
Very Fast and SimpleApproximate String MatchingGonzalo Navarro Ricardo Baeza-YatesDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstractWe improve the fastest known algorithm for approximate string matching. Thisalgorithm can only be used for low error levels. By using a new algorithm to ver-ify potential matches and a new optimization technique for biased texts (such asEnglish), the algorithm becomes the fastest one for medium error levels too. Thisincludes most of the interesting cases in this area.Key words: Approximate Matching, Text Searching, Information Retrieval.1 IntroductionApproximate string matching is one of the main problems in classical stringalgorithms, with applications to text searching, computational biology, patternrecognition, etc.The problem can be formally stated as follows: given a (long) text of lengthn, a (short) pattern of length m, and a maximal number of errors allowed k,�nd all text positions that match the pattern with up to k errors. The allowederrors are character insertions, deletions and substitutions. Text and patternare sequences of characters from an alphabet of size �. We call � = k=m theerror ratio or error level.In this work we focus on on-line algorithms, where the classical solution, in-volving dynamic programming, is O(mn) time [8]. In the last years many? This work has been supported in part by FONDECYT grant 1950622.Preprint submitted to Elsevier Preprint 8 April 1998



algorithms have been presented that improve the classical algorithm, for in-stance [12,5,4,11,3,14,15,6,2].For low error levels, the fastest known algorithm is [3]. It is a �ltration algo-rithm, i.e. it quickly discards large text areas that cannot contain a match andlater veri�es suspicious areas using a classical algorithm. As all �ltration algo-rithms, it ceases to work well for moderate error levels. In this paper we use anew technique to verify potential matches developed in [7]. We also improvethe �lter on biased texts such as natural language. The result is the fastestalgorithm for approximate string matching for all but high error levels.2 The Original AlgorithmThe original idea of this algorithm was �rst presented in [14]:Lemma: If a pattern is partitioned in k + 1 pieces, then at least one of thepieces can be found with no errors in any approximate occurrence of thepattern.This property is easily veri�ed by considering that k errors cannot alter allthe k + 1 pieces of the pattern, and therefore at least one of the pieces mustappear unaltered.This reduces the problem of approximate string searching to a problem ofmultipattern exact search plus veri�cation of potential matches. That is, wesplit the pattern in k + 1 pieces and search all them in parallel with a mul-tipattern exact search algorithm. Each time we �nd a piece in the text, weverify a neighborhood to determine if the complete pattern appears.In the original proposal [14], a variant of the Shift-Or algorithm was usedfor multipattern search. To search r patterns of length m0, this algorithm isO(rm0n=w). Since in this case r = k+1 and m0 = bm=(k+1)c, the search costis O(mn=w), which is the same cost for exact searching using Shift-Or. Later,in [3], the use of a multipattern extension of an algorithm of the Boyer-Moore(BM) family was proposed.In [1,2] we tested an extension of the BM-Sunday algorithm [10]: we split thepattern in pieces of length bm=(k +1)c and dm=(k +1)e and form a trie withthe pieces. We also build a pessimistic d table with all the pieces (the longerpieces are pruned to build this table). This table stores, for each character,the smallest shift allowed among all the pieces. Now, at each text position weenter in the trie using the text characters from that position on. If we end upin a leaf, we found a piece, otherwise we did not. In any case, we use the d2



