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Pérez-Lanteroc,2

aDepartment of Computer Science, University of Chile, Chile.
bCheriton School of Computer Science, University of Waterloo, Waterloo, Canada.
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Abstract

Given a set P of n points in Rd, where each point p of P is associated with a
weight w(p) (positive or negative), the Maximum-Weight Box problem is to
find an axis-aligned box B maximizing

∑
p∈B∩P w(p). We describe algorithms

for this problem in two dimensions that run in the worst case in O(n2) time,
and much less on more specific classes of instances. In particular, these results
imply similar ones for the Maximum Bichromatic Discrepancy Box prob-
lem. These improve by a factor of Θ(lg n) on the previously known worst-case
complexity for these problems, O(n2 lg n) [Cortés et al., J. Alg., 2009; Dobkin
et al., J. Comput. Syst. Sci., 1996]. Although the O(n2) result can be deduced
from new results on Klee’s Measure problem [Chan, Proc. FOCS 2013], it is a
more direct and simplified (non-trivial) solution. We exploit the connection with
Klee’s Measure problem to further show that (1) the Maximum-Weight
Box problem can be solved in O(nd) time for any constant d ≥ 2; (2) if the
weights are integers bounded by O(1) in absolute values, or weights are +1 and
−∞ (as in the Maximum Bichromatic Discrepancy Box problem), the
Maximum-Weight Box problem can be solved in O((nd/ lgd n)(lg lg n)O(1))
time; (3) it is unlikely that the Maximum-Weight Box problem can be solved
in less than nd/2 time (ignoring logarithmic factors) with current knowledge
about Klee’s Measure problem.
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1. Introduction

Consider a set P of n points in Rd, such that the points are in general
position (i.e., no pair of points share the same x or y coordinate). Each point
p of P is assigned a weight w(p) ∈ R that can be either positive or negative.
For any subset B ⊆ Rd let W (B) :=

∑
p∈B∩P w(p). A box is an axis-aligned

hyper-rectangle, and we say that the weight of a box B is W (B). We consider
the Maximum-Weight Box problem, which given P and w() is to find a box
B with maximum weight W (B).

Depending on the choice of the weights w(), this geometric optimization
problem has various practical applications, such as machine learning [11] and
data classification and clustering [12].

Related work. In one dimension, the coordinates of the points matter only in the
order they induce on their weights, and the problem reduces to the Maximum-
Sum Consecutive Subsequence problem [5], which can be solved in O(n)
time if the coordinates are already sorted.

In 2009, Cortés et al. [10] solved the dynamic version of this problem sup-
porting updates of weights for a fixed point set. They described a data structure
called MCS-tree, which supports in O(lg n) time both updates and Maximum-
Sum Consecutive Subsequence queries on any interval of the sequence of
points. The Maximum-Weight Box problem in two dimensions was intro-
duced by Cortés et al. [10], who gave an algorithm running in time within
O(n2 lg n) and space within O(n). They reduce any instance of the Maximum-
Weight Box problem in two dimensions to O(n2) instances of the problem in
one dimension, each solved dynamically in O(lg n) with an MCS-tree.

In 2011, Bautista-Santiago et al. [4] considered convex objects other than
axis-aligned rectangles, and gave an O(n3)-time algorithm that finds a convex
polygon maximizing the sum of the weights of the points it contains. In the
case of a half-plane of maximum weight, the problem can be easily solved in
O(n2) time by using duality in the plane, and it is 3SUM-hard [6]. Combining
the standard lifting transformation and duality in three dimensions, the disk of
maximum weight can be found in O(n3) time.

In 2012, Barbay et al. [3] generalized the Maximum-Weight Box problem
to the Optimal Planar Box problem, where the sum of the weights is replaced
by any monotone decomposable function f(), and described several adaptive
improvements on Cortés et al.’s solution [10]. These include adapting to strips
and other clusterings of the input, which we also consider in this work (see
Sections 3 and 4). They also replaced MCS-trees by variants based on splay
trees [9], which yielded an adaptive variant executing in time O(n2(1 + lg(1 +
λ/n)) and linear space, where λ ∈ [0..n2] is the sum of the distances between
the insertion positions of the consecutive points according to their x-coordinate,
when given in the order of their y-coordinate. All of their algorithms perform
in time Θ(n2 lg n) in the worst case over all instances of n points.

We consider the Maximum-Weight Box problem in two dimensions on a
set P of n weighted points, such that no pair of points share the same x or y
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coordinate.

Basic definitions. A strip is the area delimited by two lines parallel to the
same axis. Given the point set P , we say that a strip S is monochromatic if
S ∩ P is not empty and the weights of all elements of S ∩ P have the same
sign. A monochromatic strip S is positive (resp. negative) if S contains points
of P with positive (resp. negative) weights. We say that P is composed of
δ strips if P can be covered by δ (parallel) pairwise disjoint monochromatic
strips of alternating signs (see Figure 1a). Given any bounded set S ⊂ R2,
let Box(S) denote the smallest box covering S. We say that (C1, C2, . . . , Ck)
is a cluster partition of P if {C1, C2, . . . , Ck} is a partition of P and in every
axis the orthogonal projections of Box(C1), Box(C2), . . . , Box(Ck) are pairwise
disjoint (see Figure 1b). A cluster partition (C1, C2, . . . , Ck) of P ⊂ R2 is a
diagonalization of P if (a) k ≥ 2 and there is an index j ∈ [1..k − 1] such that
sets C1 ∪ · · · ∪ Cj and Cj+1 ∪ · · · ∪ Ck belong to opposed quadrants defined
by a horizontal and a vertical line, and (C1, . . . , Cj) and (Cj+1, . . . , Ck) are
diagonalizations of C1 ∪ · · · ∪Cj and Cj+1 ∪ · · · ∪Ck, respectively, or (b) k = 1
and the points in C1 cannot be further clustered into a diagonalization other
than (C1) (see Figure 1c).

