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Abstract

We propose a simple method that, given a symbol distribution, yields upper and
lower bounds on the average code length of a D-ary optimal code over that distri-
bution. Thanks to its simplicity, the method permits deriving analytical bounds for
families of parametric distributions. We demonstrate this by obtaining new bounds,
much better than the existing ones, for Zipf and exponential distributions when
D > 2.
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1 Introduction

Huffman coding [10] is one of the most widely used coding methods. Given a
probability distribution {p;}o<i<n for a set of source symbols, Huffman coding
assigns a minimal prefix code to the set of source symbols. That is, Huffman
assigns a codeword (sequence of target symbols) to each source symbol such
that no code is a prefix of another and L = 37y, ., pif; is minimal, where /; is
the length of the codeword assigned to symbol 7. If the alphabet of the target
symbols is of size D, then we say that the Huffman code is D-ary. D-ary
codes are useful for large source alphabets, where they provide competitive
compression ratios compared to binary codes, yet permit faster decoding. For
example, byte-oriented Huffman is useful in compressed text databases [14].
On infinite source alphabets, one can still speak of optimal codes, that is, prefix
codes that minimize the redundancy.
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Several studies have been carried out on the problem of bounding L given
{pi}. This is useful to predict the compression ratios that can be achieved by
optimal codes on specific sources or for families of parametric distributions.
Although a lot of work has been carried out on improving upper and lower
bounds on the redundancy, most of it focuses on the case D = 2 (see an
excellent survey by Abrahams [1], especially Section 2.2).

In this paper we present a new method to lower and upper bound the re-
dundancy of optimal D-ary codes when applied to a family of parametric
distributions. Those bounds are analytic functions of the distribution param-
eters and, unlike numeric pointwise estimations that can be obtained with
other methods, permit making general assertions on the compression of those
families. We demonstrate this by analyzing the Zipf and exponential distribu-
tions, obtaining much better analytical bounds than the existing ones for the
D-ary case.

2 Related Work

The most widely known bound to Huffman compression, coming from the
Noiseless Coding Theorem [15], is Hp < L < Hp + 1, where

Hp = Y plogp

1
0<i<n bi

(1)

is the D-ary zero-order entropy of the distribution. The difference between L
and the entropy, r = L — Hp, is called the redundancy of the code. Hence
Shannon’s theorem establishes that the redundancy is between 0 and 1.

This bound is tight (that is, there are distributions for which the bounds are
reached), but it is independent of the distribution. Tighter bounds can be
obtained if we take into account the distribution. As explained, most of the
huge amount of work on bounding the redundancy of D-ary optimal codes
applies to the case D = 2 [1]. The only bounds we could find for general D
are given in [13,4,5].

From now on we will assume, w.l.o.g., that {p;} is sorted in decreasing order.
In [13,4] it is shown that

r > s—(1—=p1)logp(D® —1) = k(p), (2)



where k(z) = —xlogp(x) — (1 — x)logp (1 — ) and the positive integer s is 1
if log,(D +1) < 1/(1 — py) and otherwise it satisfies

by Dot 1 D
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and they prove that the bound is tight.

In [5] it is shown that, if ¢; is the tight lower bound as a function of p;, then
0i—1 < ¢;, that is, the bound improves as we consider less probable source
symbols. This makes the above bound valid for any p;, not just p;. They prove
another bound for any D > 2:

m— (1 —p,)logp(D™ — 1) — k(py), if Qpyr < p, <D™
m— (1 - Dpn) lOgD(Dm - 1) - H(Dpn)a if D_m_l < Pn < Qi

r

r
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where p,, is the least probable symbol of the distribution and «,, is the unique
zero of k(z) — k(Dx) + xlogy(D™ ' — 1) in x € (0,1/D).

With respect to upper bounds, in [13] they improve a bit a previous bound of
[6] and obtain

Dp,
<
= T D

(3)

where o = log (D —1)+logp(logp e) —logp e+1/(D —1). For the case D > 2
and p; > 1/2 they show that

r < 1—k(pm), (4)

and a result proved in [4] is useful for p; < 1/2:

ro < 1=k(p)+2(1—p)/D. ()

There are also some related results, yet not giving analytical bounds to the
redundancy. For example, in [11,12] they consider the problem of the existence
of optimal D-ary codes for a given infinite distribution. Their methods also
permit numerically deriving bounds for infinite distributions, by successive ap-
proximations over finite truncations thereof. Those numerical methods are less
powerful than the analytical methods we consider in this paper, as the former
are pointwise and cannot be used to derive analytical (and possibly paramet-
ric) formulas that bound the redundancy of families of distributions. In [§]
they consider the construction of optimal codes for geometric distributions.



