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All those appliations have some ommon harateristis. There is a universe Xof objets, and a nonnegative distane funtion d : X�X �! R+ de�ned amongthem. This distane satis�es the three axioms that make the set ametri spae:strit positiveness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x)) andtriangle inequality (d(x; z) � d(x; y)+d(y; z)). This distane is assumed to beomputationally expensive (e.g., omparing two �ngerprints). We have a �nitedatabase U � X, of size n, whih is a subset of X. The goal is to preproess Uto answer (with as few distane omputations as possible) �xed radius queriesand nearest neighbor queries. We are interested in this work in the former,expressed as (q; r)d (a point q in X and a tolerane radius r), whih shouldretrieve all the points at distane r or less from q, i.e. fu 2 U; d(u; q) � rg.Nearest-neighbor queries retrieve the K elements of U that are losest to q.A partiular ase of metri spaes are k-dimensional vetor spaes, X = Rkusing Minkowski's Ls distane. In this ase the objets have a geometri mean-ing and the oordinate information an be used to guide the searh. E�etivemethods to searh vetor spaes are kd-trees [4℄ and R-trees [10℄, among manyothers. However, for random vetors on more than about 20 dimensions, allthose strutures ease to work well. Proven lower bounds exist [8℄ that showthat the searh omplexity is exponential with the dimension.It is interesting to point out that the onept of \dimensionality" an betranslated into metri spaes as well. The histogram of distanes of a highdimensional vetor spae has a large mean and normally a small relative vari-ane. In [7℄ this is used to de�ne the intrinsi dimension of a general metrispae as � = �22�2 , where � and �2 are the mean and variane of the histogramof distanes. Under this de�nition, a database of random k-dimensional ve-tors with uniformly distributed oordinates has intrinsi dimension � = �(k).Hene, the de�nition extends naturally that of vetor spaes.Analytial lower bounds and experiments in [7℄ show that all the searh al-gorithms degrade as � inreases. The problem has reeived the name of urseof dimensionality. In terms of the histogram, we see two reasons for it. First,if � inreases beause �2 is redued, then most distanes tend to give thesame values and hene yield less information (think on the degenerate spaed(x; y) = if x = y then 0 else 1). Seond, if � inreases beause � grows, thena larger searh radius r is neessary to retrieve a �xed fration of the database(and also to get a onstant number of nearest neighbors). The searh ost alsogrows sharply when the searh radius inreases.An interesting question is whether a probabilisti or approximate algorithman break or at least alleviate the urse of dimensionality. These algorithmsare aeptable in most appliations, beause in general the modelization asa metri spae already arries some kind of relaxation, so �nding some loseelements is usually as good as �nding all of them. This is our fous.2



2 Related Work and Our ContributionMost existing searh algorithms for metri spaes are exat, that is, they re-trieve the exat set fu 2 U; d(q; u) � rg. A reent survey of these algorithms is[7℄. In this work we fous on approximate and probabilisti algorithms, whihrelax the requisite of delivering the exat solution. A preision parameter "measures how muh may the outome di�er from the orret result.Approximation algorithms are surveyed in depth in [14℄. An example is [1℄,whih proposes a general framework to searh for an arbitrary region Q inreal-valued vetor spaes (Rk ; L2). The idea is to de�ne areas Q� and Q+ suhthat Q� � Q � Q+. Points inside Q� are guaranteed to be reported andpoints outside Q+ not to be reported. In between the algorithm an err. Themaximum distane between the real and the bounding areas is ".To illustrate the idea, one of the many trees used to deompose the spae isused to guide the searh by inluding or exluding whole areas. Every deisionabout inluding/exluding a whole area an be done using Q+/Q� to inreasethe probability of pruning the searh in either way. Those areas that annotbe fully inluded or exluded are analyzed in more detail by going down theappropriate subtree. The omplexity is shown to be O(2k logn + (3pk=")k)and a very lose lower bound is proven for the problem.Probabilisti algorithms have been proposed only for nearest neighbor searh-ing, for vetor spaes in [2,15,14℄, and for general metri spaes in [9℄.In [15℄, a proposal alled \aggressive pruning" for \limited radius nearestneighbors" is presented. This query seeks for nearest neighbors that are insidea given radius. The idea an be seen as a partiular ase of [1℄, where thesearh area is a ball and the data struture is a kd-tree. Relevant elementsmay be lost but irrelevant ones annot be reported, i.e. Q+ = Q. The ball Q,of radius r and entered at q = (q1; : : : ; qk), is pruned by interseting it withthe area between hyperplanes qi � r + " and qi + r � ". The authors give aprobabilisti analysis assuming normally distributed distanes, whih almostholds if the points are uniformly distributed in the spae. The searh time isO(n�) where � dereases as the permitted failure probability " inreases.In [9℄, the author hooses a \training set" Q of queries and builds a datastruture to answer orretly only queries of the training set. The idea is thatthis setup is enough to answer orretly, with high probability, an arbitraryquery. Under reasonable probabilisti assumptions it is shown that, payingO(Kn�) spae and O(K� log n) searh time, the probability of not �ndingthe nearest neighbor is O((logn)2=K). Here � is the logarithm of the ratiobetween the farthest and the nearest pairs of points in U [ Q .3



