Space-Efficient Construction of Lempel-Ziv Compressed Teldndexes*

Diego Arroyueld ** and Gonzalo Navarfo** *

! Yahoo! Research Latin America, Blanco Encalada 2120, SgmiChile.
2 Dept. of Computer Science, University of de Chile, Blanca&ada 2120, Santiago, Chile.
{darroyue, gnavarro}@icc. uchile.cl

Abstract. A compressed full-text self-indéxa data structure that replaces a text and in addition gndexed
access to it, while taking space proportional to the congaesext size. This is very important nowadays, since one
can accommodate the index of very large texts entirely immaémory, avoiding the slower access to secondary
storage. In particular, the LZ-index [G. Navarro, JournaDiscrete Algorithms, 2004] stands out for its good
performance at extracting text passages and locatingrpaitzurrences. Given a teft[1..u] over an alphabet

of sizeo, the LZ-index required|LZ|(1 + o(1)) bits of space, whergL Z| is the size of the LZ78-compression
of T'. This can be bounded by.Z| = uHi(T') + o(ulog o), where H,(T') is the k-th order empirical entropy

of T, for any k = o(log, u). The LZ-index is built inO(u log o) time, yet requiringO(u log w) bits of main
memory in the worst case. In practice, the LZ-index occufti€sl.5 times the text size (and replaces the text),
but its construction requires around 5 times the text sizes Timits its applicability to medium-sized texts. In
this paper we present a space-efficient algorithm to coctsthe LZ-index inO(u(log o + loglogw)) time and
requiring4|LZ|(1 + o(1)) bits of main memory, that is, asymptotically the same spétleeofinal index. We also
adapt our algorithm to construct more recent reduced wessid the LZ-index, which occupy from 1 to 3 times
|LZ|(1 + o(1)) bits, and show that these can also be built using asympligtite same space of the final index.
Finally, we study an alternative model in which we are givety@ limited amount of main memory to carry out
the indexing process (less than that required by the finakndind must use the disk for the rest. We show how to
build all the LZ-index variants iD(u(log o + loglog u)) time, and within|LZ|(1 + o(1)) bits of main memory,
that is, asymptotically just the space to hold the LZ78-caraped text. Our experimental results show that our
method is efficient in practice, needing an amount of memfmsecto that of the final index, and being competitive
with the best construction times of other compressed irglexe

1 Introduction and Previous Work

Text searchingds a classical problem in Computer Science. Given a sequairegmbolsT'[1..u] (the text)
over an alphabef’ of size o, and given another (short) sequenBél..m| (the search patterj over X,

the full-text search problentonsists of finding (counting or reporting) all thec occurrences of’ in T'.
Nowadays, much information is stored in the form of (usukdhge) texts, e.g. biological sequences such as
DNA and proteins, XML data, MIDI pitch sequences, digitatéries, program code, etc. Usually, these texts
need to be searched for patterns of interest, and therdfertili-text search problem plays a fundamental
role in modern computer applications.

Text Compression and I ndexing. Despite that there has been some work on space-efficiemtédvi@adexes
for natural language texts [71, 58] (able to find whole wordd phrases), until one decade ago it was

* A preliminary partial version of this paper appearedPioc. ISAAC 2005pp. 1143-1152.

** Funded by CONICYT PhD Fellowship Program, Chile. Part o tivork was done while the author was in the Department
of Computer Science, Univesity of Chile, and later visitihg David Cheriton School of Computer Science, University o
Waterloo.

*** Funded by Fondecyt Grant 1-080019 and by Millennium Inifor Cell Dynamics and Biotechnology (ICDB), Grant ICM
P05-001-F, Mideplan, Chile.

believed that any general index for text searching (suchasetthat we are considering in this paper) would
need much more space. In practice, the smallest index biailas the suffix array [46], a compact version
of suffix trees [1] requiring: log u bits® to index a text ofu symbols. Since the text requiradog o bits to

be represented, the suffix array is usually much larger thameixt (typically 4 times the text size). With the
large texts available nowadays (e.g., the Human Genomést®o$ about3 x 10° base pairs), one solution
is to store the indexes on secondary memory. However, tisilsggnificant impact on the running time of
an application, as accesses to secondary memory are ofdeegjnitude slower.

Several attempts to reduce the space of the suffix arrays these made [41, 26, 65, 18, 25,42, 19].
They aim atcompressed indexingvhich takes advantage of the regularities of the text taatpen space
proportional to that of the compressed text (ictimes the size of the text compressed under some model,
for some constant). Especially, in some of those works [65, 18, 25, 55, 42, 4976the indexeseplace
the text and, using little space (sometimes even less tlaroftihe original text), provide indexed access.
This feature is known aself-indexing since the index allows one to search and retrieve any panedext
without storing the text itself. Taking space proportiottathe compressed text, replacing it, and providing
efficient indexed access to it, is an important breakthrough

The main families of self-indexes based on suffix arrays fFé]theCompressed Suffix Array€SAs
for short) [65, 25] and FM-indexes (for “Full-text index iniMite space”) [18, 42, 19]. The latter compress
suffix arrays via the Burrows-Wheeler Transform [10]. Thenpoessibility in both families is usually mea-
sured in terms of thé-th order empirical entropy H;,, which is a lower bound on the performance of
statistical compressors based on predicting the next yexbal as a function of thé preceding ones.

A separate track of indexes based on Lempel-Ziv compregg@yv3] was pursued in parallel to the
research on compressing suffix arrays. These are geneadityl ¢ Z-indexes [36, 55, 18, 64, 7]. Except for
the first pioneering work [36], all the rest are self-indegesl based on the Lempel-Ziv compression algo-
rithm of 1978 (LZ78) [73]. Their space performance is meadun terms of the output size of Lempel-Ziv
compressors, which are based on exploiting the repetitlmatsarise in the text. This can be upper-bounded
by thek-th order empirical entropy of the text, but it can be smallben the text is repetitive.

Handling compressed indexes certainly requires more tipesahan classical indexes. However, given
the relation between main and secondary memory access, tiraadling compressed indexes entirely in
main memory is much faster than handling them in uncompdefesen in secondary storage.

We are particularly interested in LZ-indexes, since theyehshown to be very effective in practice
for extracting text, displaying occurrence contexts, amghting many occurrences, outperforming suffix-
array-based self-indexes at these tasks [56, 64, 5, 1#jebry, only LZ-indexes achieve high-order entropy
space together witt)(log) worst-case time per located occurrence. Moreover, in jgechany pattern
occurrences can be actually found in constant time. Inqadati, we will be interested in Navarro's LZ-
index [55, 56] and its more recent variants [6, 7, 5].

Compressed Construction of Self-Indexes. Many works on compressed full-text self-indexes do not con-
sider the space-efficient construction of the indexes. thit, aspect becomes crucial when implementing
the index in practice. For example, the original constarctf the CSA [26, 65] an&M-index[18] involves
building first the suffix array of the text, using for examghe talgorithm of Larsson and Sadakane [40] or
the one by Manzini and Ferragina [48]. Similarly, NavarioZindex is constructed over a non-compressed
intermediate representation [55]. In both cases one negasictice about 5 times the text size (in the case
of the CSA and the FM-index, by using the deep-shallow allyori[48]). For example, the Human Genome

3 log « means[log, «] in this paper.

may fit in less than 1 GB of main memory using these indexes tansl it can be operated entirely in
RAM on a modest desktop computer), but 15 GB of main memonnaegled to build the indexes! Using
secondary memory for the construction is nowadays the nrastipal alternative [15].

Another research path is to try building the suffix array digein compressed space in main memory.
Hon et al. [31] present an algorithm to construct suffix asréand also suffix trees) usin@(u log o) bits
of storage, inD(uloglog o) = o(ulogu) time for suffix arrays, and (u(log® u + log o)) time for suffix
trees, for any fixed < e < 1. This gives an alternative algorithm to construct the CS4 tre FM-index
using O(ulog o) bits of storage and(uloglog o) time. For sufficiently small alphabets, i.dogo =
O((log log u)'~¢), the construction time can be made optin@l(u). However, the space requirement to
construct the CSA is still bigger than that needed by the firdex.

The work of Hon et al. [29, 30] deal with the space (and timéigieit construction of the CSA. The
former use§2H(T') + 1+ ¢)u+ o(ulog o) bits of space to build the CSA, whetés any positive constant.
The construction time i€ (ou log u), which is good enough for small alphabets (as for DNA segegnc
but impractical for larger alphabets such as those of Caldahguages.

The second work [30] addresses this problem by requitfidg(T") + 2 + €)u + o(u log o) bits of space
and O(ulogu) time to build the CSA. Also, they show how to build the FM-imdeom the CSA using
negligible extra space i@ (u) time. In practice they were able to build the CSA for the Hur@amome in
about 24 hours and requiring about 3.6 GB of main memory [@8h 1.7 GHz CPU. The FM-index can be
built from the CSA in about 4 extra hours, for a total of abo8th®urs.

Na and Park [54] construct the CSA@(u log o (log,, u)'°%3 ?) bits of space and(u) time. This is the
most space-efficient linear-time algorithm for constmgtihe CSA. They leave open, however, the question
of whether the CSA can be constructed in linear time and requd (v log o) bits of space.

Karkkainen [35] introduces an algorithm to construct Bagrows-Wheeler transform of a teXt (and
hence its FM-index) irO(u log v + vu) worst-case time and using@(u log u/+/v) bits of working space,
wherev € [3,u?/3]. Sirén [32] introduces a space-efficient algorithm to tams CSAs inO(u log 1) worst-
case time and usin@(u) bits of space on top of the CSA itself. Ferragina et al. [1@&spnt an algorithm
for building the Burrows-Wheeler transform of a tékt(and also for building compressed indexes) in
O(ulog!™<u) time, for anye > 0, which uses(u) bits of working space if the alphabet size is a constant. If
we make the algorithm from Karkkainen [35] use:) bits of working space,the construction time becomes
w(ulog? u). However, that complexity holds for any alphabet size, mby for constant-size alphabets [16].

As seen, many works study the space-efficient constructiaheoCSA and the FM-index. However,
the space-efficient construction of LZ-indexes has not laslelniessed. The original construction algorithm
requiresO (u log o) time, butO(ulog) bits of main memory in the worst case, just as the uncompiesse
construction of CSAs and FM-indexes. Since LZ-indexes arapetitive in practice for locating pattern
occurrences and extracting text substrings [56, 5, 17]dwls very important for self-indexes), their space-
efficient construction is certainly an important issue.

Our Contribution. We present a practical and efficient algorithm to construmtayro’s LZ-index [55, 56]
using little space. Our idea is to replace, at construciioe tthe (space-inefficient) intermediate representa-
tions of the tries that conform the index by space-efficieninterparts. Basically, we define an intermediate
representation for the tries, supporting fast incremesttastruction directly from the text and requiring little
space compared with the traditional (pointer-based) sgmtation. The resulting intermediate data structure
consists of a tree whose nodes are small connected comparfeht original trie, oblocks These small
tries are represented succinctly in order to require lgpace. Notice also that the blocks are easier and

cheaper to update, since they are small. The idea is insjpirga@ work of Clark and Munro [13], yet ours
differs in numerous aspects (structuring inside the blpoksrflow management policies, etc.).

Our algorithm builds the LZ-index i®(u(log o +1log log u)) time, while requiringd| LZ|(1+0(1)) bits
of space, whergl Z| is the bit-size of the output of the LZ78-compressio ofl his is the same asymptotic
space the final LZ-index requires to operate. This size canobgpared with that of compressed suffix
array via the (not always tight) upper boufidZ| < uHy(T') + o(ulog o). At the time of the preliminary
version of this work [4], this was théirst construction algorithm for a compressed self-index reagir
space proportional tdf,(7T) instead of Hy(T'). Recently, however, a construction algorithm for the so-
called Alphabet FriendlyFM-index (AF-FMI) [19] has appeared, requiringd(7T') + o(ulog o) bits of
space, and)(ulog ulog o) time [44], and everO(ul?fg“l}fggu") [24]. Yet, the time obtained in the present
paper is far better, and it also improves significantly ug@(cu) worst-case time of our early result [4].

