching)

current dictionary ← default dictionary
while there are more symbols do

token← get symbol()
if (token is separator)

then store/code/decode(token, separators dictionary)
else store/code/decode(token, current dictionary)

if (token is a start-structure tag)
then push(current dictionary)

current dictionary ← dictionary(token)
else if (token is an end-structure tag)

then current dictionary ← pop()

At the begining of the modeling process, words are stored in the default dictionary. When a
start-structure tag appears we push the current dictionary in a stack and switch to the appropriate
dictionary. When an end-structure tag is found we return to the previous dictionary stored in
the stack. Both start-structure and end-structure tags are stored and coded using the current

8

dictionary and then we switch dictionaries. Likewise, the encoding and decoding processes use the
same dictionary switching technique.

4 Merging Dictionaries

Up to now we have assumed that each different tag uses its own dictionary. However, this may not
be optimal because of the overhead to store the dictionaries in the compressed file. In particular,
if two dictionaries happen to share many terms and to have similar probability distributions, then
merging them under a single dictionary is likely to improve the compression ratio.

In this section we develop a general method to obtain a good grouping of tags under dictionaries.
A key part of the method is, given two dictionaries, determine whether or not their union will
produce a shorter overall text. The exact way to do this is to compute the union of the vocabularies,
sum the frequencies of common words, and run Huffman algorithm to obtain the exact length of the
text when dictionaries are joined. As this is costly, we estimate the size of the Huffman-compressed
text without running Huffman algorithm. For this sake, we use the fact that Huffman compression
performance is very close to the zero-order entropy of the text. The following definitions give the
conceptual framework for our final algorithm.

4.1 Entropy Estimation

Assume we have a text T of n terms partitioned into N texts T1 . . . TN , so that Td has nd terms.
The idea is that each Td corresponds to the text under a given tag and will be encoded using its
own dictionary. We define the raw frequency relative to a given dictionary d.

Definition 1 (Raw frequency) The raw frequency fd(i) of vocabulary term i is given by

fd(i) =
occd(i)

nd

,

where occd(i) is the number of occurrences of vocabulary term i in Td. The raw frequency is also
called occurrence probability of term i.

Definition 2 (Zero-order entropy estimation) Let Vd be the number of vocabulary terms for
text Td. The zero-order entropy Hd of text Td is estimated as

Hd =
Vd∑

i=1

fd(i) log2

1

fd(i)
. (1)

We can now define the overall entropy of a text T partitioned into multiple texts. This is a
lower bound to the average codeword length obtained by applying any zero-order compressor to
the text under each dictionary.

Definition 3 (Zero-order entropy estimation with multiple dictionaries) The zero-order en-
tropy H for text T = {T1, . . . , TN} is computed as the weighted average of zero-order entropies Hd

contributed by each text Td:

H =

∑N
d=1 nd Hd

n
. (2)

9

A Huffman coding over text Td will assign ℓd(i) bits to symbol i, so that the average code length,
Ld =

∑
i fd(i) ℓd(i), is minimized. The Noiseless Coding Theorem (Shannon, 1948) establishes that

Hd ≤ Ld < Hd + 1 (in practice L is much closer to H than to H+ 1).
If we apply Huffman encoding to each Td, the resulting compressed file length is

∑N
i=1 ndLd

bits, and therefore the average codeword length is

L =

∑N
i=1 ndLd

n
.

As Ld < Hd + 1 for all d, L <
∑N

i=1

nd

n
(Hd + 1) = H + 1. Therefore, we have the bounds

H ≤ L < H+ 1 with the partitioned text as well. For this reason, we will use H as an estimation
of L.

Definition 4 (Estimated size contribution of a dictionary) Let Vd be the size, in bits, of
the vocabulary that constitutes dictionary d, and Hd its estimated zero-order entropy. Then the
estimated size contribution of dictionary d (considering vocabulary and text) is given by

Td = Vd + ndHd (3)

Considering the last definition, we determine to merge dictionaries i and j when the sum of their
contributions is larger than the contribution of their union. In other words, when Ti + Tj > Ti∪j.

To compute Ti∪j we have to compute the union of the vocabularies and the entropy of that
union. This can be done in time linear in the vocabulary sizes.

The last definition gives the tool we use for the optimization algorithm.

Definition 5 (Estimated saving of a merge) Let Ai,j be the estimated saving of merging dic-
tionaries i and j. Then

Ai,j = Ti + Tj − Ti∪j.

4.2 Optimization Algorithm

Our optimization algorithm works as follows. We start with one separate dictionary per tag, plus
the default dictionary (the separators dictionary is not considered in this process). Then, we
progressively merge pairs of dictionaries until no further merging promises to be advantageous.
Obtaining the optimal division into groups seems to be a hard combinatorial problem, so we use a
heuristic which produces good results and is reasonably fast.

We start by computing Ti for every dictionary i, as well as Ti∪j for all pairs i, j of dictionaries.
We then compute the savings Ai,j for all i < j. Then, we merge the pair of dictionaries i and j
that maximizes Ai,j, if this is positive. If it is, we erase i and j and introduce i ∪ j in the set,
computing savings As,k for all s versus the new element k that corresponds to i ∪ j. This process
is repeated until all the Ai,j values are negative.