table to shift to the next text position.Suppose we �nd at text position i the end of a match for the subpattern endingat position j in the pattern. Then, the potential match must be searched inthe area between positions i� j + 1� k and i� j + 1+m+ k of the text, an(m+ 2k)-wide area. This checking must be done with an algorithm resistantto high error levels, such as dynamic programming.This algorithm is the fastest in practice when the total number of veri�cationstriggered is low enough, in which case the search cost is close to O(kn=m) =O(�n). We �nd out now when the total amount of work due to veri�cationsis not higher.An exact pattern of length ` appears in random text with probability 1=�`.In our case, this is 1=�bm=(k+1)c � 1=�1=�. Since the cost to verify a potentialmatch using dynamic programming is O(m2), and since there are k+1 � m�pieces to search, the total cost for veri�cations is m3�=�1=�. This cost must beO(�) so that it does not a�ect the total cost of the algorithm. This happensfor � < 1=(3 log� m). On English text we found empirically the limit � < 1=5.3 A New Veri�cation TechniqueIn [7] we presented a di�erent veri�cation technique. We show now how to useit in this algorithm.The idea is to try to quickly determine that the match of the small piece isnot in fact part of a complete match. To explain the use of this technique, astronger version of the Lemma must be used, which was proved in [7].Stronger Lemma: If segm = Text[a::b] matches pat with k errors, andpat = p1:::pj (a concatenation of subpatterns), then segm includes a segmentthat matches at least one of the pi's, with baik=Ac errors, where A =Pji=1 ai.We explain now the technique. First assume that k+1 is a power of 2. We useA = 2; j = 2; a1 = a2 = 1. That is, we split the pattern in two halves (halvingalso the number of errors). The stronger lemma states that at least one halfmust match with dk=2e errors. We recursively continue with this splitting untilwe reach the pieces that are to be searched directly (with no errors). Each timea leaf reports an occurrence, its parent node checks the area looking for itspattern (whose size is close to twice the size of the leaf pattern). Only if theparent node �nds the longer pattern, it reports the occurrence to its parent,and so on. The occurrences reported by the root of the tree are the answers.This construction is correct because the partitioning lemma applies to each3



level of the tree, i.e. any occurrence reported by the root node must includean occurrence reported by one of the two halves, so we search both halves.The argument applies then recursively to each half.Figure 1 illustrates this concept. If we search the pattern "aaabbbcccddd"with three errors in the text "xxxbbbxxxxxx", and split the pattern in fourpieces, the piece "bbb" will be found in the text. In the original approach,we would verify the complete pattern in the text area, while with the newapproach we verify only if its parent "aaabbb" appears with one error and weimmediately determine that there cannot be a complete match.aaabbbcccdddaaabbb cccdddccc dddbbbaaa (k = 3)(k = 1)(k = 0)Fig. 1. The hierarchical veri�cation method. The boxes (leaves) are the elementswhich are really searched, and the root represents the whole pattern. At least onepattern at each level must match in any occurrence of the complete pattern. If thebold box is found, all the bold lines may be veri�ed.If k + 1 is not a power of two we try to build the tree as well balanced aspossible (to avoid verifying a very long parent because of a very short child).For instance, if k = 4 (k + 1 = 5), we partition the tree in, say, a left childwith three pieces and a right child with two pieces. We then search the leftsubtree with b3k=5c errors and the right one with b2k=5c errors. Continuingwith this policy we arrive to the leaves, which are searched with b4=5c = 0errors each as expected.Although when there are few matches (i.e. low error level) the old and newmethods behave similarly, there is an important di�erence for medium errorlevels: the new algorithm is more tolerant to errors. Figure 2 illustrates theimprovement obtained (the experimental setup is described in Section 5). As itcan be seen, on random text the new method works well up to � = 1=2, whilethe previous works well up to � = 1=3. On the other hand, after that point theveri�cations cost much more than in the original method. This is because ofthe hierarchy of veri�cations which is carried out for most text positions whenthe error level is high. On the other hand, it is hard to improve the barrierof � < 1=2 with this method, since at this point we are searching for singlecharacters and performing a veri�cation each time some of the characters isfound in the text (which is too probable).4