We show how the reduced-space versions of the LZ-index [g§,&n similarly be constructed within
asymptotically the space required by the final index. We plesent an alternative model to construct the
indexes, in which we assume that the available main memocganiy out the indexing process is smaller
than the space required by the final index, and we must useskéod the rest. This model has applications
in cases where the indexing process must be carried out imawter that is not so powerful to maintain
the whole index in main memory, leaving a more powerful egqupt exclusively to answer user queries.
We show that, under this model, the LZ-indexes can be castettwithin| LZ|(1 + o(1)) bits of space, for
any0 < e < 1,in O(u(log o + loglog u)) time andO(|LZ|) /O cost. This means that the LZ-indexes can
be built within asymptotically the same space than thatiredby the LZ78-compressed text.

We implement and empirically test a simplification of ouraithm, and demonstrate that in many
practical scenarios the indexing space requirement issilthe same as that of the final index. Thus, we
conclude thatvherever the LZ-index can be used, we can builBar example, we show that our algorithm
is able to build the LZ-index for the Human Genome in less thAours on a 3 Ghz CPU, and requiring 3.5
GB of main memory, so that this work can be carried out in a cority PC. Under the reduced-memory
scenario, our experimental results show that the LZ-indettfe Human Genome can be constructed within
1.6 GB of main memory, which is about half of the space reguingthe uncompressed genome (assuming
the base pairs are represented by bytes), and also in les$ thaurs. This is competitive with the best
current algorithms to build suffix arrays [15].

2 PaRlErbinamn@oreshe results obtained in this paper anga@s with existing approaches.
2.1 Model of Computation

We assume the standarrd RAM model of computation, in which we can access any memomgwbw
bits, such thatv = ©(log u), in constant time. Standard arithmetic and logical openatiare assumed to
take constant time under this model. We measure the sizer afada structures in bits.

Usually, after an indexing algorithm builds a text index inimmemory, the index is stored on disk along
with the text database, for persistence purposes. In treeafasompressed self-indexes, the index by itself
represents the database. At query time, the index is loatie@diain memory in order to answer (many) user
queries. Thus, by saving the index the (usually costly)ivdg process is amortized over several queries.
Yet, in other scenarios, one builds the index in main memaodyanswers queries on the fly.

We will initially assume that there is enough main memorydtatihe final index. Later we will consider
reduced-main-memory scenarios, where we will resort torsgary memory to hold the intermediate results.
In this case, as the final index must reside on disk, we willmgsthat there is enough secondary memory
to hold the index we build.

Table 1. Comparison of different algorithms for constructing texdéxes. The reduced-space LZ-index versions can be cotestru
within the same space required by the final indexes. In aliastands for any positive (and usually small) value.

Index Indexing space (in bits) Indexing time
Suffix Array (SA) [21] ulogu O(ulogu)
SA[31] O(ulog o) (*) O(uloglog o)
CSA[30] uw(Ho(T) + 2+ €) + o(ulog o) (1) O(ulogu)
CSA[54] O(ulog o (log, u)"&32) (*) O(u)

AF-FMI [24] uwHi(T) 4 o(ulog o) (§) O(ulogu(1l+ log’lgogu))
LZ-index (original) [55, 56] O(ulogu) O(ulog o)
LZ-index (our early result) [4] (4 + e)uHy(T) + o(ulog o) (1) O(ou)
LZ-index (this paper) 4uH(T) 4+ o(ulog o) (1) u(log o + log log u

O(u(
Reduced LZ-index (this paper) (1 + e)uHy(T) +o(ulogo) (1) O(u(logo + loglogu
Reduced LZ-indeb (this paper) (24 ¢)uHr(T) +o(ulogo) (1) O(u(logo + loglogu
(1) + O(u(

)
)
)
Reduced LZ-index (this paper) (3 + e)uHy(T) + o(ulog o) (1) u(log o + loglog u))

NG NaING

(*) This is o(ulog u) bits if log o = o(log w). (1) This isO(u log o) in the worst case §f For anyk < alog, u and any constant
0 < a < 1. (}) For anyk = o(log,, u). In fact this is an upper bound, as the real spaeli&|(1 + o(1)), for various constants

Since, depending on the scenario, we might or might not havead the text from disk, and we might
or might not have to write the final index to disk, and becahssé costs are fixed, we will not mention
them. Yet, in the reduced-main-memory scenarios we willthsedisk to read/write intermediate results,
and in this case we will also consider the amount of extra lé@fggmed. When accessing the disk, we
assume the standard model [69] where a disk page bits is transferred to/from secondary storage with
each access. Finally, the space required by the text is notiated for in the space required by the indexing
algorithms. If it resides on disk one can process it segakiyntso it does not require any significant main
memory. Moreover, in most of our algorithms one could erasdéxt at an early stage of the construction.

2.2 Empirical Entropy

A concept related to text compression is that of tkth order empirical entropy of a sequence of symbols
T'[1..u] over an alphabet of size, denoted byH(T') [47]. The valueuH(T') provides a lower bound to
the number of bits needed to compr@sssing any compressor that encodes each symbol considering o
the context of symbols that precede it if.

2.3 Lempel-Ziv Compression

The Lempel-Ziv compression algorithm of 1978 (usually ndrh&@78 [73]) is based on dictionary of
phrasesin which we add every newhrasecomputed. At the beginning of the compression, the dictipna
contains a single phradg of length O (i.e., the empty string). The current step of thmpression is as
follows: If we assume that a prefik[1..j] of 7' has been already compressed into a sequence of phrases
LZ = by...b,, all of them in the dictionary, then we look for the longesefpr of the rest of the text

T[7 + 1..u] which is a phrase of the dictionary. Once we have found thiag®) say; of length/,, we
construct a new phrase. = (s,T[j + ¢s + 1]), write the pair at the end of the compressed filg, i.e.

LZ =b;...b:b11, and add the phrase to the dictionary.

We will call B; the string represented by phrdsethusB, .1 = BsT[j + ¢+ 1]. In the rest of the paper
we assume that the tékthas been compressed using the LZ78 algorithmiintd phrases] = By ... By,
such thatBy = ¢ (the empty string). We say thats thephrase identifiecorresponding t@®;, for0 < i < n.

Therefore the output size of the LZ78 compression algorithii Z| = n(logn + log o). Although
we will usually give detailed space results, when we surmeasie will assuméog o = o(log n), and thus
|LZ| = nlogn(l+ o(1)). We now point out some useful properties.

Property 1. For all1 < t < n, there existd < ¢t andc € X such thatB; = By - c.

That is, every phras®; (exceptB) is formed by a previous phrage, plus a symbok at the end. This
implies that the set of phrasesgeefix closedmeaning that any prefix of a phragk is also an element of
the dictionary. Hence, a natural way to represent the sétinfis By, . . ., B,, is a trie, which we calLZTrie.

Property 2. Every phraseB;, 0 < i < n, represents a different text substring.

The only exception to this property is the last phrase We deal with the exception by appendingfia
special symbol “$"¢ X, assumed to be smaller than any other symbol in the alph@betlast phrase will
contain this symbol and thus will be unique too.

In Fig. 1 we show the LZ78 phrase decomposition for our rugrérample texf” =“al abar a.l a
_al abar da_par a_apal abr ar | a”, where for clarity we replace blanks by, which will be assumed
to be lexicographically larger than any other symbol in thhabet. We show the phrase identifiers above
each corresponding phrase in the parsing. In Fig. 4(a) we gimcorrespondingZTrie. Inside eacth.ZTrie
node we show the corresponding phrase identifier.

123 4 56 7 89 10 11 12 13 14 15 16 17
al abar _ a_la _alabard ap ara _ap al abr arl a$

Fig. 1. LZ78 phrase decomposition for the running example text
T ="al abar _a_| a_al abar da_par a_apal abr ar| a”, and the corresponding phrase identifiers.

The compression algorithm @(u) time in the worst case and efficient in practice provided wethe
LZTrie, which allows rapid searching of the new text prefix (for eagimbol of 7 we move once in the trie).
Property 3 ([73]).1t holds that,/u < n < logLu' This implieslog n = ©(log u) andn log u < ulogo.

We shall use the following result of Kosaraju and Manzini][88bound the size of the output of the
LZ78 parsing of texfl” in terms of thek-th order empirical entropy df'.

Lemma 1 ([38]). It holds thatn log n < uH(T') + O(uEEE) for any k.

log, u

In particular, fork = o(log, u), we have that in the worst casdogn = uHy(T) + o(ulog o). This
requires assumingg o = o(log) to allow for k& > 0, i.e., high-order compression. Note this is equivalent
to thelog o = o(log n) simplifying assumption we have mentioned above.

We also prove the following result, which is related to Lemtrend shall be useful in our work.

Lemma 2. It holds thatnlog u < uH(T) + o(ulog o) for anyk = o(log,, u).

Proof. Note thatn logu = nlogn+nlog =. By Lemma 1, the former term is at mastl;,(1") +o(ulog o),
for anyk = o(log, u). The latter term is increasing infor n < u/e, so forn = o(u) we can pessimistically
replacen by logiu due to Property 3. This yields log * < 1o§f,u loglog, u = o(ulog o). If, instead,
n = ©(u) then, again by Property 3, we have thgfoc = ©(log v) and the latter term i®(n) = o(ulog o).
0

2.4 Succinct Representations of Sequences and Permutatfon

A succinct data structureequires space close to the information-theoretic lowenblpwhile supporting the
corresponding operations efficiently. We review some tesul succinct data structures, which are needed
in our work.

Data Structures for rank and select Given a bit vectorB[1..n], we define the operatiorank(B, i)
(similarly rank;) as the number of Os (1s) occurring up to tktb position ofB. The operatiorselecty(B, 1)
(similarly select;) is defined as the position of thieh O (i-th 1) in B. We assume thaielecty (B, 0) always
equals 0 (similarly foselect,). These operations can be supported in constant time andirepn + o(n)
bits [51], or evernHy(B) + o(n) bits [62]. Theo(n) overhead can be made as smallids:/ log® n) for
any constant [61].

There exist a number of practical data structures supgprtink andselect, like the one by Gonzalez
et al. [23], Kim et al. [37], Okanohara and Sadakane [60], B&mong these, the first [23] is very (perhaps
the most) efficient in practice to computenk, requiring little space on top of the sequence itself. Ojmna
select is implemented by binary searching the directory built fpe@ationrank, and thus without requiring
any extra space for that operation (yet, the timestdect becomesD (log n)).

Given a sequenc$|l..u| over an alphabel’, we generalize the above definition tank.(S,) and
select.(S,i) foranyc € X. If 0 = O(polylog(u)), the solution of Ferragina et al. [19] allows one to
compute bothrank. andselect,. in constant time and requiringH,(S) + o(u) bits of space. Otherwise the
time is O(log’ﬁo‘;u) and the space i8H(S) + o(ulog o) bits. Makinen and Navarro [44] showed how to
handle in addition insertions and deletions on bitmaps agdences, achieving(log u log o) time for all

operations. This was later improved [24]@glog u(1 + lolg"lgo‘;u)), always within the same space bounds.

Data Structures for Searchable Partial SumsGiven an arrayA[1..n| of n integers oft’ bits each, a data
structure for searchable partial sums allows one to retrigv] and supports operatiorf&um(A, i), which
computesZ;i:1 Alj]; Search(A,), which finds the smallegt such thatSum(A, j') > i; Update(A, i, 4),
which setsA[i] — A[i]+0; Insert(A,i,e), which adds a new elemeato the set between elemem§ — 1]
andA[i]; and Delete(A, j), which deletesA[j].

A simple data structure [44] supports all these operation® (log n) worst-case time, and requires
nk’ + o(nk’) bits of space. For this work, it is interesting that the spzaebe madek’ + O(n) bits.