Algorithm 2 depicts the process at a high level. H is a max-priority queue storing triples
(i, j,Ai,j) ordered by Ai,j (note that Ai,j is not explicitly stored). Each occurrence of Ti∪j implies
the O(V) time computation of the union, but the result is not stored unless we explicitly indicate
that the dictionary is created. The algorithm costs O(N2(V + log N)) time and O(N(N + V))
space, when there are N dictionaries and the vocabulary sizes are V .

10

Algorithm 2 (Merging Dictionaries)

H ← ∅
for 1 ≤ i ≤ N do create dictionary i and compute Ti
for 1 ≤ i < j ≤ N do H ← H ∪ (i, j,Ti + Tj − Ti∪j)
k ← N + 1
(i, j, savings) ← extract max (H)
while (savings ≥ 0) do

Tk ← Ti + Tj − savings (that is, Ti∪j)
create new dictionary k as the union of dictionaries i and j
remove dictionaries i and j
for 1 ≤ s ≤ N do

if (s 6= i) then H ← H − (min(i, s),max(i, s), ∗)
if (s 6= j) then H ← H − (min(j, s),max(j, s), ∗)
H ← H ∪ (s, k,Ts + Tk − Ts∪k)

k ← k + 1
(i, j, savings) ← extract max (H)

4.3 Example

Figure 2 shows an example XML file, from the personal repository of papers of John Smith. Let
us first consider compressing all the words using a single model. The text has Vall = 18 different
words and nall = 39 total words. The words and their frequencies follow (excluding stopwords and
separators).

John(4), Smith(4), Susan(1), Tate(1), Ashton(2), Albers(2), Jacob(1), Ziv(2),

Compression(4), Algorithms(4), Applications(3), Lempel(1), 2001(1), 2003(1),

2005(2), Journal(3), ACM(2), Communications(1)

According to Eq. (1) the entropy of this text is Hall = 3.965 bits per word. To account for
the cost of encoding the dictionary, let us assume that we need 8 bits per different dictionary
word, thus Vall = 8 · Vall. Following Eq. (3), the overall number of bits to represent the text is
Tall = Vall + nallHall = 8 · 18 + 39 · 3.965 = 299 bits.

Let us now separate the tags and compute the raw frequencies of the words within each tag.

<author>: John(4), Smith(4), Susan(1), Tate(1), Ashton(2), Albers(2), Jacob(1),

Ziv (1)

<title>: Compression(3), Algorithms(3), Applications(3), Ziv(1), Lempel(1)

<year>: 2001(1), 2003(1), 2005(2)

<journal>: Journal(3), ACM(2), Algorithms(1), Compression(1), Communications(1)

The entropies for each tag are computed using Eqs. (1) and (3).

Tag Entropy (bits/word) Number of words Different words Total bits (Eq. 3)

author Hauthor = 2.750 nauthor = 16 Vauthor = 8 Tauthor = 108
title Htitle = 2.163 ntitle = 11 Vtitle = 5 Ttitle = 64
year Hyear = 1.500 nyear = 4 Vyear = 3 Tyear = 30
journal Hjournal = 2.156 njournal = 8 Vjournal = 5 Tjournal = 58

11

<paper>

<author>John Smith</author>

<author>Susan Tate</author>

<title>Compression Algorithms and Applications</title>

<year>2001</year>

<journal>Journal of the ACM</journal>

</paper>

<paper>

<author>John Smith</author>

<title>Compression has no Applications</title>

<year>2003</year>

<journal>Journal of Algorithms</journal>

</paper>

<paper>

<author>Ashton Albers</author>

<author>John Smith</author>

<title>Algorithms for Compression</title>

<year>2005</year>

<journal>Journal of Compression</journal>

</paper>

<paper>

<author>Ashton Albers</author>

<author>John Smith</author>

<author>Jacob Ziv</author>

<title>Ziv-Lempel Algorithms and Applications</title>

<year>2005</year>

<journal>Communications of the ACM</journal>

</paper>

Figure 2: Example XML file.

12

If we consider the tags in separate form we obtain, using Eq. (2), a total entropy of H = 2.334
bits per word. This is much better (41% less) than if we consider all tags together. This is not
surprising, as the entropy is always lower when we split a text. However, we must also consider
the cost of maintaining separate vocabularies for each tag. In this case, even if we consider the
vocabulary storage, we obtain a total of 260 bits when we sum the values in the last column of the
previous table. This is still lower (13% less) than the 299 bits used when the tags are not separated.

Finally, let us consider the possibility of merging tags title and journal, as they share some
words. The raw frequencies are now as follows:

<author>: John(4), Smith(4), Susan(1), Tate(1), Ashton(2), Albers(2), Jacob(1),

Ziv(1)

<year>: 2001(1), 2003(1), 2005(2)

<title∪journal>: Compression(4), Algorithms(4), Applications(3), Ziv(1),

Lempel(1), Journal(3), ACM(2), Communications(1)

Now ntitle∪journal = 19, Vtitle∪journal = 8, and Htitle∪journal = 2.800. Thus, Ttitle∪journal =
118 bits. Added to the previous sizes obtained for author and year we get 256 bits. This is better
than both previous extremes and exemplifies the benefits of merging, even on a small example.