In this paper we present a probabilisti tehnique for �xed radius searhingon general metri spaes. We exploit the high dimension of the metri spae,spei�ally the fat that the di�erene between random distanes is small om-pared to a random distane. We show that this permits reduing the searhradius and yet losing very few elements, and explain how any exat algorithman make use of this property to beome a muh more eÆient probabilistialgorithm. We exemplify the approah with a partiular algorithm, whih in-identally leads to a metri spae version of [15℄. We present empirial resultsshowing a large inrease in the searh eÆieny making very few errors.3 Strething the Triangle InequalityA large lass of algorithms to searh metri spaes, alled \pivot based" [7℄,are built on a single general idea. We selet k random elements (pivots)fp1; : : : ; pkg � U. The database is preproessed to build a table of nk en-tries that stores the distanes d(u; pi) for every u 2 U and pivot pi. Whena query (q; r) is submitted, we ompute d(q; pi) for every pivot pi and thendisard elements u 2 U by using the triangle inequality. Two fats hold:d(u; pi) � d(u; q) + d(q; pi) and d(q; pi) � d(q; u) + d(u; pi) (1)whih an be reexpressed as d(q; u) � jd(u; pi)�d(q; pi)j. Hene, we an disardall those u suh that jd(u; pi) � d(q; pi)j > r for some pivot pi. The elementsof U that annot be disarded using this rule are diretly ompared against q.Di�erent pivot based algorithms share this priniple and di�er in the way theyredue the CPU ost inurred apart from that of omputing distanes. Trees,binary searh and tries are some of the tehniques used [7,13,6,3,5,12℄. In thiswork we fous on reduing the number of distane omputations and disregardextra CPU ost. Any known tehnique an be used to redue the latter.More preisely, let us de�neDk(q; u) = maxi21:::k jd(u; pi)� d(q; pi)jand hene we disard any u suh that Dk(q; u) > r. The k distanes d(q; pi)omputed are alled internal evaluations, while the d(q; u) omputed againstthose u that annot be ruled out (Dk(q; u) � r) are alled external evaluations.As the latter derease (or at least do not inrease) with k, it follows that thereis an optimum k. In most ases, however, kn reahes the spae limit well beforek reahes its optimum, so one uses as many pivots as spae permits.Figure 1 illustrates a useful ost model. Let X be a random variable for thedistane d(x; y) in X and Z be a random variable for the distane Dk(x; y).4



Their distributions fX and fZ are illustrated, and let us all FX and FZ theirumulative distributions. To retrieve a fration � of the database we need touse a searh radius large enough to make FX(r) � � . On the other hand,sine we disard elements u suh that Dk(q; u) > r, our external omplexityis n� FZ(r). That is, in order to retrieve the double grayed area in Figure 1we have to examine all the single grayed area. Clearly Dk(x; y) � d(x; y), andthe ideal situation is that both distributions are as lose as possible. Whenthis happens, the external omplexity is the size of the result.Note that the mean of X is �, while the mean of Z is related to � andindependent of �, as it is a maximum over di�erenes of distanes. In highdimensions (large � = �22�2 ) the ratio between both means inreases, whihmeans that the distribution of Z falls behind that of X. Hene in order toretrieve the same � it is neessary to examine a larger fration of the database.To avoid this problem we an inrease k to shift fZ to the right, but this islimited by the amount of memory available and by the inrease in internalomplexity.
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XZ