δ = 3

(a)

C1

C2

C3

C4

C5

(b)

C1

C2

C4

C5

C6

C3

(c)

Figure 1: (a) A point set composed of δ = 3 strips. The points with positive weight
are represented as solid dots, and the points with negative weight as tiny circles. (b)
A cluster partition (C1, . . . , C5). (c) A diagonalization (C1, . . . , C6).

Results. We obtain the following results for the Maximum-Weight Box prob-
lem in two dimensions. All of our algorithms use space linear in the number of
input points.
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• Over instances composed of n weighted points, each of our algorithms runs
in O(n2) time (Theorem 2.2).

• If the point set P is composed of δ ∈ [1..n] (either horizontal or vertical)
strips, our algorithm executes adaptively in SORT(n)+O(δn) ⊂ O(n lg n+
δn) ⊂ O(n2) time (Theorem 3.2), where SORT(n) is the time required
to sort the elements of P by the x-coordinates and by the y-coordinates,
which is within O(n lg n) in the comparison model, and can be for instance
within O(n

√
lg lg n) ⊂ o(n lg n) in the RAM model with randomization

or within O(n lg lg n) ⊂ o(n lg n) deterministic, if the coordinates of the
points are integer numbers [14].

• Given a cluster partition (C1, C2, . . . , Ck) of P , where cluster Ci contains
ni points for every i ∈ [1..k] and is composed of δi strips, our algorithm

runs in O(
∑k
i=1 niδi+k

2) ⊂ O(
∑k
i=1 n

2
i+k

2) ⊂ O(n2) time (Theorem 4.3).

• There exists a unique diagonalization (C1, C2, . . . , Ck) of the point set P
(it might be (C1) = (P ) in the worst case) and our algorithm finds it in
O(n lg n) time (Lemma 4.4). A maximum-weight box can be computed in

overall O(n lg n+
∑k
i=1 niδi) ⊂ O(n lg n+

∑k
i=1 n

2
i ) ⊂ O(n2) time (Theo-

rem 4.5), where O(n lg n) is the time to construct such a diagonalization
(which is distinct from SORT(n), the time required to sort the points by
their coordinates, in the results mentioned above).

Applications to other known problems. Let P be a set of n planar points, each
being colored either red or blue.

The Maximum Bichromatic Discrepancy Box problem [10, 11] is to
find a box that maximizes the absolute difference between the numbers of red
and blue points it contains, and was solved in O(n2 lg n) time by Dobkin et
al. [11]. Any instance of this problem can be reduced to two particular instances
of the Maximum-Weight Box problem [10]. In one, red points have weight
+1 and blue points weight −1, and conversely in the other. Then our results
imply an O(n2) worst-case time algorithm, and adaptive algorithms as well, for
the Maximum Bichromatic Discrepancy Box problem, improving upon
previous O(n2 lg n)-time algorithms [10, 11].

The Maximum Box problem [10, 12, 15] is to find a box B containing the
maximum number of blue points and no red point. Eckstein et al. [12] introduced
it in general dimension, proving that if the dimension d of the points is part of
the input then the problem is NP-hard. In two dimensions it was later solved
in O(n2 lg n) time by Liu and Nediak [15]. In 2010 Backer et al. [1] showed that
the Maximum Box problem in two dimensions can be solved in O(n lg3 n) time
and O(n lg n) space, and that for any fixed dimension d ≥ 3 it can be solved in
time within O(nd lgd−2 n).

Any instance of the Maximum Box problem is equivalent to a particular
case of the Maximum-Weight Box problem in which blue points have weight
+1 and red points have weight −∞ [10]. Then our techniques imply an O(n2)
worst-case time algorithm for this problem, and adaptive algorithms as well.
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While this time complexity is worse than the best known solution [1], it requires
only linear space.

Note that our specialized results are faster on some classes of instances that
arise naturally in applications, such as instances where one needs to find a
maximum box over an imbalanced red-blue dataset in data mining and/or data
analysis [12, 13, 17]. Generally, if the ratio of the number of blue points over
the number of red points is within o(1) or ω(1),3 then our techniques achieve
o(n2) time on an instance of n points.

Higher dimensions and lower bounds. Our worst-case result in two dimensions
can be seen as a particular case of recent results related to Klee’s Measure
problem [8], yet it is a more direct and simple solution (which we further improve
on various classes of instances). By exploiting the connections between these
two problems, we obtain several further results:

• We show that the Maximum-Weight Box problem can be solved in
time O(nd) in any constant dimension d ≥ 2. The best previous result
was O(n2d−2 lg n) [10].