5 Random Access and Searching

One of the most important characteristics of a semistatic method like word-based Huffman is that
it permits local decompression of the text from random positions, as well as efficient direct search
of the compressed text (Ziviani et al., 2000). In this section we show how those tasks can be carried
out on SCMHuff.

5.1 Local Decompression

The main obstacle to start decompressing from a given position in SCMHuff compressed text is
that we need knowledge of the content of the stack of dictionaries at that point of the compression
process (recall Algorithm 1). Which is equivalent, we need to know the position of the text to
access in the structure tree of the document collection, so that the stack of dictionaries corresponds
to the root-to-leaf path that leads to the text position we wish to start decompression at.

In some browsing schemes, the system is already aware of the place in the tree that corresponds
to the position where decompression must start, so let us focus in the case where there is no such
knowledge.

We propose, essentially, to maintain an explicit structure tree. Each tree node corresponds to
a tag or to a maximal space between tags, and it indicates its tag type and the position in the
compressed document where the node starts. This way, once we wish to start decompression at
some position of the compressed text, we binary search the children of the tree root until finding
the one containing the position. If the node corresponds to a space between tags, then we reached
a tree leaf and can start decompression, otherwise we push the dictionary corresponding to the tag
in a stack and repeat the process in the child node, continuing recursively until we reach a leaf.
When we start decompression, we can use Algorithm 1 from that point, as we have the correct
stack for that point of the compressed text. The process of rebuilding the stack for position pos is
depicted in Algorithm 3 and costs O(h log a), where h is the structure height and a is the maximum

13

arity. In general h is taken as a constant, while a, especially at the first levels, can be O(n), so in
practice the cost is O(log n).

Algorithm 3 (Rebuilding the Stack)

t← tree root
S ← empty stack
while t is not a leaf do

c← binary search the rightmost child of t starting before pos
if c corresponds to a tag

then push the dictionary of c in S
t← c

start decoding with stack S at position pos

An obvious question is how much space do we require for the structure tree. A first choice is
not to represent it, but to reconstruct it from a linear pass over the database at system startup
time. This might be unreasonable depending on the application, so let us consider the alternative
of explicitly storing the tree.

In the text collections of Section 7, we found a mean of 4,000 start tags per megabyte, and at
most 10 different tags per collection. A tree can be represented using 2 bits per node, as a sequence
of opening and closing parentheses. Then the tree can be rebuilt in memory from a linear pass
over the sequence. We need furthermore 4 bits per node to represent the sequence of tag identifiers
(in preorder, so they can be read as the tree is reconstructed from the sequence of parentheses).
Finally, we need to represent the sequence of lengths of the leaves in the compressed text, so as
to reconstruct the initial text position of every tree node. We estimated that 9 bits per leaf are
sufficient if we use a variable length coding (Witten et al., 1999). Overall, we have an overhead of
15 bits per tree node in our text collections, which translates into incrementing our compression
ratios by 0.7 percentual points (that is, we should add 0.7 to the compression ratios achieved by
SCMHuff to access it at random). On the other hand, in decompressed traversable form this tree
requires 3.4% extra space, so for example we can manage a 1 gigabyte text collection using just 35
megabytes of main memory for the structure tree.

We remark that having the structure tree might be anyway a requirement of the structured text
retrieval system, and this also permits new search and traversal capabilities for such a system.

5.2 Searching

With plain Huffman compression, it is possible to compress the pattern and search the text for it,
as the code of the pattern is the same across all the compressed text. This is a bit more complicated
in SCMHuff. The reason is that the pattern is coded differently inside each dictionary.

The most general way the search can be carried out is as follows (Turpin and Moffat, 1997;
Moura et al., 2000). We first find and mark all the vocabulary words that match the search pattern
(it can be just one if the pattern is a simple string). Then we traverse the text, (essentially) scanning
the target symbols one by one, and traversing the Huffman tree accordingly. Each time we arrive
at a leaf, we check whether the leaf is marked. If so, we report an occurrence of the pattern. In
any case, we return to the tree root and resume the scanning.

14

In our case we must preprocess the Huffman tree of each dictionary. In addition to the pattern,
we are interested in marking the Huffman tree leaves corresponding to new start-tags and to the
end-tag corresponding to the current dictionary. This way we keep track not only of the occurrences
of the search pattern in the current dictionary, but also of the dictionary switchings that occur as
we traverse the compressed text. When we find a new start-tag, we push the current dictionary in
a stack and start using the Huffman tree of the new context. When we find the end-tag, we pop
and restore the previous dictionary.

Boyer-Moore type searching is also possible on Huffman-compressed text (Moura et al., 2000),
especially when the target symbols are bytes rather than bits. In this case, instead of a single-
pattern search for the compressed pattern, we enable a multipattern search for the compressed
pattern and also the codewords of start-tags and end-tags, so as to switch models when the context
changes. Alternatively, we can search for all the pattern codewords that arise under the different
dictionaries, and upon a possible occurrence, check the structure tree to find out whether the
occurrence we have found corresponds to the current context.