5 305 10 15 20 25 300
30
0510152025
30

kt
5 305 10 15 20 25 300

30
0510152025
30

kt
Fig. 2. The old (dashed) versus the new (full) veri�cation technique. We use m = 60and show random (left) and English text (right).4 Optimizing the PartitionWhen splitting the pattern, we are free to determine the k + 1 pieces as welike. This can be used to minimize the expected number of veri�cations whenthe letters of the alphabet do not have the same probability of occurrence (e.g.in English text).For example, imagine that Pr(0e0) = 0:3 and Pr(0z0) = 0:003. Then, if wesearch for "eeez" it is better to partition it as "eee" and "z" (with probabili-ties 0.0027 and 0.003 respectively) rather than "ee" and "ez" (with probabil-ities 0.09 and 0.0009 respectively). More generally, given that the probabilityof a sequence is the product of the individual letter probabilities, we want apartition that minimizes the sum of the probabilities of the pieces (which isdirectly related to the number of veri�cations to perform).A dynamic programming algorithm to optimize the partition of pat[0::m� 1]follows. Let R[i; j] = Qj�1r=i Pr(pat[r]) for every 0 � i � j � m. It is easy to seethat R can be computed in O(m2) time since R[i; j+1] = R[i; j]�Pr(patt[j]).Using R we build two matrices, namelyP [i; k] = sum of the probabilities of the pieces in the best partition forpat[i::m� 1] with k errors.C[i; k] = where the next piece must start in order to obtain P [i; k].This takes O(m2) space. The following algorithm computes the optimal par-tition in O(m2k) time.for (i = 0;i < m;i++)P [i; 0] = R[i;m]; 5



C[i; 0] = m;for (r = 1;r � k;r ++)for (i = 0;i < m� r;i++)P [i; r] = minj 2 i+1::m�r(R[i; j] + P [j; r � 1]);C[i; r] = j that minimizes the expression above;The �nal probability of veri�cation is P [0; k] (note that we can use it toestimate the real cost of the algorithm in runtime, before running it on thetext). The pieces start at `0 = 0, `1 = C[`0; k], `2 = C[`1; k � 1], ..., `k =C[`k�1; 1].As we presented the optimization, the obtained speedup is very modest andeven counterproductive in some cases. This is because we consider only theprobability of verifying. The search times of the extended Sunday algorithmdegrades as the length of the shortest piece is reduced, as it happens in anuneven partition. We consider in fact a cost model which is closer to the realsearch cost. We optimize 1minimum length + P (verifying)�m2Figure 3 shows experimental results comparing the normal versus the opti-mized partitioning algorithms. The experimental setup is described in Sec-tion 5. However we repeated this experiment 100 times instead of 50 becauseof its very high variance.. This experiment is only run on English text since ithas no e�ect on random text. Both cases uses the original veri�cation method,not the hierarchical one. As it can be seen, the achieved improvements are es-pecially noticeable in the intermediate range of errors.
1 71 2 3 4 5 6 70

10
02468
10

k 3 153 6 9 12 150
20
0481216
20

kFig. 3. The optimized (solid line) and the normal splitting (dashed), for m = 10and 30 on English text. 6



5 Experimental ComparisonIn this section we experimentally compare the old and new algorithms againstthe fastest algorithms we are aware of. Since we compare only the fastestalgorithms, we leave aside [8,5,14,12,4,11,15] and many others, which are notcompetitive in the range of parameters we study here.All the experimental results were obtained on a Sun UltraSparc-1 runningSolaris 2.5.1, with 32 Mb of RAM, which is a 32-bit machine. We testedrandom text with � = 32, and lower-case English text. The patterns wererandomly selected from the text (at word beginnings in the English case).Except when otherwise stated, each data point was obtained by averaging theUnix's user time over 50 trials on 10 megabytes of text. We present all thetimes in seconds. The algorithms included in this comparison are: BYP [3](i.e. the original version of this algorithm), BYN [2] and Myers [6] (the otherfastest algorithms, based on bit-parallelism), and Ours (our modi�cation toBYP with hierarchical veri�cation). The code is from the authors in all cases.On English text we add two extra algorithms: Agrep [13] (the fastest knownapproximate search software), and a version of our algorithm that includesthe splitting optimization. On English text the code \Ours" corresponds toour algorithm with hierarchical veri�cation and splitting optimization, while\Ours/NO" shows hierarchical veri�cation and no splitting optimization.The algorithms included in this comparison are: Agrep [13] (the fastest knownapproximate search software, only for English text), BYP [3] (i.e. the originalversion of this algorithm), BYN [2] and Myers [6] (the other fastest algorithms,based on bit-parallelism), Ours (our modi�cation to BYP with both improve-ments) and Ours/NO (the same, including the hierarchical veri�cation butnot the splitting optimization). The splitting optimization is shown only forEnglish text, of course. The code is from the authors in all cases.As seen in Figure 4, for � = 32 the new algorithm is more e�cient than anyother for � < 1=2, while for English text it is the fastest for � < 1=3. Noticethat although Agrep is normally faster than BYP (i.e. the original version ofthis technique), we are faster than Agrep with the hierarchical veri�cation,and the splitting optimization improves a little over this.6 Conclusions and Future WorkWe modi�ed the fastest known algorithm for approximate string matchingwith the use of an improved technique to verify potential matches and a new7