Succinct Representation of PermutationsThe problem here is to represent a permutatiaf {1, ..., n},
such that we can compute bottfi) and its inverser—!(j) in constant time and using as little space as
possible. A natural representation fois to store the values(i), i = 1,...,n, in an array ofz log n bits.

An efficient solution to computing—! () within little extra space [52] is based on tbgcle notation
of a permutation. We explain it in some detail, as this willheeessary later in this work. The cycle for the
i-th element ofr is formed by elements (i), 7(7(¢)), and so on untif is found again. Notice that every

element occurs in exactly one cycle of For example, the cycle notation for permutatiorof Fig. 2(a)

is shown in Fig. 2(b). So, we compute!(j) looking for j only in its cycle:7—1() is just the value
“pointing” to j in the diagram. To compute—!(13) in our example, we start at position 13, then move to
position7(13) = 7, then tor(7) = 12, then tor(12) = 2, then tow(2) = 17, and asr(17) = 13 we
conclude thatr—!(13) = 17. Since there are no bounds for the size of a cycle, this téKes time in the
worst case. Yet, it can be improved for a more efficient comgon of 71 (5).

2
17

456 7 8 9 10 11 12 13 14 15 16 (17
1514 4 121016 6 11 2 7 9 5 8 [13
(a) An example of permutation.

b F0000 b Fe09o9P0 &

1 3
1 3

[i]

(b) Cycle notation of permutation.

Fig. 2. Cycle representation for a given permutationEach solid arrowi — j in the diagram means(i) = j. Dashed arrows
represent backward pointers.

Given0 < e < 1, we create subcycles of size(1/¢) by adding abackward pointerout of O(1/¢)
elements in each cycle af. Dashed arrows in Fig. 2(b) show backward pointersifer= 2. To compute
7! we follow the cycles as before, yet now we follow a backwaréhiss if we reach it. We store the
backward pointers compactly in an arrayeaflog n bits. We mark the elements having a backward pointer
by using a bit vector supportingznk queries, which also help us find the backward pointer coomdipg
to an element (see Munro et al. [52] for details). The wholat&m uses(1 + ¢)nlogn + n + o(n) bits.

Next we present a result that shall be useful later for oup@sgs of constructing the LZ-index for a
textT. Our result states that any permutationan be inverted in-place in linear time and using anlxtra
bits of space. This can be seen as a particular casmaafanging a permutatiori20], where we are given
an array and a permutation, and want to rearrange the arcaydieg to the permutation.

Lemma 3. Given a permutatiom of {1, ..., n} represented by an array usinglog n bits of space, we can
compute on the same array the inverse permutatiohin O(n) time and requiringn bits of extra space.

Proof. Let A,[1..n] be an auxiliary bit vector requiring bits of storage, which is initialized with all zeros
(this is just the raw bit vector, no additional data struetéor rank and select is added). Letr be the
array representing the permutation, usingg » bits of space. The idea to construct! is to use the cycle
structure ofr to reverse the “arrows” conforming the cycles (i.e.,— j” in a cycle of 7, which means
7li] = j, now becomesi‘« j”, which meansr—![j] = 7). So, the main idea is to regard the cyclesrof
as “linked lists”. Thus, constructing~! is a matter of reversing the pointers in the lists, and tlogesive
shall need three auxiliary pointers to do that job. We foltbe cycles ofr, using A,; to mark with al those
positions which have been already visited during this mece

We start with the cycle at positian< 1, and traverse it from positiop < 7[a]. We then seb — 7[p],
7[p] < a (i.e., we store the positiom which brings us to the current one), aAd[p] < 1. Then we move
to positiona < p, setp < b, and repeat the process again, stopping as soon as wefimd.4,.. Then we

try with the cycle starting at position+ 1, which is the next one after the position that started theipus
cycle, and follow it just if the corresponding bit i is 0.

Thus, each element in the permutation is visited twice: el@sistarting a cycle are visited at the be-
ginning and at the end of the cycle, while elements in the taidéla cycle are visited when traversing the
cycle to which they belong, and when trying to start a cyaberfithem. Thus, the overall time 3(n), and
we usen extra bits on top of the space of and the lemma follows. O

2.5 Succinct Representation of Trees

Given a (general and unlabeled) tree withodes, there exist a number of succinct representationgireg)
2n + o(n) bits. Since the number of distinct treesrohodes isC,, = -1 (°") = ©(4"/n?/?), this is close
to the information-theoretic lower bound of at least C,, = 2n — ©(log n) bits.

Balanced ParenthesesThe problem of representing a sequence of balanced pasestliehighly related
to the succinct representation of trees [53]. Given a sexpieiy of 2n balanced parentheses, we want to
support the following operations gmr: findclose(par, i), which given an opening parenthesis at position
i, finds the position of the matching closing parenthegis;dopen(par, j), which given a closing paren-
thesis at positiorj, finds the position of the matching opening parenthesisess(par, i), which yields the
difference between the number of opening and closing paeeet up to positiofy and enclose(par, i),
which given a parentheses pair whose opening parenthegipdsition:, yields the position of the opening
parenthesis corresponding to the closest matching pa&asedtpair enclosing the one at position

Munro and Raman [53] show how to compute all these operationenstant time and requiringy +
o(n) bits of space. They also show one of the main applications ahtaining a sequence of balanced
parentheses: the succinct representation of general tuitbsthe so-calledsp representation. Among the
practical alternatives, we have the representation ofyGataal. [22], the one of Sadakane and Navarro [67],
and the one by Navarro [55, Section 6.1]. The latter has showre very effective for representing LZ-
indexes [56, 3].

DFUDS Tree Representation To get this representation, named after Depth-First UnagyrEe Sequence [8],
we perform a preorder traversal on the tree, and for everg neached we write its degree in unary using
parentheses. For example, a node of degree 3 ré¢dd9 ° under this representation. Notice that a leaf is
represented by)”. What we get is almost a balanced parentheses represemtate only need to add a
fictitious ‘(' at the beginning of the sequence. A node of degléeidentified by the position of the first of
thed + 1 parentheses representing the node.

This representation requires + o(n) bits, and supports operatiopgrent(z) (which gets the parent of
nodex), child(x,) (which gets thé-th child of noder), subtreesize(x) (which gets the size of the subtree
of nodex, including z itself), degree(x) (which gets the degree, i.e., the number of children, of node
childrank(zx) (which gets the rank of node within its siblings [34]), ancincestor(x,y) (which tells us
whether noder is an ancestor of nodg), all in O(1) time. If we assume thatar represents therFubps
sequence of the tree, then we have:

parent(z) = select, (par, rank, (par, findopen(par,x — 1))) + 1
child(x, i) = findclose(par, select, (par, rank, (par,x) +1) —i) + 1

Operationdepth(x) (which gets the depth of nodein the tree) can also be computed in constant time on
DFUDS by using the approach of Jansson et al. [34], requisifig extra bits.

Given a node in this representation, say at positjots preorder position can be computed by counting
the number of closing parentheses before positidn other words preorder(x) = rank, (par,z — 1).
Given a preorder positiop, the corresponding node is computedsayectnode(p) = select, (par,p) + 1.

Representingr-ary Trees withbFuDs For cardinal trees (i.e., where each node has at magtildren,
labeled by distinct symbols in the sgt, ..., 0}) we use thedFUDS sequencear plus an arrayetts[1..n]
storing the edge labels according toruDStraversal of the tree: we traverse the tree in depth-firsiroes,
and every time we reach a nodave write the symbols labeling the childrenaafin this way, the labels of
the children of a given node are all stored contiguouslhietis, which will allow us to compute operation
child(z,) (which gets the child of node with labela € {1,...,c}) efficiently. In Fig. 4(c) we show the
DFUDS representation dfZTrie for our running example (plus an arr&ys with the phrase identifiers).

We support operatiorhild(z,«) as follows. Suppose that nodehas positionp within the DFUDS
sequencear, and letp’ = rank (par,p) — 1 be the position inetts for the symbol of the first child
of x. Let n, = ranky(letts,p’ — 1) be the number ofvs up to positionp’ — 1 in letts, and leti =
select, (letts,n, + 1) be the position of thén, + 1)-th « in letts. If ¢ lies between positiong’ and
p' + degree(x) — 1, then the child we are looking for isild(z,i — p’ + 1), which, as we said before, is
computed in constant time ovedar; otherwiser has not a child labeled. We can also retrieve the symbol
by whichz descends from its parent, withtts[rank (par, parent(z)) — 1 + childrank(z) — 1], where
the first term stands for the positionii#tts corresponding to the first symbol of the parent of naede

Thus, the time for operationhild(x, «) depends on the representation we usertotk, and select,,
queries (see Section 2.4). Notice thatld(x,) could be supported in a straightforward way by binary
searching the labels of the childrenxgfin O(log o) worst-case time and not using any extra space on top of
arrayletts. The scheme we have presented to reprekety is slightly different from the original one [8],
which achieveg)(1) time for child(x,) for any o. However, our method is simpler to build, since the
original one is based on perfect hashing, which is experisigenstruct.

3 The LZ-index Data Structure

3.1 Definition of the Data Structures

Assume that the texT'[1..u] has been compressed using the LZ78 algorithm inte 1 phrasesl’ =
By ... B,, as explained in Section 2.3. The data structures that oortee LZ-index are [55, 56]:

1. LZTrie is the trie formed by all phrasds, . .. B,,. Given the properties of LZ78 compression, this trie
has exactly» + 1 nodes, each one corresponding to a phiase

2. RevTrie is the trie formed by all the reverse string§ . .. B;,. In this trie there could be internal nodes
not representing any phrase. We call these nedssty

3. Node: is a mapping from phrase identifiers to their nod& #Trie.

4. Range is a data structure for two-dimensional searching in treesf® ... n] x [0...n]|. We store the
points{(revpreorder(t), preorder(t+1)),t € 0...n — 1} in this structure, whereevpreorder(t) is
the RevTriepreorder of node for phragg(considering only non-empty nodes in the preorder enumera-
tion), andpreorder(t+1) is theLZTrie preorder for phrase+ 1. For each such point, the corresponding
t value is stored.

3.2 Succinct Representation of the Data Structures

The data structures that compose the LZ-index are built @mebsented as follows.

LZTrie. For the construction dfZTrie we traverse the text and at the same time build a trie repiagehe
Lempel-Ziv phrases, spending (as usual) one pointer penpahild relation. At step (assumeB; = By-c),
we read the text that follows and step down the trie until wencé continue. At this point we create a new
trie leaf (child of the trie node of phrageby symbolc, and assigning the leaf phrase numbtego to the
root again, and go on with stept 1 to read the rest of the text. The process completes whendhpHease
finishes with the text terminator “$”. In Fig. 4(a) we show thempel-Ziv trie for the running example,
using pointers. After we build the trie, we can erase the dsxt is not anymore necessary, since we have
now enough information to build the remaining index compdse

Then we build the final representation of the topologyLdfTrie, bitmap par, using the parentheses
representation of Munro and Raman [53], yet newer versidtiseoLZ-index [7] use thedFuUDS represen-
tation [8]. We also create the arr&ys[1..n], storing the LZ78 phrase identifiers in preorder, &nds[1..n],
storing the symbols that label the trie edges, in preordee. final size is:logn + nlogo + O(n) bits.

Node. OncelLZTrieis built, we free the space of the pointer-based trie andibvikle. This is just an array
with the n nodes ofLZTrie. If the i-th position of theids array corresponds to thith phrase identifier
(i.e.,ids[i] = j), then thej-th position of Node stores the position of theth node within the balanced
parentheses. As there @ parenthesesVode requiresn log 2n = nlogn + O(n) bits.