6 SCMPPM

If we disregard any attempt of direct access or searching, still the SCM concept is useful in terms
of boosting compression. To prove that this is the case and to show that SCM is general enough
to accommodate other compression methods, we combine it with PPM compression. The essential
idea of SCMPPM is that each different structural element name will have its own PPM model to
compress the text that lies under it.

A PPM coder usually works with characters as symbols, and we use it in this way. Still, we
parse the text as a sequence of tokens so as to recognize tags. As PPM is adaptive, it does not need
to store the model in the compressed file. As a result, there is no penalty for maintaining multiple
models other than more compression time and space. Hence there is no point in merging similar
models.

At the begining of the process, the default model is used to predict the symbol probabilities.
When a start-structure tag appears, we push the current model in a stack and switch to the
appropriate model. When an end-structure tag is found we return to the previous model stored in
the stack. Both start-structure and end-structure tags are coded using the current model and then
we switch models. The encoding and decoding processes use the same model switching technique.

Algorithm 4 shows the model switching used for encoding and decoding.

Algorithm 4 (Model Switching)

current model ← default model
while there are more token do

token← get token()
encode/decode(each symbol(token), current model)
if (token is a start-structure tag)

then push(current model)
current model ← model(token)

else if (token is an end-structure tag)
then current model ← pop()

15

7 Experimental Evaluation

In this section we empirically evaluate SCMHuff and SCMPPM. For the former we use word-
oriented Huffman coding, compressing the dictionaries using arithmetic character-based adaptive
coding. For the latter we use ppmdi coders for each model. Both prototypes are compared against
state-of-art compressors. We remind that SCMHuff permits random access to individual documents,
while SCMPPM does not.

The tests were carried out on the SuSE Linux 9.1 operating system, running on a computer
with a Pentium IV processor at 1.2 GHz and 384 megabytes (MB) of RAM. We used g++ compiler
with full optimization. For the experiments we selected different size subcollections (more precisely,
prefixes) of WSJ, ZIFF and AP, from TREC-3 3 (Harman, 1995). Several characteristics of the
collections are shown in Table 1. We concatenated files so as to obtain approximately similar
subcollection sizes from the three collections, so the size in MB is approximate.

Size AP WSJ ZIFF
(MB) #T.W. #V.W. Ratio #T.W. #V.W. Ratio #T.W. #V.W. Ratio

1 195915 19103 9.750% 193899 18380 9.479% 161900 12924 7.982%
5 956340 41263 4.314% 874586 38750 4.430% 992067 35555 3.583%

10 1721137 54058 3.140% 1669506 52218 3.127% 1821015 51094 2.805%
20 3486098 73820 2.117% 3370544 71832 2.131% 3489650 71136 2.038%
40 6985763 101480 1.452% 6690067 97190 1.452% 6970106 102737 1.473%
60 10411824 122340 1.175% 10015765 116221 1.160% 10272649 125326 1.219%

100 17252119 157376 0.912% 16672690 144701 0.867% 17289782 165113 0.954%

Table 1: Collection characteristics. For each collection we show the total number of words (#T.W.),
the total number of vocabulary words (#V.W.) and the ratio between the two (Ratio).

The structuring of the collections is similar: they have only one level of structuring, with the tag
<DOC> indicating documents, and inside each document, tags indicating document identifier, date,
title, author, source, content, keywords, etc. This structuring is very similar to INEX4 structured
collections, yet these have a few additional formatting tags.

7.1 Evaluation of the Merging Algorithm

In this section we focus on SCMHuff, and in particular in its algorithm to merge models (Section 4).
Let us first consider speed. The average speed to compress all collections is around 265

Kbytes/sec (variance is low and not dependent on the collection type). This value includes the
time needed to build models, merge dictionaries, and compress. Time for merging dictionaries
ranges from 4.37 seconds for 1 MB to 40.27 seconds for 100 MB. Its impact is large for the smallest
collection (about 50% of the total time), but it becomes much less significant for the largest col-
lection (about 5%). The reason is that merging time is linear in the vocabulary size, which grows
sublinearly with the collection size (Heaps, 1978), typically around O(

√
n). Although merging time

also depends on the number of different tags, this number is usually small and does not grow with
the collection size but depends on the DTD/schema.

3http://trec.nist.gov/
4INitiative for the Evaluation of XML Retrieval: http://qmir.dcs.qmul.ac.uk/INEX

16

We focus on the effectiveness of the algorithm now. Table 2 shows the number of dictionaries
merged. Column “Initial” tells how many dictionaries are there in the beginning: The default and
separators dictionary plus one per tag, except for <DOC>, which marks the start of a document and
uses the default dictionary. Column “Final” tells how many different dictionaries are left after the
merge.

For example, for small WSJ subsets, the tags <DOCNO> and <DOCID>, both of which contain
numbers and internal references, were merged. The other group that was merged was formed by
the tags <HL>, <LP> and <TEXT>, all of which contain the text of the news (headlines, summary for
teletypes, and body). On the larger WSJ subsets, only the last group of three tags was merged.
This shows that our intuition that similar-content tags would be merged is correct. Also, the larger
the collection, the less the impact of storing more vocabularies (Heaps, 1978), and hence the fewer
merges will occur.