• We show that, when the weights are all O(1), the Maximum-Weight
Box problem can be solved in time within O((nd/ lgd n)(lg lg n)O(1)). This
improvement applies, in particular, in simpler problems such as Maxi-
mum Bichromatic Discrepancy problem and Maximum Box problem,
where the best previous algorithms for the former run in time O(n2 lg n)
for d = 2 [10, 11], and the best for the latter require time O(nd lgd−2 n)
for d ≥ 3 [1].

• By reducing from the Weighted Depth problem, we show that the
Maximum-Weight Box problem is W [1]-hard, and unlikely to be solved
in time within o(nd/2): such an improvement would require a breakthrough
on the current knowledge of Klee’s Measure problem and impact on a
large set of related problems in computational geometry.

Outline. In Section 2 we describe the generalO(n2)-time algorithm. In Section 3
we describe the adaptive algorithm running in SORT(n) + O(δn) time, where
SORT(n) is the time required to sort the elements of P by their x and y-
coordinates and δ is the number of strips of the point set. In Section 4 we
present the results concerning cluster partitions and diagonalizations. Finally, in
Section 5, we discuss further results in connection to Klee’s Measure problem,
such as extensions to higher dimensions, polylogarithmic-factor speedups, and
lower bounds.

3All our asymptotic notations are for n growing to infinity and other parameters, such as
δ, fixed.
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2. Quadratic worst-case time algorithm

Assume the elements of P are sorted twice, first by x-coordinates and second
by y-coordinates, in SORT(n) time.

We say that X ⊆ P is a box set if X is the intersection of P with some box.
For any box set X ⊆ P we define the score of X, S(X), as the following four
boxes (see Figure 2). Let [x1, x2]× [y1, y2] := Box(X):

(1) Box(X);

(2) a box BL(X) ⊆ Box(X) of X of maximum weight, such that it is of the
form [x1, x]× [y1, y2] for x1 ≤ x ≤ x2;

(3) a box BR(X) ⊆ Box(X) of X of maximum weight, such that it is of the
form [x, x2]× [y1, y2], for x1 ≤ x ≤ x2; and

(4) a box B0(X) ⊆ Box(X) of X of maximum weight, such that it is of the
form [x, x′]× [y1, y2], for x1 ≤ x ≤ x′ ≤ x2.

For each of these boxes we keep only two opposed vertices defining it and its
weight, so that representing a box setX by S(X) := (Box(X), BL(X), BR(X), B0(X))
requires only constant space.

Box(X) B0(X)

BL(X) BR(X)

Figure 2: The score S(X) = (Box(X), BL(X), BR(X), B0(X)) of a box set X ⊆ P .

We say that a box set X ⊆ P is scored if S(X) is computed, and we use
Box(X) to represent X instead of X itself. Let the operator ⊕ : 2P × 2P → 2P

be defined over all pairs (X1, X2) of scored box sets of P such that: X1 and X2

can be separated with a vertical line, X1 is to the left of X2, and X1 ∪X2 is a
box set. Then X1⊕X2 returns the scored set X1 ∪X2, and it can be computed
in O(1) time from the next observations:

W (X1 ∪X2) = W (X1) +W (X2)

W (BL(X1 ∪X2)) = max{W (BL(X1)),W (X1) +W (BL(X2))}
W (BR(X1 ∪X2)) = max{W (BR(X2)),W (X2) +W (BR(X1))}
W (B0(X1 ∪X2)) = max{W (B0(X1)),W (B0(X2)),W (BR(X1)) +W (BL(X2))}
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Notice that by applying the operators ⊕ to singletons {p} over all points p of P
in left-to-right order, we can compute B0(P ), i.e., the maximum-weight vertical
strip, in time within O(n). After projection to the x-axis, this immediately gives
a linear-time algorithm for the Maximum-Sum Consecutive Subsequence
problem, studied by Bentley [5] and often taught in undergraduate algorithms
classes.

Let S be a horizontal strip such that exactly m points of P are not in S.
The vertical lines passing through the m points of P \ S split S into m + 1
boxes denoted S1,S2, . . . ,Sm+1 from left to right. Let B be a box of maximum
weight that has its top side above S and its bottom side below S, and let
i, j ∈ [1..n + 1] be the indices such that the left and right sides of B intersect
Si and Sj , respectively. If i < j, then W (B ∩ Si) and W (B ∩ Sj) are precisely
W (BR(P ∩ Si)) and W (BL(P ∩ Sj)), respectively (see Figure 3). Therefore we

have W (B) = W (BR(P ∩ Si)) +
∑j−1
t=i+1W (St) + W (BL(P ∩ Sj)) + W (B \ S).

On the other hand, if i = j, then W (B) equals W (B0(P ∩ Si)).

S
B

Si

Sj

BR(P ∩ Si) BL(P ∩ Sj)

Figure 3: The strip S is partitioned into m+1 boxes S1,S2, . . . ,Sm+1 by the vertical
lines passing through the m points in P \ S. If the left and right sides of an optimal
box B cross Si and Sj , respectively, then they are determined by BR(P ∩ Si) and
BL(P ∩ Sj).