3 Dense Coding

In [3] we proposed Dense Coding as a more efficient alternative to Tagged
Huffman Coding [14] for direct compressed text searching on natural language
texts. This dense coding, however, is interesting by itself as a bound for the
compression that can be obtained with a Huffman code. In this section we
present this coding and some of its properties, generalizing the previous pro-
posal of [3].

Definition 1: Given source symbols with probabilities {p;}o<i<n, an (s,c)
stop-cont code (where ¢ and s are integers larger than zero) assigns to each
source symbol ¢ a unique code of target symbols formed by a base-c digit
sequence terminated by a digit between ¢ and ¢ + s — 1. The target alphabet
is thus [0,c¢+ s — 1].

It should be clear that a stop-cont coding is just a base-c numerical represen-
tation, with the exception that the last digit is between ¢ and ¢+ s — 1, i.e.,
the last digit is a base-s number that is distinguished from previous digits by
adding c. Digits between 0 and ¢—1 are called “continuers” and those between
cand ¢+ s — 1 are called “stoppers”.

An alternative useful view is to consider a tree of arity D = s + ¢, where the
first ¢ children are internal nodes reserved for continuers and the last s children
are leaves corresponding to stoppers (although it is possible for a node not to
use all its continuers or all its stoppers). Then each codeword is a root-to-leaf
path in the tree. The next property clearly follows.

Property 1: Any (s, c) stop-cont code is a prefix code.

Proof: If one code were a prefix of the other, since the shorter code must have
a final digit of value at least ¢, then the longer code must have an intermediate
digit which is not smaller than ¢. A contradiction. a

Among all the possible (s, ¢) stop-cont codes for a given probability distribu-
tion, the dense code is one that minimizes the average symbol length.

Definition 2: Given source symbols with decreasing probabilities {p; }o<i<n,
the corresponding (s, ¢)-dense code is an (s, ¢) stop-cont code where the code-



words are assigned as follows: Let £ > 1 be such that

A | < i < -1
§ ———— ) § ——
c—1 - c—1"

then the code corresponding to source symbol i is formed by k—1 base-c digits
and a final digit between ¢ and ¢+ s — 1. If £ = 1 then the code is simply the

stopper ¢ + i. Otherwise the code is formed by the number |x/s| written in

sck—1—s

c—1

base ¢, followed by ¢+ (z mod s), where z =i —

dense

)-
0,0,3),

Example 1: The codes assigned to symbols ¢ = 0...15 by a (2,3
coding are as follows: (3), (4), (0, 3), (0,4), (1, > (1, > (2,3), (2,4), (
(0,0,4), (0,1,3), (0,1,4), (0,2,3), (0,2,4), (1,0,3), and (1,0, 4).

Note that the code does not depend on the exact symbol probabilities, but
just on their ordering by frequency. We now prove that the dense coding is an
optimal stop-cont coding.

Property 2: The average length of a (s, ¢)-dense code is minimal with respect
to any other (s, c¢) stop-cont code.

Proof: Let us consider an arbitrary (s,c) stop-cont code, and let us write
down all the possible codewords in numerical order, as in Example 1, together
with the symbol they encode, if they encode one. Then it is clear that (i) any
unused code in the middle could be used to represent the source symbol with
longest codeword, hence a compact assignment of target symbols is optimal;
and (i7) if a less probable symbol with a shorter code is swapped with a more
probable symbol with a longer code, then the average code length decreases,
and hence sorting the symbols by decreasing frequency is optimal. O

In [3] we use dense coding as an alternative compression method. In this paper
we are interested in its ability to give simple lower and upper bounds to the
compression given by a D-ary optimal code.

4 The Bounds

Since any (s, c)-dense code is a prefix code, its average code length is not
smaller than a D-ary optimal code, where D = s + ¢. This is valid for any
choice of s and ¢, so different bounds can be obtained for a given D.