Aprox. WSJ ZIFF AP
Size (MB) Initial Final Initial Final Initial Final

1 11 8 10 4 9 5
5 11 8 10 4 9 5

10 11 8 10 4 9 7
20 11 9 10 6 9 7
40 11 9 10 6 9 7
60 11 9 10 6 9 7

100 11 9 10 7 9 7

Table 2: Number of dictionaries used.

In Figure 3 we can see a comparison, for WSJ (in the other collections we have obtained similar
results), of the compression performance with and without merging dictionaries. It can be seen
that compression ratios improve for larger collections, as the impact of the vocabulary is reduced.
Merging plays a sort of smoothing role. When the text is small and the overhead of storing
vocabularies is significant, the method merges dictionaries more aggressively, obtaining almost 2%
of additional compression on texts of 1 MB. As the text collection grows, the cost of storing (one
or more) vocabularies becomes less significant, and thus the method merges fewer dictionaries. For
large enough texts, merging would not occur and the method would store one different vocabulary
per text tag. In column SAM we show the result of the basic separate alphabets model (that is,
as if we merged all the dictionaries except that for separators). Note that, although SCM without
merging can be worse then SAM for small collections, merging always finds an optimum point
between the two extremes. We also included column MG, in principle similar to SAM, to show the
differences due to different implementations of the same idea.

Another question is how good is our heuristic to choose which dictionaries to merge. On one
hand, we use an entropy-based method to predict the size of the merged dictionaries from the
vocabulary distributions. This is very accurate: our lower-bound prediction is usually 99%–99.5%
of the final value.

To globally evaluate the heuristic, we have compared it against an exhaustive search for all the
merging possibilities. We have taken 1 Mb from WSJ and limited the tags under consideration to
reduced subsets of size 7 and 8. We have considered all the 666 and 2,284 merging possibilities,
respectively, and have compressed the text using each of them. In both cases, our heuristic obtained

17

 28

 30

 32

 34

 36

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

WSJ

SCM
SCM + Merge

SAM
MG (Huffword)

Figure 3: Compression ratios with and without merging, for WSJ.

the result that achieved best compression. Tables 3 and 4 show some detailed results.

Compression Merged Tags

39.8091% HL+LP+TEXT

39.8206% DEFAULT+DATE and HL+LP+TEXT

39.8244% DEFAULT+DOC and HL+LP+TEXT

39.8285% DEFAULT+CO and HL+LP+TEXT

39.8452% DEFAULT+HL+LP+TEXT

39.8582% DOC+DATE and HL+LP+TEXT

Table 3: The 6 top merging alternatives and their compression ratios, when restricting the search
to 1 Mb of collection WSJ and the 7 tags <DOC>, <CO>, <DATE>, <HL>, <LP>, and <TEXT>, apart
from the default context (DEFAULT). Our heuristic chose the best merging.

We could produce a case where the heuristic failed to find the best combination, over a 10 Kb
file with little structure. Yet, the difference with the best combination was just 0.01%.

7.2 Comparison against Classical Compressors

We now compare SCMHuff and SCMPPM against several classical compression systems: (1) GNU
gzip v.1.3.55, which uses LZ77 plus a variant of Huffman algorithm (we also tried zip with al-
most identical results but slower processing); (2) UNIX’s compress v.4.2.4, which implements LZW
algorithm; (3)bzip2 v.1.0.26, which uses the Burrows-Wheeler block sorting text compression algo-

5http://www.gnu.org
6http://www.bzip.org

18

Compression Merged Tags

39.7517% DOCNO+DOCID and HL+LP+TEXT

39.7633% DEFAULT+DOCNO+DOCID and HL+LP+TEXT

39.7877% DOCNO+DOCID and DEFAULT+HL+LP+TEXT

39.7902% DOCNO+DOCID+DATE and HL+LP+TEXT

39.8056% DEFAULT+DOCNO+DOCID+DATE and HL+LP+TEXT

39.8263% DOCNO+DOCID+DATE and DEFAULT+HL+LP+TEXT

Table 4: The 6 top merging alternatives and their compression ratios, when restricting the search to
1 Mb of collection WSJ and the 8 tags <DOCNO>, <DOCID>, <DATE>, <CO>, <HL>, <LP>, and <TEXT>,
apart from the default context (DEFAULT). Our heuristic chose the best merging.

rithm, plus Huffman coding; (4)ppmdi (extracted from XMLPPM v.0.98.2 7), a PPM compressor;
and (5)MG System v1.2.18 (Witten et al., 1999). The MG system is a public domain information
retrieval system software, versatile and of general purpose, which handles compressed text, indexes
and images. For texts it uses a word-based Huffman variant called Huffword and implements the
separate alphabets model. We used standard options for all and also maximum compress option
whenever possible, except for bzip2 where maximum compression is the default. In this case, we also
tried minimum compression option. Compression ratios for each collection are shown in Figure 4.