Consider the following Strip-Constrained Maximum-Weight Box prob-
lem: Let P be a weighted point set and S be a horizontal strip so that: P \ S
consists of n points already sorted from left to right; S splits P\S into two halves;
the vertical lines through the points of P\S split S into the boxes S1,S2, . . . ,Sn+1

from left to right; and the points of P ∩S are summarized by the scored box sets
P ∩S1, . . . ,P ∩Sn+1. Find a maximum-weight box of P, with the top side above
S and the bottom side below S.

The key to our new solution is an O(n2)-time algorithm for this constrained
problem, using an approach which may be nick-named “divide-summarize-and-
conquer”.

Lemma 2.1 The Strip-Constrained Maximum-Weight Box problem ad-
mits a solution in O(n2) time and O(n) space.
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Proof. Let F (n) denote the time required to solve a given instance of the
Strip-Constrained Maximum-Weight Box problem over n points. We
apply divide-and-conquer: Split the points of P above (resp. below) S into two
halves with a horizontal line `1 (resp. `2). Let P1 denote the points above `1,
P2 denote the points in between `1 and S, P3 denote the points in between S
and `2, and P4 denote the points below `2. Then the problem can be reduced
to the next four subproblems:

(1) the points of P1 ∪ P4 outside a strip S ′ covering P2 ∪ P3 ∪ S;

(2) the points of P1 ∪ P3 outside a strip S ′ covering P2 ∪ S;

(3) the points of P2 ∪ P3 outside the strip S ′ = S; and

(4) the points of P2 ∪ P4 outside a strip S ′ covering P3 ∪ S.

The reduction to subproblem (1) can be done in time within O(n) as follows:
Take each point p of P2∪P3 and compute the score S({p}). Simulate the merging
of the left-to-right orders of P1∪P4, P2∪P3, and S1,S2, . . . ,Sn+1 (each of which
can be obtained in O(n) time) to compute the corresponding scored box sets
in the new strip S ′. This computation can be done by applying the operator
⊕ to successive scored box sets in between consecutive points of P1 ∪ P4 in the
left-to-right order. The reductions to subproblems (2)–(4) are similar.

The base case occurs when n ∈ {1, 2}. In the most general setting (n = 2)
we have one point p1 above S and one point p2 below S, defining boxes S1, S2,
and S3 on S. Assume w.l.o.g. that p1 is to the left of p2 and w(p1), w(p2) > 0
(for example, if w(p1) < 0, we can eliminate p1). Then the solution is B0

(
(P ∩

S1) ∪ {p1} ∪ (P ∩ S2) ∪ {p2} ∪ (P ∩ S3)
)
, which can be computed in constant

time by applying the operator ⊕ to the scored box sets P ∩ S1, {p1}, P ∩ S2,
{p2}, and P ∩ S3 (see Figure 4).

S1 S2 S3

p1

p2

Figure 4: The base case of the algorithm of Lemma 2.1.

This yields the recurrence F (n) ∈ 4F (n/2)+O(n), where F (1) ∈ O(1). Then
F (n) ∈ O(n2). The space G(n) is within O(n): the four subproblems are solved
independently one after the other, and the recurrence is G(n) ∈ G(n/2) +O(n),
whose solution is within O(n). �

The reduction from the original Maximum-Weight Box problem to the
constrained problem follows from a more straightforward divide-and-conquer:
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Theorem 2.2 The Maximum-Weight Box problem admits a solution in O(n2)
time and O(n) space on instances of n points.

Proof. We first sort the points of P by their x-coordinates in SORT(n) time
and then apply a recursive procedure, whose time over n weighted points will be
T (n). The recursion applies divide-and-conquer as follows: Draw a horizontal
strip S (a line) splitting P into two halves P1 and P2, where P1 is above S and
P2 is below S. Then we can find a maximum-weight box B1 for P1, a maximum-
weight box B2 for P2, and a maximum-weight box B1,2 for P1 ∪ P2 restricted
to intersect S. Then the box among B1, B2, and B1,2 maximizing W () is the
solution. To compute B1,2 we will use the solution for the Strip-Constrained
Maximum-Weight Box problem over P and S, for which we split S into n+1
empty scored boxes S1, . . . ,Sn according to all the x-coordinates of P . This
requires O(n) time and then Lemma 2.1 allows us to compute B1,2 in O(n2) time
and O(n) space. Since B1 and B2 are computed recursively, the time complexity
is T (n) ∈ 2T (n/2) + O(n2), where T (1) ∈ O(1). Hence T (n) ∈ O(n2). As for
the space S(n), the three subproblems are solved independently one after the
other, and thus it holds that S(n) ∈ max{S(n/2), S(n/2), O(n)} ⊆ O(n). �

3. δ-sensitive analysis

Assume that P is composed of δ ∈ [1..n] strips, and suppose w.l.o.g. that
these strips are horizontal. These strips can be identified in time within O(n)
from the sorting of the points in P by their y-coordinates. One does not need to
consider boxes whose horizontal sides are in the middle of some of these strips:
there always exists an optimal box such that each horizontal side is aligned with
an edge of some strip; specifically, the top (resp. bottom) of an optimal box will
align with a positive point at the top (resp. bottom) of a positive strip. Using
this observation we refine the results of Section 2.

Lemma 3.1 The Strip-Constrained Maximum-Weight Box problem ad-
mits a solution in O(δn) time and O(n) space if the points of P above (resp.
below) S are composed of δ/2 strips.