RevTrie. To constructRevTriewe traverse_ZTrie in preorder, generating each LZ78 phrd3gstored in
LZTriein constant time, and then inserting it intdrae of reversed stringgrepresented with pointers). For
simplicity, empty unary paths are not compressed in thetpplased trie. When we finish, we traverse the
trie in preorder and represent the trie topologyR&vTriein bitmap rpar, the phrase identifiers in array
rids, and the labels of the edges in arrdytts. Empty unary nodes are removed only at this step, and so
the final number’ of nodes inRevTriesatisfies: < n' < 2n.

Notice that if we use:’ log n bits for therids array, then in the worst cagevTrierequires2n log n +
O(nlog o) bits of storage, which would increase the space usage ofitiexi Instead, we can represent the
rids array withn log n bits (i.e., only for the non-empty nodes), plus a bitmagwof o(n) bits supporting
rank queries inO(1) time [51]. Thej-th bit of the bitmap i<l if the node represented by theth opening
parenthesis is not an empty node, otherwise the Hfit iBherids index corresponding to thgth opening
parenthesis isank(j). Using this representatioRevTrierequires at most logn + 2nlog o + O(n) bits
of storage. This was unclear in the original LZ-index pa/3&r, p6].

Range. The data structure of Chazelle [12] permits two-dimendiomage searching in a grid of pairs of
integers in the rang@..n] x [1..n]. This structure can be represented witlvg n + O(n) bits of space. We
explain the simpler case, which is the one that arises in aukwvhere the points represent a permutation
of {1,...,n} [43], i.e., there is exactly one point with first coordinatlr any1 < i < n, and one point
with second coordinatgfor anyl < j < n.

To constructRange we sort the set by the second coordinatand then divide the set according to the
first coordinate;, to form a perfect binary tree where each node handles avahief the first coordinate,
and thus knows only the points whose first coordinate faltha interval. The root handles the points with
first coordinate withir{1..n] (i.e., all), and the children of a node handling the intefval’] are associated
to [i..| (i +14')/2]] and[| (i +¢")/2] + 1../']. Leaves handle intervals of the forfin.].

Every tree node is then represented with a bit vectBy, indicating for each point handled ywhether
the point belongs to the left or right child. In other word,[r] = 0 iff the r-th point handled by node (in
the order given by the second coordingtdelongs to the left child. Every level of the tree is reprasd as
a single bit vector of bits, using data structures for constant-tinaek andselect [51], which are needed
to support the search (as well as, given a node, finding thresmonding starting position within the level,
see Makinen and Navarro [43] for more details). Thus, we erdedO(log n) pointers to represent the
levels of the tree, avoiding in this way the need to store thiatprs that represent the balanced tree. The
total o(n log n) extra space for supportingink andselect over all the bitmaps can be ma@&én) by using
Patrascu’s representation [61].

This data structure supports counting the number of poivaslie within a two-dimensional range in
O(log n) time, as well as reporting the:c points inside the search range{(1 + occ) log n) time [43].

RNode. In the practical implementation of the LZ-index [55, 56]etRangedata structure is replaced
by RNode, which is a mapping from phrase identifiers to their nod&kavTrie After we free the space
of the pointer-based reverse trie, we bultdVode from rids in the same way ad/ode is built from ids.

It is important to note that, by usin§Node instead of Range, the LZ-index cannot provide worst-case
guarantees at search time, but just average-case guaant@eever, this approach has shown to be effective
in practice since it has a good average-case search time [56]

Time Performance.The original LZ-index locates thecc occurrences of a pattern of length in worst-
case timeO(m?3logo + (m + occ)logn). The practical variant using Node instead ofRange requires
average time)(m?(1 + 2£2) + —47), which isO(m?(1 + 2%2)) for m > 2log, u, if we assume
the representation fdetts given in Section 2.4.

3.3 Indexing and Final Space

Using the succinct representations, the four structursctinform the LZ-index add up to at mdsilog n+
3nlog o + O(n) bits of space. According to Lemma 1, this is at mbet . (T') + o(ulog o) bits, for any
k = o(log, u).

The LZ-index can be built ifD(u log o) time [55]. However, a large amount of storage is needed to
construct it [56], mainly because of the pointer repred@ntaf the tries used at construction time. In theory,
representing empty unary nodesRevTrierequires worst-case spafgu log u) bits. By compacting it, the
space would becom@(n log u), yet still with a large constant due to the use of pointers.

In the original experiments [56], the largest extra spa@slad to build_ZTrieis that of the pointer-based
trie, which is 1.7-2.0 times the text size. However, as etqukdhe peak space usage is that of building
the pointer-based reverse trie, which is in some cases 4 tihetext size. In practice representing the
empty unary nodes does not add much to the space, but theedvierhas a number of empty non-unary
nodes, which cannot be compacted and sharply increase doe sigage. The overall indexing space is
4.8-5.8 times the text size for English text, and 3.4-3.24$ine text size for DNA. As a comparison, the
construction of a plain suffix array without any extra datadure requires 5 times the text size [48].

3.4 Reduced Space Versions of the LZ-index

New versions of the LZ-index have been introduced recem)y [5], which require less space than the
original LZ-index, in some cases also improving its seamtiggmance. The approach introduced to reduce

the space is the so-calledvigational-schemapproach, which consists in regarding the original LZ-inde
(in particular, the version using Node instead ofRange, see Section 3.2) as a navigation structure which
allows us moving among the LZ-index components (L&Trie nodesLZTrie preorders, phrase identifiers,
RevTrienodes, andRevTriepreorders). All searches are carried out by navigating gntioese components.

In Fig. 3 we illustrate the original LZ-index navigation sche, where the four main structures of the
index are shown as solid arrows:

Node : phrase identifier~ LZTrie node
RNode : phrase identifier~ RevTrienode
ids : LZTrie preorder— phrase identifierand
rids : RevTriepreorder— phrase

LZTrie RevTrie
node node

1 1

! Node w/ :

: 5 :

' reorder . pharase reorder:

! P identifier P !

1 1

: / ridS :

v -
LZTrie RevTrie
preorder preorder

Fig. 3. The original LZ-index navigation structures over index gaments.

As we have seen in Section 2.5 for theubsrepresentation, trie nodes and the corresponding presorder
are “connected” by means pf-eorder andselectnode operations, so we have a navigation scheme that al-
lows us moving back and forth from any index component to ahgroWe will subindicate these operations
with [z if they refer toLZTrie and withr if they refer toRevTrie

This approach allows us to study the redundancy introdugedthdo original index. As a result, several
new reduced space schemes have been introduced [5], alltiérsame navigation yet requiring less space.

Scheme 2The so-called Scheme 2 of the LZ-index [5] represents thepomentsids : LZTrie preorder—
phrase identifier;ids—! : phrase identifier~ RevTriepreorder; andz : RevTriepreordern— LZTrie preorder.
The original search algorithm remains the same, since weinarate the missing data structuresis(i) =
ids[R[i]], RNodéi) = selectnode,(rids~'[i]), andNodgi) = selectnode;,(R[rids~'[i]]), all in constant
time. The space requirement [5]3s logn + 3nlogo + 2nloglogu + O(n) + o(u) bits. According to
Lemma 1, this iSuH(T') + o(ulog o) bits of space, for ang = o(log,, u). Although this scheme does not
provide worst-case guarantees at search time, it has stoha ¢fficient in practice, outperforming com-
peting indexes in many real-life scenarios [5]. Thus, weadge interested in its space-efficient construction
in order to extend its applicability. There exists anothegraative requiring the same space as Scheme 2,
which shall be disregarded in this paper, since Scheme 2datms it in most practical cases [5].

Scheme 3This LZ-index variant representds : LZTrie preorder— phrase identifierids~! : phrase iden-
tifier — LZTrie preorder;rids : RevTriepreorder— phrase identifier; andids—! : phrase identifier—
RevTriepreorder. The missing data structures can be simulated &mde?i) =
selectnode;,(ids~'(i)) and RNodé¢i) = selectnode,(rids~'(i)), all in O(1/¢) time. Since arraysds
andrids are represented with the data structure for permutatiomduniro et al. [52], they require a total
space of 2+ ¢)n log n+2n+o(n) bits, for anyd < e < 1. The overall space requirement &+ €)n log n+
3nlogo + 2nloglogu + O(n) + o(u) bits, which according to Lemma 1 {8 + €)uHy(T) + o(ulog o)

bits, for anyk = o(log,, u). This scheme has also shown to be efficient in practice, dfotpeing competing
indexes in many real-life scenarios and being able to redess space than Scheme 2 (yet, when requiring
the same space, Scheme 2 usually outperforms Scheme 3).

Scheme 4 This variant represents the following datds : LZTrie preorder— phrase identifierjds—! :
phrase identifier— LZTrie preorder;R : RevTriepreorder— LZTrie preorder; and?~! : LZTriepreorder—
RevTriepreorder. The missing arrays are simulatedids(i) = ids[R[i]], Nod€i) = selectnodey, (ids~(i)),
andRNodéi) = selectnode, (R~ (ids~'(i))), all of which takeO(1/¢) time. The inverse permutations are
also represented by the data structure of Munro et al. [52hdd, the space requirementist ¢)n log n +
3nlog o+ 2nloglog u + O(n) + o(u), which according to Lemma 1 [+ €)uH(T) + o(ulog o) bits of
space, for any: = o(log, u).

Although Scheme 3 outperforms Scheme 4 in most practicalasiues [5], Scheme 4 is interesting by
itself since its space can be reduced even more, achieviegesting theoretical results [7]. The idea is to
replace arrayR by a data structure allowing us to compute ary], yet requiring less than thelogn
bits required by the original array. Thus, for ev&gvTriepreorderl < i < n we define functionp such
thaty(i) = R~ (parent;.(R][i])), andy(0) = 0 (operationparent,, is the parent operation inZTrie, yet
working on preorders instead of on nodes as originally ddjirfeunctiony works as auffix linkin RevTrie
given aRevTrienode with preordet representing stringx (for a € X', x € X*), the RevTrienode with
preorderp(i) represents string. An important result is thaR[i] can be computed by means of function
¢ [7]. We also samplen values ofR in such a way that the computation &f:] (by means ofy) takes
O(1/e) time in the worst case.

Functiony has the same properties as functibrof Compressed Suffix Arrays [26, 65], thus this can
be also compressed tolog o + O(n log log o) bits of space (in this paper we show how to compress it to
nlogo + O(n) bits and still compute any entry in constant time). The cotaen of R~ is supported
also inO(1/¢) time, by reverting the process used to compRtd-or this, functiony’ is defined asVeiner
links [70] in RevTrie*. Functiony’ is supported by two array$yy[1..n] (of nlog o bits storing, for every
RevTrienode, in preorder, the symbols by which the node has Weinks liefined), andyy [1..2n] (a bit
vector storing, for everRevTrienode, in preorder, the bit sequena® such that! is the number of Weiner
links defined for the node). The space requiremerti®g n + nlog o + O(n) bits. By rewriting2e ase,
which does not change time complexities, we have:

Lemma 4 ([7]). Let textT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algo-
rithm. Then there exists a Lempel-Ziv compressed fullsetktindex requiring 1 4 €)nlogn + 5nlog o +
O(n) bits of space, foran§ < ¢ < 1. Thisis(1+e€)uHy(T")+o(ulog o) for anyk = o(log, u). The index is

* Given aRevTrienodewv representing string € X*, the Weiner link forv and symbok € X is a pointer to theRevTrienode
representing stringz.

able to locate (and count) the:c occurrences of a patter®[1..m] in textT in O(mTz(l oler) U

log log u eo™/2

average time, which i©("= (1 + %)) if m > 2log, u.

Thus the LZ-index can be represented with almost optimatespader the LZ78 compression model
(recall that| LZ| = nlogn+nlog o), and also under the empirical entropy mo#gl(7") in the (usual) case
H,(T) = ©(log 0)). Yet, we cannot provide worst-case guarantees at seanehvithin this space.

We can get such worst-case guarantees at search time bygdRdimge the two-dimensional range
search data structure, as defined for the original LZ-indllis requires: log n + O(n) extra bits of space.