Let us first consider the standard compressors. Compress obtained the worst compression ratios,
not competitive in this experiment. It is followed by gzip, which has almost no difference between
its default and maximum compression options. The next is bzip2, with a wide difference between
best and worst compression performance. Finally, the best standard compressor is ppmdi, which
achieves 22%–23% compression ratios.

Our SCMPPM compresses better than ppmdi as soon as the text collections exceed 1 to 5 MB
size (depending on the collection). This shows that ppmdi method is actually boosted by separating
the models according to the text structure.

Let us now focus on methods that permit direct access to the text. In our experiment, those are
the word-based methods MG and SCMHuff. Both improve as the text grows, because the impact
of storing the vocabulary decreases. At some point the compression ratios of MG stabilize around
28%. Our SCMHuff compresses uniformly better than MG, reaching a stable improvement of 1.5 to
2 percentual points. After subtracting from this improvement the 0.7 points to have direct access to
SCMHuff compressed text (Section 5), we still have 2% to 4% better compression ratios compared
to MG.

7.3 Comparison against Structure-Aware Methods

We now compare SCMHuff and SCMPPM against other compression systems that exploit text
structure: XMill v.0.8 9 and XMLPPM v.98.2 10. XMill (Liefke and Suciu, 2000) is an XML-
specific compressor based on Ziv-Lempel and Huffman, able to handle the document structure. On

7http://sourgeforge.net/projects/xmlppm
8http://www.cs.mu.oz.au/mg
9http://sourceforge.net/projects/xmill

10http://sourceforge.net/projects/xmlppm

19

 25

 30

 35

 40

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

AP

 25

 30

 35

 40

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

WSJ

scmppm
scmppm -l 9

scmhuff
ppmdi

ppmdi -l 9
gzip

gzip -9
bzip2

bzip2 -1
compress

mg system

 20

 25

 30

 35

 40

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

ZIFF

Figure 4: Comparison between SCM prototypes and classical compressors.

20

the other hand, XMLPPM (Cheney, 2001) is also specific of XML and based on adaptive PPM over
the structural context.

XGrind 11 was excluded from this comparison because we could not make it work properly
on our dataset. To be sure that this exclusion was not important, we altered our collection until
producing 1 MB of text where XGrind finally worked. The resulting compression ratio was 57.28%,
which is not competitive at all in this experiment. XCQ was also excluded because we could not find
the code, yet results reported in (Lam et al., 2003) indicate that the compression ratios achieved
are similar to those of XMill, which we will show to be not competitive in our experiments either.
The same happens with Exalt, according to the results in (Toman, 2004).

Compression ratios are shown in Figure 5. We used standard options for all and also maximum
compression option whenever possible.

XMill obtains an average compression ratio roughly constant in all cases because it uses zlib as
its main compression machinery. The compression ratio obtained, 33%–35%, is not competitive in
this experiment.

XMLPPM, on the other hand, is the most competitive alternative to SCMPPM. Although for 1
MB the compression ratios are similar, soon SCMPPM wins and for 100 MB its margin is around
3.3% in all cases. This shows that the idea of using the structural context to compress pays off.

SCMHuff is the only method permitting navigation and random access. It compresses better
than XMill for collections of more than 1 MB, and for longer texts its margin over XMill grows up
to 25%.

7.4 Speed and Memory Usage

Figure 6 shows the the overall average values for compression and decompression speed in relation to
the compression ratio. We averaged values over all the collections because they did not significantly
depend on the collection and variance was always low.

The fastest at decompression is gzip (based on LZ77), followed by compress (based on LZ78)
and XMill (also based on LZ77). This is expected as this family of compressors is fast, especially at
decompression. Much later come bzip2 and SCMHuff. All the PPM-based compressors are slowest
at decompression, as expected from this family. MG does not appear in the decompression plot,
because it does not permit decompressing the whole collection. Decompression could be faster for
SCMHuff, but this is currently a prototype that is not fully optimized.

For compression, the figures are similar except that SCMHuff is the slowest, possibly because
of the need to parse the natural language text. MG is faster, as expected from a fine-tuned mature
implementation, but it still takes the same time of the slow PPM compressors.

Figure 7 shows the overall average values for memory usage in relation to the compression ratio.
Most compressors are tuned to use 10 Mb of memory to compress. The PPMDi variants use 20–30
Mb to achieve better compression ratio. Our SCMPPM uses more than 200 Mb, as it stores a
PPMDi model per tag, yet it achieves improved compression ratio.

This raises the question of whether SCMPPM compresses more than ppmdi simply because it
uses more memory. To show that memory can indeed be used better under the SCM approach, we
have tuned SCMPPM to use the same memory given to ppmdi -9, 22 Mb. Table 5 shows that it is
possible to compress better using the same memory under the SCM paradigm.

11http://cvs.sourceforge.net/viewcvs.py/xmill/xmill/XGrind

21

 20

 22

 24

 26

 28

 30

 32

 34

 36

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

AP

 20

 22

 24

 26

 28

 30

 32

 34

 36

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

WSJ

scmhuff
scmppm

scmppm -l 9
xmlppm

xmlppm -l 9
xmill

xmill -9

 20

 22

 24

 26

 28

 30

 32

 34

 36

 20 40 60 80 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

ZIFF

Figure 5: Comparison between SCM prototypes and other structure-aware methods.