Proof. Let F (n, δ) denote the time required to solve the problem. We modify
the divide-and-conquer algorithm from the proof of Lemma 2.1 as follows: We
split the points above S with a horizontal line `1 and the points below S with
a horizontal line `2, and define P1, . . . , P4 as before. However, we choose `1 and
`2 differently, not to ensure that each Pi has n/4 points as in Lemma 2.1, but
to ensure that each Pi is composed of δ/4 strips. Let ni denote the size of Pi
(so that n1 + n2 + n3 + n4 = n).

The base case arises when there is at most one strip above (resp. below)
S, and can be solved as follows: Assume w.l.o.g. that the weights of these at
most two strips are positive (if one of the strips has all negative weights, we can
eliminate all of its points). Then the solution is B0(P ), which can be computed
by applying the operator ⊕ to the sequence, arranged in left-to-right order,
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consisting of P ∩ S1, . . . ,P ∩ Sn+1 together with singletons {pi} over all pi in
P \ S. The base case then requires O(n) time.

The recurrence from Lemma 2.1 is now modified to the following:

F (n, δ) ∈ F (n1 + n3, δ/2) + F (n1 + n4, δ/2)

+F (n2 + n3, δ/2) + F (n2 + n4, δ/2) +O(n).

where F (n, 1) ∈ O(n). Observe that the recursion tree for F (n, δ) has at most
lg δ levels (because n ≥ δ), and that in the i-th level the computation time
besides recursive calls is O(2in). Then F (n, δ) ∈ O(δn). The space is within
O(n) as in Theorem 2.2. �

Theorem 3.2 The Maximum-Weight Box problem admits a solution in SORT(n)+
O(δn) time and O(n) space on instances of n points composed of δ strips.

Proof. Let T (n, δ) denote the time required to solve the Maximum-Weight
Box problem over n points composed of δ strips. We apply divide-and-conquer
as in Theorem 2.2, but selecting strip S such that both resulting sets P1 and P2

are composed of δ/2 strips, and n1 points and n2 points respectively. If there is
only δ = 1 strip then the solution is either empty (if the strip is negative) or all
the points (if it is positive), so in the base case T (n, 1) ∈ O(n). In the recursive
case we have:

T (n, δ) = T (n1, δ/2) + T (n2, δ/2) + F (n, δ)

∈ T (n1, δ/2) + T (n2, δ/2) +O(δn).

The recursion tree of T (n, δ) has at most lg δ levels and in the i-th level the
computation time besides recursive calls is O(δn/2i), and thus T (n, δ) ∈ O(δn).
Again, the space is O(n) as before. �

Some naturally occurring instances will have a low number of strips. For
example, instances with an unbalanced number of positive and negative points
are due to contain few strips. The following corollary captures this observation.

Corollary 3.3 Let n+ and n− be the number of points with positive and neg-
ative weight of an instance of n = n+ + n− points, respectively. Then the
Maximum-Weight Box problem admits a solution in SORT(n)+O(n min{n+, n−})
time.

Proof. Observe that δ ≤ 2 min{n+, n−}+ 1 and apply Theorem 3.2. �

4. Cluster partition analysis

Let (C1, C2, . . . , Ck) be a cluster partition of P , where cluster Ci contains
ni points for every i ∈ [1..k] and is composed of δi strips.
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For any non-empty subset X ⊆ P we define a set of ten boxes of X, de-
noted by Ten(X), as the set with the following maximum-weight boxes of X,
all contained in Box(X): (1) Box(X); (2) a box of maximum weight Bopt(X) of
X; (3)–(6) a box of maximum weight B1(X) (resp. B2(X), B3(X), B4(X)) of X
that contains the bottom-left (resp. bottom-right, top-right, top-left) vertex of
Box(X); and (7)–(10) a box of maximum weight B1,2(X) (resp. B2,3(X), B3,4(X),
B4,1(X)) of X that contains the bottom (resp. right, top, left) vertices of Box(X)
(see Figure 5).

B1,2(X) B4,1(X)B3,4(X)B2,3(X)

B1(X) B4(X)B3(X)B2(X)

Figure 5: The boxes B1(X), B2(X), B3(X), B4(X), B1,2(X), B2,3(X), B3,4(X), and
B4,1(X) of a box set X ⊆ P .

Lemma 4.1 For any non-empty subset X ⊆ P and any cluster partition (X1, X2)
of X, Ten(X) can be computed in O(1) composition operations from Ten(X1)
and Ten(X2).

Proof. Suppose that cluster X1 is below cluster X2 (remember that X1 is also
to the left of X2 by definition). The case in which X1 is above X2 is similar.
The lemma follows from the next observations:

W (X) = W (X1) +W (X2)

W (Bopt(X)) = max{W (Bopt(X1)),W (Bopt(X2)),W (B3(X1)) +W (B1(X2))}
W (B1(X)) = max{W (B1(X1)),W (X1) +W (B1(X2))}
W (B2(X)) = max{W (B2(X1)),W (B2(X2)),W (B2,3(X1)) +W (B1,2(X2))}
W (B1,2(X)) = max{W (B1,2(X1)),W (X1) +W (B1,2(X2))}