On the other hand, a D-ary optimal code can be seen as a (D, D) stop-cont
code, provided we add D to the last digit of all the codewords. Hence, its
average code length cannot be smaller than a (D, D)-dense code.

Hence, if we call Ljpy the average code length using D-ary optimal code
and Ly ) the average code length using (s,c)-dense code, then we have the
following bounds for any 1 < s < D:

Lyppy < Lupy < Lgsp—s)-

The first inequality gives us a simple method for lower bounding the average
codeword length of a D-ary optimal code: Add up 1 for the first D probabil-
ities, 2 for the next D?, 3 for the next D3, and so on. The second inequality
gives us an upper bound that can be computed the same way, but this is
different for each choice of s.

The simplicity of the bounds opens to door to the possibility of deriving ana-
Iytic bounds for a family of distributions, if there exists an analytical expression
of the symbol frequencies. We start with a generic development than can be
applied to any distribution. In the following sections, we complete the analy-
sis for specific examples of distributions that are interesting in real life. Recall
that we assume that symbols are sorted in decreasing frequency order.

Since cf~!s different codewords can be coded using k digits, let us call

k-1
c—1

k
w, = 2307_1 = s
Jj=1

(where wy = 0) the number of source symbols that can be coded with up to k
digits. Let us also call

v = > p)

Jj=wi—1+1

the overall probability of source symbols coded with £ digits.

Then, the average codeword length for the (s, ¢)-dense coding is

K K Wi
Lisey = Y kfi = Dk > b
k=1

k=1 j=wir_1+1

K-1 W41 K-1 wg
= 1+>k > p=1+> > p (6)
k=1 j=wir+1 k=1 j=wi+1



where K = [log, (1 + @) —1].

5 Generalized Zipf Distribution

An interesting particular case is a distribution typical of natural language
texts, although it holds for many other processes as well [16]. It is well known
2] that, in natural language texts, the vocabulary distribution closely follows
a generalized Zipf's law [16], that is, p; = A/i® and n = oo, for suitable
constants A and 6 > 1. The latter depends on the text, while

Yix1 1/7° ¢(6)

makes sure that the distribution adds up 1.! From Eq. (1), the entropy of
this distribution is

_ —6¢'(6)/¢(9) + In¢(0)
InD ’

1 logp i
Hp :ZpilogD; :AHZ fé) —logp A

i>1 ( i>1

and this is of course a lower bound for Lyp).

On the other hand, from Eq. (6) we have

Lisey = 1+AY > 1/4%

E>1j>we+1

At this point we resort to integration to get lower and upper bounds. Since
1/7% decreases with j and since ¢* — 1 > (¢ — 1)c*~!, we have that the above
summation is upper bounded as follows

T Ale— 1)1 1
Lasey < 1+A /1/x9dx - 1+
Ase) ,?ka (6 —1)sT ,;1 (ck — 1)1
A(C _ 1)9—1 C1—6‘ Lo
<1 1-1
= (0 —1)s0=1 1 — =0 ( /)
1
= 14+

(6 = 1)¢(0)s"~ (1 — =7

1 We are using the Zeta function ((z) = 3 ,51/i%*. We will also use ('(z) =
o¢(x)/0x.



In order to obtain the optimum upper bound for Lg ) we substitute c = D—s
in the latter formula and differentiate with respect to s. It turns out that the
minimum upper bound is reached for s = D — D¢ and ¢ = D'?. The upper
bound becomes

1
(6 = 1)¢(0)(D — DVe)P=1(1 — DV/o=t)

msin Ld(s,D—s) < 1+

A lower bound can be obtained similarly, as follows:

7 Ae— 1)1 1
Lasey > 1+ A / 1alde =1+ ,
(s:€) lglwk-i-l 0—1 ,; (sck —s+c—1)0-1

where the last term is difficult to bound. However, since we need this only for
the case s = ¢ = D, we substitute and go on

A(D — 1) 1
Lavpy 2 V=T 2 e gy
A(D — 1) 1
> 1427 &
0—1 ];1 (De—l)k’-‘rl
D—-1 0—-1
. (-1

(6 = 1)¢O) D= 1D~ — 1)

In order to demonstrate the relevance of this result, we have compared our
upper and lower bounds against the best previous bounds we could find, which
are expressed in Egs. (2) to (5). The lower bounds of [5] were left out because
in this case p, — 0. We chose the range 6 € [1, 2], since it is the interesting
one in most real-life cases. We have experimented with D values 2, 4, 8, 16,
32, 64, 128 and 256. Our bounds are better than others as D increases, but for
D as low as 4 we give already competitive upper bounds. For larger D values
our bounds are by far the tightest, and at some point our lower and upper
bound are so close that they permit predicting the Huffman redundancy with
high precision without actually running the algorithm. For space limitations
we show in Figure 1 only a sample of the D values tried.