Lemma5 ([7]). Let textT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algo-
rithm. Then there exists a Lempel-Ziv compressed fullgetttindex requiring2 + e)nlogn + 5nlog o +
O(n) bits of space, for ang < e < 1. Thisis(2 + ¢)uHy(T") + o(ulog o) bits for anyk = o(log,, u). The

index is able to locate thecc occurrences of a patterR[1..m]in 7" in O(mTQ(H— 101g01go§u)+(m+000) log u)

worst-case time; count the number of pattern occurrenceimeO(mT2 (1+ log’lgogu) +mlog u+ occ); and

determine whether patterR exists inT" in O(mTQ(l + bg’f‘o‘;u) + mlogu) time.

Finally, we can add thélphabet-Friendly FM-index19] of textT" to this index, to get:

Lemma 6 ([7]). Let textT'[1..u] be a text over an alphabet of size Then there exists a Lempel-Ziv com-
pressed full-text self-index requirin@ + e)uHy(T') + o(ulog o) bits of space, for an¥ = o(log, v) and
any0 < e < 1, which is able to locate thecc occurrences of a patter®[1..m] in T in O((m(1+ 1o§igu) +
2%¢) log u) worst-case time; and count the number of pattern occurrerfoedetermine if the pattern exists

or not in the text) inD(m(1 + log’igu)) time.

Note we have used only thi-related notation in this latter lemma as it contains an Rifiek, whose
space is not related td.Z|. Note also that the practical Schemes 2—4 contain a ternmespfathe form
O(nloglogu) + o(u), the latter of which is not always(|LZ|). These terms owe to the representation of
the Patricia skips [49] in the reverse trie. While not slyictecessary in theory (and hence not present in
the theoretical Lemmas 4 to 6), in practice these skips sppdle index considerably and do not increase
much the space. Similarly, the: log o space of the last lemmas can be reduceittog o by not storing
the letters oRevTrie These can in theory be obtained fraZiTrie, but thel + lolgofgo Cg’u time factor (coming
from the representation efetts using the structure of Section 2.4) worsensoigo. Also, in practice it is
a good idea to maintain the symbols explicitly.

4 Space-Efficient Construction of the LZ-index

The LZ-index is a compressed full-text self-index, and ahstiallows large texts to be indexed and stored
in main memory. However, the construction process requrEsge amount of main memory, mainly to
support the pointer-based tries used to build the final @assof LZTrie and RevTrie(recall Section 3.3).
So our problem is: given a teft[1..u] over an alphabet of size, we want to construct the LZ-index far
using as little space as possible and within reasonable YWeeim at an efficient algorithm to build those
tries in little memory, by replacing the pointer-baseddnigth space-efficient data structures that support
insertions. These can be seen as hybrids between poirged-xdes and the final succinct representations.
Note that we could simply use succinct dynamic trees [11] d&nthmic sequences [44] to create the

tries. However, the construction time would become at B&stlog n(1 + lolgofgogn)).

Our early space-efficient construction algorithm for theibdex [4] partitions the tree into moderately-
sized connected components, which are updated in naive fssra result, it has a construction time of the
form O(ou), which is impractical for moderately-large alphabets.

In the sequel we shall achie®u(log o + log log u)) time by combining the best from both ideas, i.e.,
using advanced succinct dynamic representations on ntetiesdzed connected components of the tries.

In Sections 4.1 to 4.5 we assume that we have enough main memetore the final LZ-index. In
Section 4.6 we study how to manage the memory dynamicallighwl an important aspect of dynamic data
structures, using a standard model [63] of memory allonatio Section 4.7, we shall adapt our algorithm
to the cases in which there is not enough space to store thie fihal index in main memory.

We show next how to space-efficiently construct the LZ-indemponents. From now on we assume
o > 2, as otherwise the whole indexing problem is trivial.

4.1 Space-Efficient Construction oL.ZTrie

The space-efficient constructionloZ Trieis based on a compact representation supporting a fastiectal
construction as we traverse the text. In eithergher DFUDS representations, the insertion of a new node
at any position of the sequence implies to rebuild the sezpiéom scratch, which is expensive. To avoid
this we define aiierarchical representatignsuch that we rebuild only a small part of the entire original
sequence upon the insertion of a new node.

We incrementally cut the trie into disjoibtockssuch that every block stores a subset of nodes represent-
ing a connected component of the whole trie. We arrange thies&s in a tree by adding sonir@er-block
pointers, and thus the entire trie is represented by a trboks.

If a nodex is a leaf of a blockp, but is not a leaf of the whole trie, then nodestores an inter-block
pointer to the representation of its subtree. Let us saythisipointer points to block. We say thaty is a
child blockof p. In our representation, nodeis also stored in block, as a fictitious root node. Thus, every
block is a tree by itself, which shall simplify the navigatias well as the management of each block. Thus
every such fictitious node has two representations: (1) as a leaf in blpck2) as the root node of block
g. Note that the number of extra nodes introduced by duptigatiodes equals the number of blocks in the
representation (minus one). We not only enforce that therpanf any (non-fictitious) node is stored in the
same block of the node, but also that all its sibling nodestmed in the same block.

Rather than using a static representation for the trie lslgdk which are rebuilt from scratch upon
insertions, we represent each block by using dynamic datetates, which can be updated in time less than
linear in the block size. We adapt the approach used by Agloyj2] to represent succinct dynandeary
trees: We first reduce the size of the problem by dividing tieeinto small blocks, and then represent every
block (i.e., smaller trie) with a dynamic data structurevoid the total rebuilding of blocks upon updates.

Defining Block SizesWe divideLZTrieinto blocks of N nodes each, whei¥,, < N < Ny, for minimum
block sizeN,,, = @(log2 u) nodes and maximum block siZ€,; > 20N, nodes. We also neel,; =
(ologu)®W), for exampleN,; = O(o log® u) (we do not show the roundings, but it should be clear that
these values must be integers). Hence, notice that we shadl dne inter-block pointer out of at ledst,
nodes. Since each pointer is represented Wwigh: bits, and since we have nodes in the tree, we have
~- logu = O(n/log u) bits overall for inter-block pointers. The definition 6fy;, on the other hand, is
such that it ensures that a bloglas room to store at least the potentiathildren of the block root (recall
that sibling nodes must be stored all in the same block). Aléen a block overflows we should be able to

split the block into two blocks, each of size at ledg},. By defining NV, as we do, in the worst case (i.e.,
the case where the overflown block has the smallest posstgletee root of the block has some child with
at leastN,,, nodes, asVy; > 1+ oN,,. Thus, upon an overflow, we can create a new block of size st lea
N,,, from such subtree, requiring little space for inter-blodinpers and maintaining the properties of our
data structure. The stricter factor 2 shall be useful foramortized analysis of block partitioning, whereas
the polylog upper bound is necessary to ensure that powighi blocks are short enough.

Defining the Block Layout Each blockp of NV nodes consists of:

— The representatioffi, of the topology of the block, using any suitable tree represen. In particular,
we will use thebrFubDs [8], which is particularly well suited for our goals.

— A bit-vector F,,[1..N] (theflagg such thatF},[j] = 1 iff the j-th node ofT}, (in preorder) has an associ-
ated inter-block pointer. We shall represéntwith a data structure fafank andselect queries.

— log N bits to count the current numbar of nodes stored in the block.

— The sequenceds),[1..N| of LZ78 phrase identifiers for the nodes Bf, in preorder. Except for the
LZTrieroot, every block root is replicated as a leaf in its pareatk)] as explained. In that case we store
the corresponding phrase identifier only in the leaf of theepablock. That is, fictitious roots in each
block do not store phrase identifiers. We Wiseu bits per phrase identifier, instead of usilog »n bits
as in the final representation @fs. This is because before constructing the LZ78 parsing ofetkiewe
do not known, the number of phrase identifiers.

— The symbols/etts,) labeling the edges in the block (the order of the symboledédg on the represen-
tation used fofl},, recall Section 2.5). Each symbol uses o bits of space.

— A variable number of inter-block pointers, stored in dataidtre ptr,. The number of inter-block
pointers varies frond to IV, and it corresponds to the numlis in F,.

In Fig. 4(b) we show an example of hierarchical represemaif LZTrie for the running example text.
If the subtree of thg-th node (in preorder) of block is stored in blocky, theng is a child block ofp and
the j-th flag inp has the valud.. If the number of flags with valug before thej-th flag inp is h, then the
h-th inter-block pointer op points tog. Note thath can be computed asinky (F), j).

Since blocks are tries by themselves, inside a blegke use the traditional trie-like descent process,
using operatiorehild,(x, o) onT,. From now on we use the subscripwith the trie operations, to indicate
operations which are local to a blopki.e., disregarding the inter-block structure (epggorder, computes
the preorder of a node within blogk and not within the whole trie, and so on). When we reach akbloc
leaf (with preorder; inside the block), we check theth flag inp. If F,[j] = 1 holds in that block, then
we computeh = ranki (F), j) and follow theh-th inter-block pointer irp to reach the corresponding child
block ¢. Then we follow the descent insideas before. Otherwise, #),[j] = 0, then we are in a leaf of the
whole trie, and we cannot descend anymore.

We represent the above components for blpak the following way.

Representation of the Trie Topology,T}, To represent the trie topology of blopkve use the data structure
for dynamic balanced parentheses of Chan et al. [11] to septe¢hebrFuDSs [8] of the block. The main
idea of Chan et al. is to divide the original parenthesesestpiinto segmentS; of O(log N) bits. Every
segment; is stored in the leaves of a balanced binary fgesuch that concatenating the leaves from left to
right gives us back the original sequerige Some information is stored in the internal nodeTpfn order

to support the operations on the parentheses sequencel] as agpport insertions and deletionspafirs of

a 1
1 i} 12 1
1 2 5
$ l) ‘ 1 L g = a a
2 5 5 NG 10 13 16
17 3 14 AL 6 7 8
v AN P b P
4 7/ 8 9. 11 14 17
15 12 10 16 11 9 13

(@) Lempel-Ziv Trie [ZTrie), represented in the traditional (pointer-
based) way.

T ((COHOO)
R 0110 00
idsp 0125 813
letts, al_ a p
o
s (o B ,I \\
) z f ; (®)

i; aI
@ : o) (@

(b) Hierarchical representation bZTrie, Nodes having an inter-block
pointer are duplicated as the root of the child block. We stiemactual
succinct representation for the root block.

012345678910 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2022 B2 33 34 35
par: (CCOYCCCCCY) ())) CCCY))) ()y) () ())()())
ids: 1 173 1514 4 1210166 112 7 95 8
letts: al_ $blr_ r ad|l p a b a p
(c) bFuDsrepresentation dfZTrie. The phrase identifiers are stored in preorder, and the sym-
bols labeling the edges of the trie are stored accordingoeup s traversal.

13

Fig. 4. Different representations of the Lempel-Ziv trie and rethtlata structures for the running example.

matching parentheseg\ll the operations of Section 2.5 are supportedifiog N) time by navigatingl},.

In addition, we store in every internal nodedfthe number of opening parentheses within the left subtree,
as well as the total number of parentheses within the lefireabsuch as in Makinen and Navarro [44], in
order to support operationsink, rank,, select., andselect, overT, in O(log N) time.

All these operations on the sequence of parentheses alldw sigpport thebFuDS operations (recall
Section 2.5)parent,, child,(x,1), subtreesize,, degree,, preorder,, selectnode,, etc., all of them in
O(log N) = O(log Njs) time. As we shall explain later in this section, the insertaf a new node in
DFUDS can be simulated by inserting a new pair of matching pareeth@7},, and thus we can handle it in
a straightforward way with the data structure of Chan etldl].[Deletions of leaves are handled in a similar
way. The space requirement@X N) bits per block, which adds up t0(n) bits overal?.