Symmetric arguments can be given for computing the weights of the other boxes.
�

Lemma 4.2 Given a cluster partition (C1, C2, . . . , Ck) of P so that Ten(C1),
Ten(C2), . . . , Ten(Ck) are computed, a maximum-weight box of P can be found
in O(k2) time.
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Proof. An optimal box of P which is not among Bopt(C1), . . . , Bopt(Ck) can be
computed as follows. Since the orthogonal projections of Box(C1), . . . , Box(Ck)
are pairwise disjoint in both axes, we can consider each cluster Ci as a single
point. Then we can run the algorithm corresponding to Theorem 2.2 making
the following consideration. For any box set X of m clusters denoted from left
to right C ′1, C

′
2, . . . , C

′
m the score S(X) must satisfy the following equations:

W (X) =
∑m

j=1
W (C ′j)

W (BL(X)) = max
j∈[1..m]

∑j−1

i=1
W (C ′i) +W (BL(C ′j))

W (BR(X)) = W (BR(C ′j)) + max
j∈[1..m]

∑m

i=j+1
W (C ′i)

By using the operator ⊕, this can be guaranteed by considering for each cluster
Ci that BL(Ci) = B4,1(Ci), and BR(Ci) = B2,3(Ci). In the base case of the recur-
sion there is at most one cluster above (resp. below) the strip S of the simplified
Strip-Constrained Maximum-Weight Box problem for P . Consider the
general setting in which there is a cluster C ′1 above S and a cluster C ′2 below
S, partitioning S into three boxes S1, S2, and S3. The other cases are similar
and simpler to solve. Assume w.l.o.g. that C ′1 is located to the left of C ′2. Then
the solution is the Box(·) of one of the following ten sets, which represent all
the forms of combining boxes of Ten(C ′1) ∪ Ten(C ′2) with boxes of S(P ∩ S1),
S(P ∩ S2), and S(P ∩ S3) (see Figure 6):

Q
(1)
1 = BR(P ∩ S1) ∪ B1(C ′1)

Q
(2)
1 = BR(P ∩ S1) ∪ B1,2(C ′1) ∪ BL(P ∩ (S2 ∪ S3))

Q
(3)
1 = B2(C ′1) ∪ BL(P ∩ (S2 ∪ S3))

Q
(1)
2 = BR(P ∩ (S1 ∪ S2)) ∪ B4(C ′2)

Q
(2)
2 = BR(P ∩ (S1 ∪ S2)) ∪ B3,4(C ′2) ∪ BL(P ∩ S3)

Q
(3)
2 = B3(C ′2) ∪ BL(P ∩ S3)

Q
(1)
1,2 = B2(C ′1) ∪ S2 ∪ B4(C ′2)

Q
(2)
1,2 = B2(C ′1) ∪ S2 ∪ B3,4(C ′2) ∪ BL(P ∩ S3)

Q
(3)
1,2 = BR(P ∩ S1) ∪ B1,2(C ′1) ∪ S2 ∪ B4(C ′2)

Q
(4)
1,2 = BR(P ∩ S1) ∪ B1,2(C ′1) ∪ S2 ∪ B3,4(C ′2) ∪ BL(P ∩ S3)

Since the algorithm runs over k points the result holds from Theorem 2.2.
�

Combining Theorem 3.2 with Lemma 4.2, joint with the fact that the algo-
rithm of Theorem 3.2 can be generalized to compute Ten(P ) in SORT(n)+O(δn)
time, and also that

12



Box(Q
(4)
1,2)

S1 S2 S3

C ′
1

C ′
2

1 2

34

1 2

34

Figure 6: The base case of the algorithm of Lemma 4.2.

k∑
i=1

n2i + k2 <

(
k∑
i=1

ni

)2

+ n2 = 2n2,

we obtain the next result:

Theorem 4.3 Given a cluster partition (C1, C2, . . . , Ck) of P , the Maximum-

Weight Box problem admits a solution running in time within O(
∑k
i=1 niδi+

k2) ⊂ O(
∑k
i=1 n

2
i + k2) ⊂ O(n2).

Among all cluster partitions of P , only one is a diagonalization. Let (C1, C2, . . . , Ck)
be a diagonalization of P . A diagonalization tree of P , denoted by D-tree, is a
binary tree whose leaves are C1, C2, . . . , Ck from left to right and each internal
node u has two children u1 and u2 so that (P (u1), P (u2)) is a cluster partition
of P (u), where for each node u set P (u) denotes the union of the clusters in the
leaves of the subtree rooted at u (see Figure 7).

C1

C2

C4

C5

C6

C3

C1 C2

C3

C4 C5

C6

Figure 7: A D-tree of the point set P over the diagonalization (C1, . . . , C6).
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Lemma 4.4 A D-tree of P requires Θ(n) space and can be built in O(n lg n)
time.

Proof. Let p1, p2, . . . , pn denote the elements of P sorted by x-coordinates, and
let pπ1

, pπ2
, . . . , pπn

denote the elements of P sorted by y-coordinate. Consid-
ering the computation of permutation π as a preprocessing, we now show that:
If P admits a cluster partition ({p1, . . . , ps}, {ps+1, . . . , pn}) then it can be de-
termined in O(min{s, n− s}) comparisons. Otherwise, if such a partition does
not exist, then this can be decided in O(n) time. For each index i ∈ [1..n],
let ML(i) = maxj∈[1..i] πj , mL(i) = minj∈[1..i] πj , MR(i) = maxj∈[i..n] πj , and
mR(i) = minj∈[i..n] πj .