We also include a line called “Real value”. This is the result of running the
Huffman algorithm on the first part of the sequence, up to p; = 107 (this
meant up to 54 million symbols). At this point the redundancy results were
stable up to precision 1073. It can be seen that, for not very low D values, our
upper bound is actually a good predictor of the real redundancy. For D = 128
the two curves are almost indistinguishable. For low D values, on the other
hand, the lower bound of Eq. (2) turns out to be a better predictor.
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Fig. 1. Comparison between our and previous lower and upper bounds on the redun-
dancy of a D-ary optimal coding over a Zipf distribution with parameter 6 € [1,2].
From top to bottom we show D = 4, D = 16 and D = 128. Note that our lower
bound is totally out of range for D = 4.



This result is particularly important for compressed text databases, as it per-
mits predicting their compressed size from an analytical model of the word
distribution in some language.

We remark that there exists previous work on binary coding and 6 = 1 [9],
which is out of our scope (D > 2, 0 > 1).

6 Exponential Distribution

Let us now consider a distribution of the form p; = (1 —a)a’~!, j > 1. The
D-ary entropy of this distribution is easily computed:

—alogp(a) — (1 —a)logp(l —a)
Hp = - .

An (s, c)-dense code has the following average code length, following Eq. (6):

Lisey = 1+(1—=a)> Y o' = 14+ a*y

k>1j>wi+1 k>1

by replacing wy we get

Ld(s,c) = 1+ Z a et = 1+a°+ as(l+c) + a5(1+c+62) + ...,

We could not find a closed expression for the above, but the terms become
superexponentially less important as we go on. For example, a very tight lower
bound is given by Lyp py > 1+ aP + aPP+D) + qP(D*+D+1)

With respect to the upper bound, we used a simple bound such as Ly ) < 1+
af +a*t) 45+t /(1 —g). We could not find the optimum analytically, but
only numerically for each case. However, a reasonable solution is s = ¢ = D/2.
In fact, the effect of not using the optimum setup is noticeable only for a very
close to 1.

As a sample of the results, Figure 2 shows the case D = 8. Again, these results
become better for larger D. As it can be seen, our method gives by far the
tightest lower and upper bounds for the cases when a is not very close to 1
(up to 0.8 in the case D = 8).

Again, we remark that there exists previous work on binary coding for expo-
nential (or geometric) distributions [7], which is out of our scope (D > 2).

10



Real value  °

Our lower bound -
Our upper bound
Lower bound Eq.(2) -
Upper bound Eq.(3)  *
Upper bound Eq.(4)  *
1Upper bound Eq.(5) =

redundancy

a (D=8)

Fig. 2. Comparison between our and previous lower and upper bounds on the re-
dundancy of a D-ary optimal coding over an exponential distribution of the form
pj = (1—a)a?!, j > 1, for the case D = 8.

7 Conclusions

We have presented a new method to lower and upper bound the redundancy
of a D-ary optimal code. The method is based on analyzing the performance
of a Dense code, which is a less efficient variant of Huffman, yet much simpler
to analyze. By changing the parameters of the Dense codes, we get lower and
upper bounds on D-ary optimal codes.

The technique is useful for deriving analytical bounds for distribution families
where an analytical (and possibly parametric) expression exists for the proba-
bilities. We have demonstrated the technique by applying it to Zipfian and ex-
ponential distributions, showing that our technique usually obtains lower and
upper bounds that are by far better than what can be obtained with previous
analytical methods, for D-ary codes. The results on Zipf models is particularly
relevant to compressed text databases, as it can be used to estimate the size
of the compressed collection or the performance of search algorithms based on
a parameterized Zipfian model of the text distribution [14].
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