Representation of the FlagsF, We represent the flags of blogkin preorder and using a dynamic data
structure forrank andselect over a binary sequence [44]. It supportsk, select, and updates o#, in
O(log N') worst-case time, and requirds+o(N) bits of space. This data structure can be connectedAyith
via operationgreorder, andselectnode,: Given a node in p, the corresponding flag i, [preordery(z)].
Given F},[j], on the other hand, the corresponding node&iis selectnode,(j). When we insert a new node

in 7,,, we insert a new flag (with valué because the new node is inserted with no related inter-block
pointer) at the corresponding position (givengayorder)y). This data structure adds+ o(n) extra bits to

our representation. Arroyuelo [2] gives a more involvedrespntation forF),, requiringo(n) bits, yet the
one we are using here is simpler and still adequate for oyrgses.

Representation of the Symbolsletts,, We represent the symbols labeling the edges of the blockdiogp
to aDFuUDS traversal orl}, (see Section 2.5), yet this time we store them in differérdiam, except for
the symbol of the first child of every node, which is represdnh absolute form. We then represent this
sequence ofV integers ofk’ = log o bits each with the dynamic data structure for searchabliéapaums
of Makinen and Navarro [44], which supports all the openadi (including insertions and deletions) in time
O(log N), and requiresVk’ + O(N) = N log o + O(N) bits of space. These add upritdog o + O(n) bits.
We can connedletts, with T}, by usingrank, overT,. Given a noder in T}, the subsequendetts,
[rank (Tp, x)..rank (T, x) + degree,(z) — 1] stores the symbols labeling the childrenzofTo support
operationchild, (x,), which shall be used to descend in the trie at constructios,tive first compute —
rank (Tp, x) to obtain the position idetts,, for the first child ofz. We then compute «— Sum(lettsy,i —
1), which is the sum of the symbols ietts, up to positioni — 1 (i.e., the sum before the first child
of x). To compute the position of symbal within the symbols of the children of node we perform
j < Search(letts,, s + o). Thus, the node we are looking for is thg— i + 1)-th child of 2, which can
be computed byhild,(x,j — i + 1), in O(log N) time overall. To make surgis a valid answer, we use
operationdegree,(x) to check whethej — i + 1 is smaller or equal to the degreeafand then we check
whetherSum(letts,,j — i+ 1) — s = a actually holds.

Representation of the Phrase Identifiersids,, To store the phrase identifiers of the trie nodes, we define
a list L;q4,, for block p, storing the identifiers in preorder. Given a new insertedenoin 7;,, we must
insert the corresponding phrase identifier at posifioporder,(z) within L;4,,, SO we must support the
efficient search of this position. The required functiotyails easily achieved by regarding the vector/éf

® The space requirement of the trie topology can be reduced tpo(n) bits overall [2, 67]. HoweveiQ(n) bits is sufficient for
our purposes.

ids, values, each of width, as a bitmap of length/V. The dynamic data structure for bitmaps of Makinen
and Navarro [44] would easily permit inserting, deletingdaccessing any identifier (i.¢-bit chunk) in
time O(log N) providedt = O(log u), which is the case. Its space overhead woul®&') bits®

These identifiers will ultimately require= [logn| bits, but we do not know: at this time. Therefore,
we will use an amortized scheme as follows. All the identfiels,, of a blockp will use the same,, value.
At stepr of the parsing process, wherghrases have been identified, this value wilkpeC [log r]. Every
time an insertion arrives at blogkwith a value ofr larger thar’», we will increase, to [log r], and make
a pass over the whole ligt;;, adding the new highest 0-bits to each number. This work aresrover the
whole construction process, as at moge’ identifiers are modified times.

Therefore, we need’ log n 4+ O(N) bits of space to maintain the identifiers, which adds up ke n +
O(n) bits overall.

Representation of the Inter-Block Pointers,ptr,, For the inter-block pointers, we use also aﬁ@%,
managed in a similar way as fds;, (this time the pointers always u$ig u| bits). Since blocks have at
leastV,,, nodes, we have a pointer out of (at lea@tlog? u) nodes, which add®(n/ log v) bits overall.

Construction Process The construction oEZTrie proceeds as explained in Section 3.2, using the symbols
in the text to descend in the trie, until we cannot descendnang. This indicates that we have found the
longest prefix of the rest of the text that equals a phidsalready in the LZ78 dictionary. Thus, we form a
new phraseB; = By - ¢, wherec is the next symbol in the text, and then insert a new leaf ssmiing this
phrase. However, this time the nodes are inserted in ouarcigicalLZTrie, instead of a pointer-based trie.

The insertion of a new node for the LZ78 phraBgin the trie implies to update only the blogkin
which the insertion is carried out. Assume that the new leadtrbecome thg-th node (in preorder) within
the blockp, and that the new leaf is a new child of nad@ block p (i.e., noder represents phradg,). We
explain next how to carry out the insertion of the new leatwittheDFuDS of 7,.

We must insert a new(* within the representation of (which simulates the increase of the degree of
nodez, because of the insertion of the new child), and insertisg al new)’ to represent the new leaf
we are inserting. Assume that the new leaf will become therwchild of noder. Therefore the new(”
must be inserted to the right of the opening parenthesiadyrat position’ = z + degree(x) — i (recall
from Section 2.5 how operatiathild(z, i) uses the opening parentheses defining nottedescend to the
i-th child). Then, the new)” must be inserted at positioff = findclose(T),," + 1), shifting to the right
the last) ’ in the subtree of thé: — 1)-th child of z, which now becomes the new leaf. As a result, the
two inserted parentheses form a matching pair, which carmbdléd in a straightforward way with the data
structure of Chan et al. [11]. See Fig. 5 for an illustration.

Then, we add a new fla@ at position; in F},. Also, c is inserted at the corresponding position within
letts,, andt is inserted at positiop within the identifiers of blocl (since these are stored in preorder). All
this process take@(log N) time.

Managing Block Overflows A block overflowoccurs when, at construction time, the insertion of a new
node must be carried out within a bloglof N;; nodes. In such a case, we need to make roomfar the
new node by selecting a subset of nodes to be copied to a néahvibbek (of p) and then will be deleted
from p. We explain this procedure in detail.

® To achieve this time and space, the balanced tree used birtlceuse must be modified to use leavesafiog Nas log u) bits,
instead of©(log® Ny). For the purists: this may require using universal tablesizgO (u<), for some constarit < € < 1, but
this iso(n) if we choose: < 1/2, given thatn > +/u by Property 3.

ﬁ ﬁ (e) 1)% o)

(a) A nodezx of degree 4 and its corresponding subtree intheDsrepresen-
tation ofLZTrie. Notice the relation among the four opening parenthesdsein t
definition ofx and the subtrees of the children of nade

(((|
| |

(b) Insertion of a new child of node. The new leaf is inserted as the new fourth
child of z, and thus it is represented by the new bold pair of matchimgrpheses.
Notice how the degree af is increased to 5 with the new opening parenthesis. The
last closing parenthesis in the subtree of the third child sfshifted to the right and
now represents the new inserted leaf.

Fig. 5. lllustration of the insertion of a new leaf node in theuDsrepresentation dfZTrie.

First we select a nodein p whose local subtree (along withtself) will be copied to a new child block.

In this way we ensure that a node and its children (and thexefib sibling nodes) are always stored in the
same block (recall that a copy of as a leaf, will be kept ip).

Suppose that we have selected in this way the subtree gftthe@ode (in preorder) in the block. Both
the selected nodeand its subtree are copied to a new blptkvia insertions irl,,. We must also copy to
p' the flagsF, [preorder,(z) 4+ 1..preorder,(z) + subtreesizey(z) — 1] (via insertions inF),) as well as
the corresponding inter-block pointers within the sub&ée selected node, which are stored in array
ptry, from positionrank, (F,, preordery(z)) + 1 up torank; (F,, preordery(z) + subtreesize,(z) — 1).

Next we add inp a pointer top’. The new pointer belongs tq the j-th node in preorder ip (because
we selected its subtree). We compute the position for thepuémter as-ank,(F,, j), adding the pointer at
this position inL,,,, and then we set th the j-th flag in F},, updating accordingly theank/select data
structure forF), (the portion copied td},, must be deleted fronf},). Finally, we delete irp the subtree of
(via deletions irl},), leavingz as a leaf inp.

Thus, the reinsertion process can be performed in time ptiopal to the size of the reinserted subtree
(timesO(log Nyy)), by using the insert and delete operations on the correfipgrlynamic data structures
that conform a block. However, we must be careful with thec@n of node:. If, upon a block overflow,
we traverse block to select node, we will take O(N;,) time, which is too long. Instead, we will look for
z in advance to overflows, by looking for possible candidatethé insertion path of new nodes.

To quickly select node, we maintain in each blockacandidate listC), [2], storing the local preorders
of the nodes that can be copied to a new child blgakpon block overflow. Withselectnode we can obtain
the candidate node corresponding to such a preorder. Aesulrtust have size at ledst,, to be considered
a candidate. Thus, after a number of insertions we will firad ghnode (within the insertion path) becomes
a candidate. Let us think for a moment that we only maintaiaraliate per block, and not a list of them.
It can be the case that a few children of the block root haveived (almost) all the insertions, so we have a
few large subtrees within the block. When blgekverflows, we reinsert the only candidate to a new child
block, so we have no candidate anymore gokVe have to use the next insertions in order to find a new
one. However, it can be also the case that different childfeéhe root ofp receive the new insertions, and

hence blockp could overflow again within a few insertions, without findiaghew subtree large enough so
as to be considered a candidate (recall that we just use sketiitn path to look for candidates). Thus, by
maintaining a list of candidates in each block, instead afigue candidate per block, we can keep track of
all the nodes irp whose subtree is large enough, avoiding this problem.

Since the preorder of a node within a blgckan change after the insertion of a new nodg,iwe must
updateC;, in order to reflect these changes. In particular, we musttepitie@ preorders stored i, for
all candidate nodes whose preorder is greater than thatafaw inserted node. To perform these updates
efficiently, we represent’, using a searchable partial sum data structure [44]. Thasptiginal preorder
C,p[i] is obtained by performingum(C,,) in O(log N) time. Letz be the new inserted node. Then, with
j = Search(Cy, preordery(z)) we find the first candidate (in preorder) whose preorder meistdalated,
and we perform operatiofipdate(C,, j,1). In this way, we are increasing,[j] by 1, automatically updat-
ing all the preorders i@, that have changed after the insertionzofn O(log IV) time overall.

If we keep track of every candidate of size at lest, then every time overflows there will be already
candidate blocks. The reason is, again, figt > 1 + 0 V,,,, and thus that at least one of the children of the
root must have size at leaat,,. Since we use the descent process to look for candidatesjlifmd/them
as soon as their subtrees become large enough. In other wledsubtree of a node becomes larger as we
descend through the node many times to insert new nodebkeuatitually becoming a candidate.

We must also ensure thal, requires little space (so we cannot have too many candjdates size of
the local subtree (i.e., only considering the descendat¢sistored in block) of every candidate must be
at leastv,,. Also, we enforce that no candidate node descends from @ncéimdidate, in order to bound
the number of candidates. To maint&if), every time we descend in the trie to insert a new LZ78 phrase,
we maintain the last nodein the path such thatubtreesize,(z) > N,,. When we find the insertion point
of the new noder, say at blockp, before adding to C), we first performp; = Search(C,, preordery,(z)),
and therpy = Search(C,, preorder,(z) + subtreesizep(z)). Then,z is added taC), whenever: (1) is
not the root of blocky, and (2) there is no other candidate in the subtree(dfiat is,p; = p2 holds).

If we find a candidate nod€ which is an ancestor of the prospective candidatthen after inserting
z to C), we deletez’ from C,. Thus, we keep the lowest possible candidates, avoidirtgthirasubtree of
a candidate becomes too large after inserting ©'jin which would not guarantee a fair partition into two
blocks of size betweeV,, and N;;. Because of Condition (2) above, there are one candidatefdat
least) V,,, nodes; thus, the total space 0y is 1~ log N + O(n) bits, which iso(n/ log u).