22

 25

 30

 35

 40

 0 1 2 3 4 5

C
om

pr
es

si
on

 r
at

io
 (

%
)

Speed (Mb/s)

scmhuff
scmppm

scmppm −l 9
xmlppm

xmlppm −l 9
xmill

xmill −9
ppmdi

ppmdi −l 9
gzip

gzip −9
bzip2

bzip2 −1
compress

mg system

 25

 30

 35

 40

 0 5 10 15 20 25 30

C
om

pr
es

si
on

 r
at

io
 (

%
)

Speed (Mb/s)

scmhuff
scmppm

scmppm −l 9
xmlppm

xmlppm −l 9
xmill

xmill −9
ppmdi

ppmdi −l 9
gzip

gzip −9
bzip2

bzip2 −1
compress

Figure 6: On the top, comparison between compression speed (MB/s) and compression ratios for
all methods (overall average values are used). On the bottom, the same for decompression.

23

 25

 30

 35

 40

 1000 10000 100000

C
om

pr
es

si
on

 r
at

io
 (

%
)

Kilobytes

scmhuff
scmppm

scmppm −l 9
xmlppm

xmlppm −l 9
xmill

xmill −9
ppmdi

ppmdi −l 9
gzip

gzip −9
bzip2

bzip2 −1
compress
mgsystem

Figure 7: Comparison between memory usage (Kb) and compression ratios for all methods (overall
average values are used).

Size WSJ AP ZIFF
ppmdi -9 scmppm -9 ppmdi -9 scmppm -9 ppmdi -9 scmppm -9

1 23.426 23.356 23.755 23.724 20.126 20.034
5 23.281 23.394 23.424 23.376 21.280 21.265
10 23.324 23.305 23.244 23.236 21.665 21.660
20 23.365 23.280 23.217 23.166 21.809 21.801
40 23.407 23.346 23.217 23.199 21.830 21.795
60 23.416 23.354 23.247 23.210 21.794 21.755
100 23.259 23.176 23.300 23.279 21.860 21.817

Table 5: Comparison between compression ratios achieved by ppmdi -9 and scmppm -9 under
similar memory requirements. File sizes are in Mb and approximate.

24

To achieve these results, however, we have tuned SCMPPM. The current prototype uses the
same amount of memory for all the tags, which wastes a lot of memory on those tags that handle
less text. A more refined implementation could increase the memory requirement as it processes
more text, so that tags that handle little text would never require much memory. Moreover, we
could use a two-pass technique which, based on the k-th order statistics, decided to merge models
that yield small losses in compression due to the merge. As a proof of concept, we have manually
tuned the amount of memory used by each tag and also merged the tags according to SCMHuff
heuristic: HL+LP+TEXT and DOCNO+DOCID for WSJ, HEAD+TEXT+NOTE and FIRST+SECOND for AP,
TITLE+TEXT+ABSTRACT+SUMMARY+DESCRIPT and DOCNO+DOCID for ZIFF. A more sound heuristic,
better adapted to PPM modeling, could achieve better results and do it automatically.

8 Conclusions and Future Work

We have proposed a new model for compressing semistructured documents based on the idea that
texts under the same tags should have similar distributions. This is enriched with a heuristic that
determines a good grouping of tags so as to code each group with a separate model. The impact
of the model on the retrieval performance should be negligible.

We have shown that the idea actually improves compression ratios. We have compared our
prototype against state-of-the-art compression systems, showing that our word-based Huffman
prototype obtains 2% to 4% better compression ratios than existing alternatives that permit random
access to the compressed text. On the other hand, combining the SCM general concept with PPMDi
does not permit random access anymore, but it yields unbeaten compression compared to any other
compressor, by a margin of 2% to 5%.

Reducing space is not that important by itself, especially if we consider the low cost of massive
storage devices. The point is that those massive devices are usually orders of magnitude slower
than smaller memories. In recent years, the performance gaps in the memory hierarchy (registers,
cache, RAM, disk, network) have only widened, making compression more and more appealing.
A space reduction, even if it involves higher CPU processing time, is beneficial because it reduces
transmission costs over the slowest devices (disk and network). Even random accesses of small
pieces of the file over a disk benefit from compression, as the disk seek times depend on the number
of tracks to traverse, and this a linear function of the file size.

Current research in compression usually strives to obtain gains that are below 1%. By taking
the structure into account, we have obtained much more significant gains in compression ratios. It
is likely that more improvements in compression ratios can be obtained by pursuing this line. In
particular, we plan to investigate more in depth the relationship between the type and density of
the structuring and the improvements obtained with our method, since its success is based on a
semantic assumption and it would be interesting to see how this works on other text collections.

References

Adiego, J., Navarro, G., and de la Fuente, P. (2004). Lempel-Ziv compression of structured text.
In Proc. 14th IEEE Data Compression Conference (DCC’04), pages 112–121.

Adiego, J., Navarro, G., and de la Fuente, P. (2006). Lempel-ziv compression of highly struc-

25

tured documents. Journal of the American Society for Information Science and Technology
(JASIST). To appear.