rFig. 1. The searh omplexity of pivoting algorithms.The histogram omparison skethed above aurately predits the searh ost:To retrieve nFX(r) database elements we must pay k + nFZ(r) distane om-putations. The fat that we examine all the area where Dk(q; u) � r is justi�edbeause Dk(x; y) is upper bounded by d(x; y), so we annot miss any element.A natural question towards a probabilisti searh algorithm is: How frequentlydoes Dk(x; y) really reah d(x; y)? Or, alternatively, how many elements wouldwe lose if we searhed with radius �r, for 0 < � < 1?If we onsider that the mean of X is � and that of Z is related to �, thenDk(x; y) beomes muh smaller than d(x; y) as the dimension � grows. Thismeans that, for higher dimension (or for a poorer index) we an \safely" use asmaller �. Hene the method promises to work better as the dimension growsor for worse indexes. However, for a �ner analysis we annot rely on wholehistograms but on individual measures.Consider the random variable 0 � Q � 1 taking values in the quotientDk(x; y)=d(x; y). Figure 2 depits the behavior of FQ(�) by estimating its his-5



togram for di�erent k values on the metri spae ([0; 1)16; L2), with elementsand pivots hosen at random.
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Fig. 2. The umulative empirial distribution of Q for di�erent instanes of themappingLet us interpret the meaning of Q with the help of Figure 2. With a on�denelevel  (determined solely by Dk(x; y) and d(x; y)) we an assume a smallerupper bound forDk(x; y) in terms of the original distane d(x; y). For example,in Figure 2, for 16 pivots we an �x a fator of � = 0:5 with a on�dene level > 0:9. In other words, for this partiular seletion, in 9 out of eah 10 ases,if we measure a distane Dk(x; y), the atual distane d(x; y) for the pair (x; y)will be at least twie Dk(x; y). We may take advantage of this observation bydisarding elements using a smaller radius, knowing that the probability ofmissing a relevant element is at most 0.1.In standard searhing we perform the query (q; r)Dk to obtain a andidate list.Sine Dk(x; y) � d(x; y) we are sure that (q; r)d � (q; r)Dk for any r. Then,we examine the elements in the andidate list using d. Using the statistis ofQ we design a probabilisti generalization of the above proedure, whih �ndsa subset of the orret answer (q; r)d. Its on�dene level (or probability ofsuess)  is de�ned as the probability that a given element in (q; r)d is atuallyfound. The method simply obtains � = F�1Q () and builds the andidate listusing the striter query (q; �r)Dk. The rest is unhanged.It is lear that the probability of losing a relevant element u is that ofDk(q; u) >�r given that d(q; u) � r. Sine this implies Dk(q; u)=d(q; u) > �, we have thatthis ours with probability at most . Note, however, that for auratenesswe should ompute FQ(�) over pairs (x; y) suh that d(x; y) � r. Some inter-esting properties of the algorithm are: (i) it is one-sided error, sine it neverreport elements that should not be reported; (ii) elements at distane at most�r from q are guaranteed to be reported; (iii) we an hoose  and � at querytime; and (iv) basially no modi�ations to the indexing and searhing algo-rithms are neessary. The main remaining question is whih tradeo� we obtainbetween speed and auray. 6



4 EÆieny and the Statistial ModelUsing the model desribed in the previous setion we an aurately preditthe behavior of the probabilisti algorithm for a given pivot based index. Theost of satisfying (q; r)d exatly using an index with k pivots is k + nFZ(r).To satisfy a query with probability  = FQ(�) we have to pay k+ nFZ(�r) =k + nFZ(F�1Q () r).We show experimentally how our predition works. We use ([0; 1)dim; L2) asour metri spaes, with uniformly distributed oordinates for the vetors. Theadvantage of this spae is that we an know its exat dimensionality. Oursearh radius retrieves 1% of the database, r = F�1X (0:01). Figure 3 (top) showsthe experimental probability of retrieving a relevant element as � inreases,using k = 1 and k = 64 pivots. Note that we lose less elements when thedimension is higher or when we have less pivots, as expeted.
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128Fig. 3. Fration of relevant elements retrieved as a funtion of �. On top the exper-imental results, on the bottom the predited behavior.Figure 3 (bottom) shows the predition obtained using our model, just byplotting the umulative distribution FQ. The predition is not perfet beausewe have estimated FQ on arbitrary pairs (x; y) instead of over pairs at distane� r. However, the predition is very aurate in the region of interest  � 0:9,so we favor this simpler model. 7