1 61 2 3 4 5 60.0
2.0
0.00.40.81.21.6
2.0

kt
1 51 2 3 4 50.0

2.0
0.00.40.81.21.6
2.0

kt

1 131 3 5 7 9 11 130.0
3.0
0.00.51.01.52.02.5
3.0

kt
1 91 2 3 4 5 6 7 8 90.0

3.0
0.00.51.01.52.02.5
3.0

kt

1 191 4 7 10 13 16 190.0
3.0
0.00.51.01.52.02.5
3.0

kt
1 151 3 5 7 9 11 13 150.0

3.0
0.00.51.01.52.02.5
3.0

kt
Ours Ours/NO BYP Agrep BYN MyersFig. 4. Experimental results for random (left) and English text (right). From top tobottom m =10, 20 and 30.optimization technique for biased texts. As a result, the area of applicabilityof the original algorithm is enlarged to spread almost all the interesting casesin approximate string searching, where it is still the fastest algorithm.8



We are working on better cost functions for the splitting optimization tech-nique. We also plan to study the online e�ect of splitting the pattern in morethan k+1 pieces (so that more than one piece has to match), as suggested in[9] for o�ine searching.References[1] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate stringmatching. In Proc. CPM'96, LNCS 1075, pages 1{23, 1996.[2] R. Baeza-Yates and G. Navarro. Faster approximate string matching.Algorithmica, 1998. To appear.[3] R. Baeza-Yates and C. Perleberg. Fast and practical approximate patternmatching. Information Processing Letters, 59:21{27, 1996.[4] W. Chang and J. Lampe. Theoretical and empirical comparisons ofapproximate string matching algorithms. In Proc. CPM'92, LNCS 644, 1992.[5] G. Landau and U. Vishkin. Fast parallel and serial approximate stringmatching. Journal of Algorithms, 10:157{169, 1989.[6] G. Myers. A fast bit-vector algorithm for approximate pattern matching basedon dynamic progamming. In Proc. CPM'98, New Jersey, July 1998. To appear.[7] G. Navarro and R. Baeza-Yates. Analysis for algorithm engineering: improvingan algorithm for approximate string matching. Submitted, 1998.[8] P. Sellers. The theory and computation of evolutionary distances: patternrecognition. Journal of Algorithms, 1:359{373, 1980.[9] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc.WSP'96, pages 257{271. Carleton University Press, 1996.[10] D. Sunday. A very fast substring search algorithm. Communications of theACM, 33(8):132{142, August 1990.[11] E. Sutinen and J. Tarhio. On using q-gram locations in approximate stringmatching. In Proc. ESA'95, LNCS 979. Springer-Verlag, 1995.[12] Esko Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,6:132{137, 1985.[13] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. InProc. of USENIX Technical Conference, pages 153{162, 1992.[14] S. Wu and U. Manber. Fast text searching allowing errors. Communications ofthe ACM, 35(10):83{91, October 1992.[15] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.9