The reinsertion cost is in this way proportional to the sizg psince finding node now take<O (log Ny)
time (because of the partial-sum data structure used te@septC),). Notice that the first time a node is
reinserted, the reinsertion cost amortizes with the costt@briginal insertion. Unfortunately, there are no
bounds on the number of reinsertions for a given node. Howexeshall show that multiple reinsertions of
a node over time amortize with the insertion of other nodesugé the following@ccounting argumerti4]
to prove the amortized cost of insertions. lcet= 2 be the amortized cost of normal insertions (without
overflows), being: = 1 the actual cost of an insertion. Therefore, every inseipends one unit for the
insertion itself, and reserves the remaining unit for fatimore costly) operations. Let us think that we have
separate reserves, one per block of the data structure. &llepstive that every time a block overflows, it
has enough reserves so as to pay for the costly operatioinséréng a set of nodes.

In particular, every time a block overflows, its reserveNig; — I, wherel was the initial number of
nodes for the blockI(= 0 holdsonly for the root block). Letl” be the number of nodes of the new block
p’. Then we must prove thad¥,, — I > I’ always holds, that isiV,; > I + I’. We need to prove:

Lemma 7. For every candidate nodein blockp, it holds thatsubtreesize,(z) < oNy,.

Proof. By maintaining the lowest possible candidates, we find thellsst possible ones. If a node cannot
be chosen as a candidate, this means that its subtree smalisrshanV,,, nodes (another possibility is that
there is another candidate within the subtree, yet this isaset interesting here). Therefore, the smallest
subtree that can be chosen as a candidate may haveNp to1 nodes in each children, and hence its total
sizeisat most + o(N,;, — 1) < o N,. 0

Because of this, blocks are created with/ < oN,, nodes. As we have choseW,; > 20N,,, it
follows that Ny, > I + I'. This means that every reinsertion of a node has already fdrfor by some
node at insertion timéThus, the insertion cost 3(log Njs) amortized. Aftem insertions, the overall cost
amortizes ta0(n log Nay).

Once we solved the overflow, the insertion of the new noderisechout either irp’ or in p, depending
on whether the insertion point lies within the moved subtreaot, respectively. Notice that there is room
for the new node in either block.

Hierarchical LZTrie Construction Analysis As the trie has: nodes, we need(n) + (n + o(n)) +
(nlogo + O(n)) + (nlogn + O(n)) + O(n/logu) + o(n/logu) = nlogn + nlogo + O(n) bits to
represent the trie topology, flags, symbols, identifietgriblock pointers, and candidate lists, respectively.

When constructind-ZTrie, the navigational costper symbol of the text i€)(log Ny;) = O(logo +
loglog u), for a total worst-case timé@(u(log o + loglogw)). On the other hand, the amortized cost of
updating blocks after an insertion @(log Ny) per node, and therefore the total update cost adds up to
O(n(log o + loglog u)). Therefore, the totdlZTrie construction time i) (u(log o + loglog u)).

Representing the FinalLZTrie Once we construct the hierarchical representatiorL#frie, we delete
the text since it is not anymore necessaaynd then use the hierarchidaf Trie to build the final version of
LZTriein O(n(log o +log log u)) time. We allocate: log o bits of space for the final arrdytts, n logn bits
for arrayids, andO(n) for par. Then we perform a preorder traversal on the hierarchieal, transcribing
the nodes to a linear representation. Every time we copy &, check the corresponding flag, and then
decide whether to descend to the corresponding child blodk

Thus, the maximum amount of space use@ridogn + nlogo + O(n) bits, since at some point we
store both the hierarchical and final versiongdf (this is also true foietts, but we can first converids,
then delete all théds,, structures, and only then allocdtgts, filling it in a second pass over the hierarchy).
We then free the hierarchichZTrie, and end up with a representation requirintpg n + nlogo + O(n)
bits. Thus, we have proved:

Lemma 8. Let textT[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the LZTrieFom O(u(log o + loglogw)) time and using
2nlogn +nlogo + O(n) = 2|LZ|(1 + o(1)) bits of space.

" More generally we could have s&tyy > (1 + a)oN,, for any constanty > 0, and the analysis would have worked with
é=1+4+1/a.

8 Ifallowed, we can even reuse the space occupied by the tese parse it. Even if the tesf is uncompressible (i.6.LZ| = |T)),
the extra space required to bulld Trie under this model would b&(n) = O(|T'|/ log u) bits.

4.2 Space-Efficient Construction oRevTrie

For the space-efficient construction REvTrie we use the technique of Section 4.1, to represent not the
original reverse trie but it®atricia tree[49], which compressesmptyunary paths, yielding an important
saving of space. As we still maintain empty non-unary nottespumber of nodes iRevTrieis n’ < 2n.

Throughout the construction process we store in the nodie aéverse trie “pointers” tbZTrie nodes,
instead of the corresponding phrase identifieiés stored by the finaRevTrie Each such “pointer” is an
offset into theLZTrie topology sequence & bits (recall thatLZTrie is already in final static form), and
thus it usedog 2n bits. We store these pointers t@ Trie in the same way as for arrays,, in Section 4.1
(with fixed widtht), in preorder according tRevTrieand spendin@ (n) extra bits for the list functionality.
The aim is to obtain the text of the phrase represented®g\drienode, since we are compressing empty-
unary paths and the string represented by a node is not laleadéherwise (unlike what happens with the
traditional Patricia trees). This connection is giveniyle in the final LZ-index. However, at construction
time we avoid accessinode when building the reverse trie, so we can buNdde after both tries have
been built, thus reducing the peak indexing space.

Empty non-unary nodes are marked by storing in each bazlit vector, (represented in the same
way asF,,, with a dynamic data structure supportingnk andselect queries). We store pointers k& Trie
nodes only for non-emptiRevTrienodes, so we store of them. This shall reduce the indexing space of
the preliminary definition of the algorithm [4], which shak useful later when constructing reduced-space
versions of the LZ-index.

As we compress empty-unary paths, the trie edges are labéledtrings instead of single symbols.
The Patricia tree stores only the first symbol of the edgeddaliée do the same in our reverse trie, using the
same partial sum approach as ETrie, on arrayrietts. However, we do not store the Patricia-tree skips,
as their space consumption is problematic. Instead, wehes®liowing procedure to find out i@ (¢) time
the skip value/ of the edge leading to a nodefrom its parent: [50]. Let X andY be the strings labeling
the paths from the root of the reverse trie to nodesndy, respectively, thed = |Y| — |X|. We find
the leftmost and rightmost leave$ andv? descending frony, and map them taZTrie nodesv}, andv?,
using the reverse trie pointers. Singeandv? are labeled by strings that start withand differ in the next
characterp;, andv?, are labeled by strings ending¥t, and that differ in the previous character. Therefore,
we carry outparent in LZTrie consecutively| X | times, starting fromv}, and fromv?,, and then continue
moving to the parents in synchronization until the charadeading to both nodes differ. The total number
of parent operations executed Y|, from what we can infef. The first| X | parent operations can be
executed with a single operation callldel-ancestgrwhich can be executed in constant time usig)
extra bits on top of th&ZTrietopology representation [34]. Thus the overall tim&igY'| — | X|) = O(¢).
Since the total amount of skips traversed along the corigiruprocess is:;, computing the skips in this
way addsO (u(1+ log’ﬁ)‘;u)) to the overall time (thé + 101g01go§u) factor is due to our representationiefts).

Note, additionally, that with this process we do compardgtedicharacters of a string as we descend in
the reverse trie, so we do not need to carry out the final Ratriee check that is necessary in the classical
implementation.

Construction Process To construct the reverse trie we traverse the firélrie in depth-first order, gener-
ating each LZ78 phrasB; stored inLZTrie, and then inserting its reverdgl’ into the reverse trie.

Note that our proposed scheme to compute skips can be sidplifien the nodg corresponds to a
phrase. In this case it is sufficient to majitself to LZTrie, as the depth of the mapped node will |p&.

For the case of empty nodes, we note that the general schemdessebed above works equally well if we
choose any descendant of the first and second childrgrasfthey will also differ at the next character. Such
children will exist because empty nodes cannot be unaryeftie, it is sufficient to obtain any non-empty
descendant of a nodeg, whereuw, is the first or second child a@f. For example, thé&.ZTrie pointer corre-
sponding to the first non-empty descendgnof v, can be found at positiorunk, (B, preordery(v,)) +1
within the pointer array.

However, there exists an additional problem: libeal subtree of node,. can be exclusively formed by
empty nodes, in which case finding the non-empty ngdis not as straightforward as explained, sinte
is stored in a descendant block. This problem comes fromatiettiat, upon a block overflow in the past,
we might have chosen empty nodedescending from,., whose subtrees were reinserted into new blocks.

To solve this problem, we store in every blogla pointer toLZTrie, which is representative for the
nodes stored in the blogk If a block is created from a non-empty node, then we can ste@ointer of
that node. In case of creating a new blgé¢krom an empty node, if the new blogk is going to be a leaf
in the tree of blocks, then it will contain at least a non-emmbde. Thus, we associate wijththe pointer
to LZTrie of this non-empty node. If, otherwisg), is created as an internal node in the tree of blocks, then
it can be the case that all of the nodegirmre empty. In this case, we choose any of the descendantssbloc
of p’ and copy its pointer t@’. This pointer has been “inherited” (in one or several stéosh a leaf block,
thus this corresponds to a non-empgvTrienode. Thus, in case that the local subtree,af formed only
by empty nodes, we take one of the blocks descending frofsay the first in preorder) and use th&Trie
pointer associated to that block.

An important difference with theZTrie construction is that ilRevTriewe do not only insert new leaves:
there are cases where we insert a new non-empayy internal node (corresponding to the phrase we are
inserting inRevTrig. A unary node is represented 49 ° in DFUDS, which is a matching pair and hence
the insertion can be handled by the data structure of Chdn[&fla If we insert the new node as the parent
of an existing node:, then the insertion point is just before the representaifonin the bFUDS sequence.

Hierarchical RevTrie Construction Analysis The hierarchical representation of the reverse trie reguir
O(n')+(n"4+o(n))+(n' +o(n))+ (nlog 2n+0(n))+(n'log e+ O(n'))+O(n' /log u)+o(n'/ log u) <
nlogn+2nlog o+O(n) bits of storage to represent the trie topology, flags, bitorsaf empty nodes, point-
ers toLZTrie stored in the nodes, symbols, pointers (both inter-block etiraLZTrie pointers associated
to each block), and candidates, respectively.

For each reverse phradg/ to be inserted in the reverse trie,< 7 < n, the navigational cost is
O(| B! |log Nas) (this subsumes th@(|B!|) time needed to compute the skips). Sifcg", |B!| = u,
the total navigational cost to construct the hierarchiRavTrieis O(ulog Nj). Since the number of node
insertions is’ = O(n), the total cost i) (u(log o + log log u)), just as forLZTrie.

Constructing the Final RevTrie After we construct the hierarchical reverse trie, we cagtRevTriedi-
rectly from itinO(n’ log Ns) time, replacing the pointers tc&ZTrie by the corresponding phrase identifiers
(rids). Since we have to preallocatéds[1..n], the space is raised &nlogn + 3nlogo + O(n) bits.

We avoid a similar blowup forletts by deleting all therletts, structures once the hierarchidakvTrie

is built, and only then allocating the stati¢etts. It is still possible to find each letter value along a pre-
order traversal oRevTrieby mapping td_ZTrie as done for computing the skips. This must be done before
the pointers td_ZTrie are converted int@ids. Finally, we free the hierarchical trie, dropping the sptaxe
2nlogn + 3nlog o + O(n) bits.

Lemma 9. Given the LZTrie of: nodes for a tex?'[1..u] over an alphabet of size, there exists an algo-
rithm to construct the corresponding RevTrie(ru(log o + log log u)) worst-case time and using a total
space oRnlogn + 2nlog o + O(n) bits on top of the space required by the final LZTrie.