Let us now ompare the searh ost against the probability of suess. Figure 4shows the number of omparisons as a funtion of the fration of relevantelements retrieved, for di�erent ombinations of k and r. As an be seen, weretrieve even 90% or 95% of the relevant elements paying muh less than theexat algorithm (� = 1 in the plots). In many ases there is a large di�erenebetween the osts to retrieve 99% and 100% of the set. These di�erenesare more notorious when k is too low to get good results with the exatalgorithm. We an obtain the same eÆieny of the exat algorithm usingmuh less pivots. For example, 16 dimensions is almost intratable for the exatalgorithm with less than 256 pivots, while with the probabilisti algorithm wean get aeptable results with 16 pivots.
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the probability of missing a relevant answer grows, and therefore we need alarger � to keep the same error probability. This, in turn, inreases the searhtime. This fat worsens in higher dimensions: if we use enough pivots so as to�ght the high dimension, then the error probability goes up. Therefore, thesheme does also get worse as the dimension grows. However, it worsens muhslower than the exat algorithm.
5 Real-life ExamplesWe show the performane of our method on two real appliations. The �rst oneis a database of text lines from the Federal Register olletion of TREC-3 [11℄.We used edit distane: the minimum number of harater insertions, deletionsand substitutions to make the two strings equal. This model is ommonly usedin text retrieval, signal proessing and omputational biology appliations.Figure 6 (left) shows the results for di�erent k values. As an be seen, with amoderately high probability (more than 0.8) we improve the exat algorithmby a fator of 3. The exat algorithm examines around 90% of the database,and our probabilisti approah around 26%. Again, there is an optimum kthat depends on the desired .The seond experiment takes the douments of the same olletion and buildsa metri spae using the osine distane, whih is heavily used in informa-tion retrieval to determine douments relevant to a query. In this distanedouments are seen as vetors in a spae where the terms are the oordi-nates and the value of doument i along the oordinate of term j is de�nedas fi;j log(N=nj), where fi;j is the number of ourrenes of j in i, N is thetotal number of douments, and nj is the number of douments where term jappears. The distane between two vetors is the osine of the angle betweentheir vetors.Figure 6 (right) shows the result for k = 64 pivots. The problem is totallyintratable with 64 pivots using the exat algorithm, i.e., the index examines99.99% of the set. However, our probabilisti algorithm performs muh better.With suess probability 0.8 we pay a small fration of the exat algorithm:2% to 12% depending on the searh radius. If we require the probability ofsuess to be 0.9, the ost reahes 40%-50% of the exat algorithm, whih isstill very good. 9
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Fig. 6. Performane of our approah versus the exat algorithm. On the left, for theedit distane on text lines, on the right, for the osine distane.6 ConlusionsWe have presented a probabilisti algorithm to searh metri spaes and apreditive model able to desribe both the performane of the algorithm andthe expeted probability of suess. The algorithm an be used on any index.For the partiular ase of pivot based indexes we have shown that the modelaurately predits the behavior of the algorithm and permits �ne tuning ofthe parameters by using simple statistis.Even with very low error probability we obtain large improvements in thesearh time. The idea an also be used to searh semimetri spaes, where thetriangle inequality \almost" holds: We an relax the ondition to eliminateandidates instead of tightening it as in the present work.We are urrently working on applying the idea to other data strutures, inpartiular to lustering algorithms [7℄. As explained in Setion 3, this involvesde�ning D appropriately.Referenes[1℄ S. Arya and D. Mount. Approximate range searhing. In Pro. 11th AnnualACM Symposium on Computational Geometry, pages 172{181, 1995.[2℄ S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimalalgorithm for approximate nearest neighbor searhing in �xed dimension. InPro. SODA'94, pages 573{583, 1994.[3℄ R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity mathing using�xed-queries trees. In Pro. CPM'94, LNCS 807, pages 198{212, 1994.[4℄ J. Bentley. Multidimensional binary searh trees in database appliations.IEEE Transations on Software Engineering, 5(4):333{340, 1979.10
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