Observe that if ({p1, . . . , ps}, {ps+1, . . . , pn}) is a cluster partition of P , then
index s ∈ [1..n − 1] satisfies ML(s) = s or mL(s) = n − s + 1. Furthermore,
ML(s) = s and mL(s) = n − s + 1 are equivalent to mR(s + 1) = s + 1 and
MR(s+ 1) = n− s, respectively.

Then we can determine such a partition of P , if it exists, as follows: For
j = 1..bn/2c decide if ({p1, . . . , pj}, {pj+1, . . . , pn}) is a cluster partition (i.e.,
ML(j) = j ormL(j) = n−j+1) or ({p1, . . . , pn−j}, {pn−j+1, . . . , pn}) is a cluster
partition (i.e., MR(n− j + 1) = j or mR(n− j + 1) = n− j + 1). Note that if
j > 1 then ML(j), mL(j), MR(n−j+1), and mR(n−j+1) can all be computed
in O(1) time from ML(j− 1), mL(j− 1), πj , MR(n− j+ 2), mR(n− j+ 2), and
πn−j+1. Therefore, if there is a cluster partition ({p1, . . . , ps}, {ps+1, . . . , pn})
of P it is decided for j = min{s, n − s} ≤ bn/2c, and thus determined in O(j)
time. If no such partition is found for any value of j ∈ [1..bn/2c], then the
algorithm spends O(n) time in total.

We can then build a D-tree of P recursively as follows. Run the above
algorithm for P . If a cluster partition ({p1, . . . , ps}, {ps+1, . . . , pn}) of P exists,
which was determined in O(t) comparisons, where t = min{s, n−s}, then create
a root node and set as left child a D-tree of {p1, . . . , ps} and as right child a
D-tree of {ps+1, . . . , pn}. Otherwise, if P does not admit such a partition, which
was decided in O(n) time, then create a leaf node with cluster P . This results in
the next recurrence equation for the total number T (n) of comparisons, where
1 ≤ t ≤ bn/2c:

T (n) =

{
O(t) + T (t) + T (n− t) n > 1, a cluster partition exists

O(n) otherwise.

W.l.o.g. assume that the constants in O(t) and O(n) in the recurrence are equal
to one. Then we prove by induction that T (n) ≤ n + n lg n. The base case of
the induction is the second line of the recurrence equation, where n ≤ n+n lg n
always holds. In the inductive case, we have T (n) = t + T (t) + T (n − t) ≤
n+ t+ t lg t+ (n− t) lg(n− t) = n+n lg n+n(t/n+H(t/n)) ≤ n+n lg n, where
H(x) = x lg(1/x) + (1 − x) lg(1/(1 − x)) is the binary entropy function, with
x = t/n, and we use the analytic inequality x ≤ H(x), which holds at least for
x ≤ 1/2. Thus T (n) ≤ n + n lg n and then T (n) is within O(n lg n). One can
see that this solution is tight by considering the case t = n/2. �
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Theorem 4.5 The Maximum-Weight Box problem admits a solution run-
ning in time within O(n lg n +

∑k
i=1 niδi + k) ⊂ O(n lg n +

∑k
i=1 n

2
i ) ⊂ O(n2),

where k is the size of the diagonalization (C1, . . . , Ck) of P , and ni is the number
of points of cluster Ci, which is composed of δi strips.

Proof. Run the algorithm of Lemma 4.4 to build a D-tree of P in O(n lg n)
time. The i-th leaf of the D-tree from left to right contains cluster Ci. Compute
Ten(Ci) in time within O(niδi) using the algorithm from Theorem 3.2, assuming
that P is already sorted in SORT(n) ⊂ O(n lg n) time. Using a post-order
traversal of the D-tree, for each internal node u with child nodes u1 and u2,
compute Ten(P (u)) in constant time from Ten(P (u1)) from Ten(P (u2)) by using
Lemma 4.1. The result clearly follows from Ten(u), where u is the root of the
D-tree. �

5. Upper and lower bounds in d dimensions

In this section we study connections between the Maximum-Weight Box
problem and others, deriving new upper and lower bounds for various related
problems, in two and more dimensions.

Connection to Klee’s measure problem and higher dimensions. Our O(n2)
time algorithm for the Maximum-Weight problem is actually a special case of
a more general result for a problem related to the well known Klee’s Measure
problem (computing the volume of a union of n boxes).

In the d-dimensional Weighted Depth problem, we are given a set of n
weighted boxes in Rd and we want a point p ∈ Rd that maximizes the depth,
defined as the sum of the weights of the boxes that contain p. All known algo-
rithms for Klee’s Measure problem can be modified to solve the Weighted
Depth problem. In particular, Overmars and Yap’s algorithm [16] runs in
O(nd/2 lg n) time, Chan’s algorithm [7] runs in O(nd/22O(lg∗ n)) time, and a new
simple algorithm by Chan [8] runs in O(nd/2) time.

The following result has not been noted before:

Theorem 5.1 The Maximum-Weight Box problem in any constant dimen-
sion d can be reduced to the Weighted Depth problem in dimension 2d.