Bell, T., Cleary, J., and Witten, I. (1990). Text Compression. Prentice Hall, Englewood Cliffs, N.J.

Bentley, J., Sleator, D., Tarjan, R., and Wei, V. (1986). A locally adaptive data compression
scheme. Communications of the ACM, 29:320–330.

Brisaboa, N., Fariña, A., Navarro, G., and Esteller, M. (2003). (s,c)-dense coding: An optimized
compression code for natural language text databases. In Proc. 10th International Symposium
on String Processing and Information Retrieval (SPIRE 2003), LNCS 2857, pages 122–136.
Springer.

Burrows, M. and Wheeler, D. (1994). A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation.

Cheney, J. (2001). Compressing XML with multiplexed hierarchical PPM models. In Proc. 11th
IEEE Data Compression Conference (DCC’01), pages 163–172.

Cleary, J. and Witten, I. (1984). Data compression using adaptive coding and partial string match-
ing. IEEE Trans. on Communication, 32:396–402.

Dvorský, J., Pokorný, J., and Snásel, V. (1999). Word-based compression methods and indexing
for text retrieval systems. In Proc. 2nd East European Symp. on Advances in Databases and
Information Systems (ADBIS’99), LNCS 1691, pages 75–84. Springer.

Girardot, M. and Sundaresan, N. (2000). Millau: An encoding format for efficient representation
and exchange of XML documents over the WWW. In Proc. 9th Intl. World Wide Web Conf.
on Computer Networks, pages 747–765.

Harman, D. (1995). Overview of the Third Text REtrieval Conference. In Proc. Third Text
REtrieval Conference (TREC-3), pages 1–19. NIST Special Publication 500-207.

Heaps, H. (1978). Information Retrieval - Computational and Theoretical Aspects. Academic Press.

Horspool, R. and Cormack, G. (1992). Constructing word-based text compression algorithms. In
Proc. 2nd IEEE Data Compression Conference (DCC’92), pages 62–71.

Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Proc. Inst.
Radio Engineers, 40(9):1098–1101.

Lam, W., Wood, P., and Levene, M. (2003). XCQ: XML compression and querying system. In
Proc. 12th Intl. Conf. on the World Wide Web (WWW’03). Poster.

Levene, M. and Wood, P. (2002). XML structure compression. In Proc. 2nd Intl. Workshop on
Web Dynamics.

Liefke, H. and Suciu, D. (2000). XMill: an efficient compressor for XML data. In Proc. Intl. ACM
Conf. on Management of Data (SIGMOD’00), pages 153–164.

Moffat, A. (1989). Word-based text compression. Software - Practice and Experience, 19(2):185–
198.

26

Moffat, A. and Turpin, A. (2002). Compression and Coding Algorithms. Kluwer Academic Pub-
lishers.

Moffat, A. and Wan, R. (2001). RE-store: A system for compressing, browsing and searching
large documents. In Proc. 8th Intl. Symp. on String Processing and Information Retrieval
(SPIRE’01), pages 162–174. IEEE CS Press.

Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R. (2000). Fast and flexible word searching
on compressed text. ACM Transactions on Information Systems, 18(2):113–139.

Navarro, G., Moura, E., Neubert, M., Ziviani, N., and Baeza-Yates, R. (2000). Adding compression
to block addressing inverted indexes. Information Retrieval, 3(1):49–77.

Shannon, C. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27:398–403.

Shkarin, D. (2002). PPM: One step to practicality. In Proc. 12th IEEE Data Compression Confer-
ence (DCC 2002), pages 202–211.

Tarhio, J. (2001). On compression of parse trees. In Proc. 8th Intl. Symp. on String Processing
and Information Retrieval (SPIRE’01), pages 205–211. IEEE Computer Society.

Tolani, P. and Haritsa, J. (2002). XGRIND: A query-friendly XML compressor. In Proc. 18th Intl.
Conf. of Data Engineering (ICDE’02), pages 225–234.

Toman, V. (2004). Syntactical compression of XML data. Presented at 16th Intl. Conf. on Advanced
Information Systems Engineering (CAiSE’04), Riga, Latvia, June 7–11.

Turpin, A. and Moffat, A. (1997). Fast file search using text compression. In Proceedings of the
20th Australian Computer Science Conference, pages 1–8.

Welch, T. (1984). A technique for high-performance data compression. IEEE Computer, 17(6):8–19.

Witten, I., Moffat, A., and Bell, T. (1999). Managing Gigabytes. Morgan Kaufmann Publishers,
second edition.

Witten, I., Neal, R., and Cleary, J. (1987). Arithmetic coding for data compression. Communica-
tions of the ACM, 30(6):520–541.

Zipf, G. (1949). Human Behaviour and the Principle of Least Effort. Addison–Wesley.

Ziv, J. and Lempel, A. (1977). An universal algorithm for sequential data compression. IEEE
Trans. on Information Theory, 23(3):337–343.

Ziv, J. and Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE
Trans. on Information Theory, 24(5):530–536.

Ziviani, N., Moura, E., Navarro, G., and Baeza-Yates, R. (2000). Compression: A key for next-
generation text retrieval systems. IEEE Computer, 33(11):37–44.

27