Proof. Given a point set P in Rd, we map each point p = (a1, . . . , ad) ∈ P
to a region Rp in R2d, consisting of all 2d-tuples (x1, . . . , xd, x

′
1, . . . , x

′
d) such

that p lies inside the box with opposite corners (x1, . . . , xd) and (x′1, . . . , x
′
d);

in other words, Rp = {(x1, . . . , xd, x′1, . . . , x′d) | [(x1 ≤ a1 ≤ x′1) ∨ (x′1 ≤ a1 ≤
x1)] ∧ · · · ∧ [(xd ≤ ad ≤ x′d) ∨ (x′d ≤ ad ≤ xd)]}. We can decompose Rp into a
constant number of boxes in R2d, which will have weight w(p). The maximum-
weight box for P corresponds to a point (x1, . . . , xd, x

′
1, . . . , x

′
d) that has the

maximum depth among these regions. �
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According to the above theorem, ourO(n2) result for the Maximum-Weight
Box problem in two dimensions can also be deduced from Chan’s latest result
for the Weighted Depth problem in d = 4 dimensions [8]. In fact, the O(n2)-
time algorithm presented in this paper is inspired by Chan’s algorithm [8], which
is also based on a “divide-summarize-and-conquer” approach. The algorithm
here is a more direct solution, avoiding the need to work explicitly in the 4-
dimensional space, and also a pedagogical introduction to the algorithm running
in time SORT(n) +O(δn).

The above theorem also implies that the Maximum-Weight Box prob-
lem in d dimensions can be solved in O(nd) time by Chan’s new algorithm.
Previously, only an O(n2d−2 lg n) time bound was reported [10].

Polylogarithmic-factor speedups. Chan [8] also showed how to further speed up
his algorithm by a polylogarithmic factor for the Weighted Depth problem,
but only when the dimension is sufficiently large (in particular, not for d = 4).

However, in the unweighted case of the Depth problem, polylogarithmic
speedup is possible [7, 8] for any d ≥ 3: the time can be reduced toO((nd/2/ lgd/2 n)(lg lg n)O(1)).
This extends to the case where the weights are integers with absolute value
bounded by O(1), since we can replace a box with positive weight c by c copies
of the box, and we can replace a box with negative weight −c by c copies of its
complement (which can be decomposed into a constant number of boxes).

Therefore, we can solve the Maximum-Weight Box problem for the case
of +1 and −1 weights in O((nd/ lgd n)(lg lg n)O(1)) time. The same bound thus
follows for the Maximum Bichromatic Discrepancy problem. Previously,
only an O(n2 lg n) bound was known for d = 2 [10, 11]. Similarly, by straightfor-
ward changes to incorporate −∞ weights, the Maximum Box problem can be
solved in O((nd/ lgd n)(lg lg n)O(1)) time, improving the previous O(nd lgd−2 n)
time bound for d ≥ 3 [1].

Problem complexity. It is unknown whether O(nd) is the best possible time
complexity for the Maximum-Weight Box problem, even in two dimensions:
reducing the 3SUM problem to it, or proving an Ω(n2) lower bound in some
restricted model, would improve our understanding of a large family of prob-
lems in computational geometry. Note that if d is part of the input then the
Maximum-Weight Box problem is NP-hard, since it generalizes the Maxi-
mum Box problem [12]. In this regard, we can show the following:

Theorem 5.2 The Weighted Depth problem in any constant dimension d
can be reduced to the Maximum-Weight Box problem in dimension d.

Proof. We first reduce the Weighted Depth problem to a special case of
the Weighted Depth problem where all the input boxes are “dominance”
ranges of the form (−∞, b1]× · · · × (−∞, bd]. To see this, for a given i ∈ [1..d],
we replace any input box [a1, b1] × · · · × [ad, bd] of weight w with two boxes:
[a1, b1] × · · · × [ai−1, bi−1] × (−∞, bi] × [ai+1, bi+1] × · · · × [ad, bd] of weight w,
and [a1, b1]× · · · × [ai−1, bi−1]× (−∞, ai]× [ai+1, bi+1]× · · · × [ad, bd] of weight
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−w. By repeating this for each i ∈ [1..d], each original box is replaced with 2d

boxes of the desired special form.
Now, given an instance of this special case of the Weighted Depth prob-

lem, we map each input box b = (−∞, b1] × · · · × (−∞, bd] to the point pb =
(b1, . . . , bd), of the same weight. We have the obvious property that pb lies inside
the box [x1,∞) × · · · × [xd,∞) iff (x1, . . . , xd) lies inside b. We add an extra
point at (∞, . . . ,∞) with weight M for a sufficiently large number M . The
maximum-weight box containing the resulting point set must be of the form
[x1,∞)×· · ·× [xd,∞) because of this extra point, and so corresponds to a point
of maximum depth of the given boxes. �

The above theorem implies the W [1]-hardness of the Maximum-Weight
Box problem with respect to d, since Klee’s Measure problem and the
Weighted Depth problem are W [1]-hard [7]. It also implies the unlikeness
of an algorithm that runs in time within o(nd/2) (ignoring logarithmic factors)
with current knowledge about Klee’s Measure problem.
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weight planar boxes in O(n2) time (and better). In Proc. 25th Canadian
Conference on Computational Geometry (CCCG), pages 151–156, 2013.
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