4.3 Space-Efficient Construction ofRange

To construct thdRangedata structure, recall that for every LZ78 phrdseof T' we must store the point
(preorder, (v,), preorder;,(v;,)), wherev, is theRevTrienode corresponding t8;, andv;, is theLZTrie
node corresponding to phragk, ;. We allocate memory space for a temporary amR&y[1..n] of nlogn
bits, storing the points to be representedRange Array R(Q is initially sorted by the first coordinates of
the points. Notice that since there is a point for every fimirdinatel < i < n, the first coordinate of
every point is represented simply by the index of arR1y, thus saving space. In other word®Q)[i] = j
represents the poittt, j). Notice also thaR(Q) is a permutation of 1, . .., n}. (In fact, thepreorder, values
that participate ilRange are{0,...,n — 1}, so we must shift them by one.)

To generate the points, we first notice that fdRevTriepreorderi = 0,...,n — 1 (corresponding only
to non-empty nodes) representing the reverse phidiseve can obtain the corresponding phrase identifier
t = rids[i + 1], and then with the inverse permutatiafs—![t + 1] we obtain the_ZTrie preorder for the
node corresponding to phragg, ;. Thus, we defindRQ[i + 1] = ids~![rids[i + 1] + 1].

Therefore, we start by computings—! on the same space fs, using the algorithm of Lemma 3,
requiring O(n) time andn extra bits of space. Then, we allocatéog n bits for array RQ), and traverse
RevTriein preorder. For every non-empty node with preordere setR(as defined above. The total space
is thus raised t@8n log n + 3nlog o + O(n) bits. Next, we recoveids from ids~!, using again Lemma 3.

After building RQ), to constructRange we must sort the points iR(Q by the second coordinate (recall
Section 3.2), which in our space-efficient representatfdhepoints means using the second coordinates as
array indexes, and storing the first coordinates as arrayesal This means sorting the current values stored
in array R(Q). However, since these values along with the correspondiiay indexes represent points, after
sorting the points we must recall the original array indenefieery value, so as to store that value in the array.
This is straightforward if we store both coordinates of thags, requiring2n log n bits of space. However,
we are trying to reduce the indexing space, and thereforamsdternative approach.

Notice that sinceRQ[i] = j represents the poirit,), RQ~'[j] = i shall also represent the poifit 5),
yet the points in the inverse permutati®@Q ! are sorted by their second coordinate (i.e.R@ ! the
second coordinates are used as array indexes). Thus, weeuakgorithm of Lemma 3 to construQ —!
on top of the space foRQ, in O(n) time and requiring: extra bits of space. Now, we can finally build
Range from RQ~" just as explained in Section 3.2.

However, to save space, we will not allocate space fotdpe bit vectors ofn bits in advance. Rather,
we will allocate then bits for the top-level bitmap, fill it, and thecompactarray RQ~! so that the most
significant bits of all the elements are dropped. This candve dh-place and will save bits. Only then we
will allocate then bits of the second-level bitmap, fill it, then comp&® ! once again, and so on. Notice
that for this to work we must decide whether a value goes tafgbt in the Range structure by considering
its highest bit and not whether its value belongs to the lefight half of the interval. This may at worst

® We could choose to definBQ in a different way, storing the first coordinate of the poiatsl using the second coordinate as
array index. However, by using our approach we can consamiay R() with a sequential scan over arrayigls and R(Q itself.
The importance of this fact shall be made clear later in thisisn.

yield a Range structure that has one more level than the original one,wassingO(n) bits. In exchange,
we build Range from RQ~! using onlyO(n) extra spacé®

Lemma 10. Let textT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then, given the LZTrie and RevTrie data structuresifpthere exists an algorithm to construct tRenge
data structure requiring a maximum spacendbg n+O(n) further bits, and take®(nlogn) = O(ulog o)
time.

4.4 Construction of the Node Mapping and Remaining Data Structures

Finally, we proceed to construct tiiéde mapping as follows: we travers& Trie in preorder, and for every
nodex with LZ78 identifieri, we store inNodeli] the node position within the corresponding parentheses
sequence. This increases the total space requireméntli@ n + 3nlog o + O(n) bits, which is the final
space required by the LZ-index. The process can be carrigid 6Un) = O(u/ log, u) time.

As we said in Section 3.2, in a practical implementation Rengedata structure is replaced by the
RNode mapping [56]. This is built fromrids in the same way a®ode is built from ids. The process
explained in Section 4.3 is not carried out in such a case.

The original LZ-index is able to report the pattern occucemin the formafi¢, offset], wheret is
the phrase number where the occurrence startspdfiekt is the distance between the beginning of the
occurrence and the end of the phrase. To map these occisranodext positions, Arroyuelo et al. [7]
add a bit vectofl’Pos marking the phrase beginnings, which is then representdd avilata structure for
rank andselect and requiringnlog = 4+ O(n) + o(u) = o(ulog o) bits of space [62]. A more practical
approach [5] consists in sampling the starting positionsoofie phrases, and then representing the starting
position of every other phrase as an offset from the prevéanspled phrase (thus saving space). With high
probability, the space requirement of this alternativeraggh isn + O(nloglogu) = o(ulog o) bits if
sample rates are properly chosen. Both data structureseceomistructed without requiring any extra space,
and thus to simplify we omit them in this paper.

4.5 The Whole Compressed Indexing Process
The whole compressed construction of the LZ-index is surinedrin the following steps:

We build the hierarchicdlZTrie from the text. We can then erase the text.

We buildLZTrie from its hierarchical representation. We then free thednaicalLZTrie.
We build the hierarchical representation of the reveiedrom LZTrie.

We buildRevTriefrom its hierarchical representation, and then free theahihicalRevTrie
We build Range.

We build Node from ids.

oakwNE

In Table 2 we show the total space and time requeriment atstaph

10 Another slight complication is that the recursive procedcannot be used, but we must proceed levelwise. This is aby re
problematic because the tree is perfectly balanced.

Table 2. Space and time requirements of each step in the whole cosgatésdexing process.

Indexing step Maximum total space Space after step Indetiimey
1 nlogn +nlogo + O(n nlogn + nlogo 4+ O(n) O(u(log o + loglog u))
2 2nlogn+nlogo +O(n) nlogn+nlogo + O(n O(u(log o + log log u))
3 2nlogn + 3nlogo + O(n) 2nlogn+3nlogo +O(n) O(u(logo + loglogu))
4 3nlogn +3nlogo 4+ O(n) 2nlogn+3nlogo +O(n) O(u(logo + loglogu))
5 3nlogn +3nlogo + O(n) 3nlogn + 3nlogo + O(n) O(ulogo)
6 4dnlogn + 3nlogo 4+ O(n) 4nlogn + 3nlogo + O(n) O(u/log, u)

4.6 Managing Dynamic Memory

The model of memory allocation is a fundamental issue ofisatdynamic data structures, since we must
be able to manage the dynamic memory fast and without reguiniuch extra memory space due to memory
fragmentation [63]. We assume a standard model where theomyeisregarded as an array, with words
numbered) up to2¥ — 1. The space usage of an algorithm at a given time is the highestory word
currently in use by the algorithm. This corresponds to theated Mz memory model [63], which is the
standard on the RAM model and assumes the least from thensystemodelMp there are no system
calls for allocation and deallocation of memory, but thegpaomn must handle memory by itself. We set
w = O(log u), as we need(n log n) bits of space to build our index but we do not knevin advance.

We manage the memory of every trie block separately, eachdardiguous” memory space. However,
trie blocks are dynamic as we insert new nodes, hence the mespace for trie blocks must grow accord-
ingly. If we use anExtendible Array(EA) [9] to manage the memory of a given block, we end up with
a collection of at mosO(n/N,,) = O(n/log?u) EAs, which must be maintained under the operations:
create, which creates a new empty EA in the collectidrstroy, which destroys an EA from the collection;
grow(A), which increases the size of arrayby one cell;shrink(A), which shrinks the size of array by
one cell; ancaccess(A, i), which access theth item in arrayA.

Raman and Rao [63] show how operatiattess can be supported i(1) worst-case timegreate,
grow andshrink in O(1) amortized time, andestroy in O(s’/w) time, wheres’ is the nominal size (in bits)
of array A to be destroyed. The whole space requirementisO(a*w + V/sa*w) bits, wherea™* is the
maximum number of EAs that ever existed simultaneously,ssedhe nominal size of the collection.

To simplify the analysis we store every component of a bloaflifferent EA collections (i.e., we have a
collection for7},s, a collection foietts,s, and so on). The memory fbttts,, F, Cp, Ty, Ligs,, €IC. inside
the corresponding EAs is managed as in the original work [44]

Thus, we use operatiogrow on the corresponding EAs every time we insert a node in thee &red
operationcreate to create a new block upon block overflows, botldifl) amortized time. Operaticshrink,
on the other hand, is used by our representation after weerithe subtree upon a block overflow(i1)
amortized time. Finally, operatiothestroy over the blocks is used when destroying the whole hieraathic
trie. As the cost to build the trie i©(log Njs) per element inserted, which adé@glog) bits to the data
structure, the cost per bit inserted(4 57811) The cost fordestroy is justO(1/w) = O(;) per
bit, which is subsumed by the earlier construction cost.

Let us analyze the space overhead due to EAs for the cdse $ince we only insert nodes into our tries,
we have that the maximum number of blocks that we ever hawé is O(n/N,,). As the nominal size of

the EA collection forT}, is O(n) bits, the EA require®)(n) + O({ +n, /5-) = O(n) bits of space [63].

A similar analysis can be done for the collections suppgrfip andC;,. The nominal size of the collection
for letts, isnlog o+ O(n), and thus we have log o + O(n) + O({2~ +ny / %ﬁ”) = nlog o+ O(n) bits

overall. For the collection supportings;, we obtainn log n+0(n)+O(% +n4/ %j“) =nlogn+0(n)
bits of space. In general, the whole space overhead due t@rgenanagement i®(n) bits.

To complete the definition of our memory allocation modeleitnains to say that we can store the
EAs representing the block components within a unique gl&#a In this case, the number of EAs in
the collection isa* = O(1), since we have a constant number of block components. Thénabsize
of the whole collection iss = nlogn + nlogo + O(n) bits (where theD(n) term includes the space
for the EA memory management of these collections). Herwe,space overhead of this global EA is

O(w + v/wnlogu) = o(n) bits.

Now that we have defined our memory allocation model, we caclade:

Theorem 1. LettextT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the LZ-inde<fosing4n log n+3n log o +O(n) bits of space
andO(u(log o +loglog u)) time. The space and time bounds are valid in the standard hidgeof memory
allocation.

Note that this construction space may differ from the finatibdex space only in th€(n) extra-
bit space, which i€ (|T|/logu). The total space can also be writtendas(T") + o(nlog o) for any
k = o(log, u).

4.7 Constructing the LZ-index in Reduced-Memory Scenarios

We assume next a model where we have restrictions in the anobumain memory available, such that
we cannot maintain the whole index in main memory. So, we dimeducing as much as possible the
main memory usage of our algorithms. We shall prove that #héndex can be constructed as long as the
available memory is logn + 3nlog o + O(n) bits (i.e., essentially, the compressed text can be stored i
main memory). This has applications, for instance, in tearsh engines, where we can use a less powerful
computer to carry out the indexing process, devoting a moweefful one to answer user queries.

Since we have assumed that we have enough secondary stpeagess as to store the final index (see
Section 2.1), we will use that space to temporarily store isk dertain LZ-index components which will
not be needed in the next indexing step, and then possikdyrigahem back to main memory when needed.
However, and as we have seen throughout Section 4, our imglalgorithm is independent of this fact, and
we can choose not to use the disk at all when enough main memavsilable.

In the following, we show how to adapt our original algorithmthis scenario. At every step we will
analyze the maximum and final amount of main memory requirésba step. The total amount of memory
(main plus secondary) and time complexities will be omitisdhey are always as in Section 4, that is, as if
we did not use the disk along the construction process. Wenlif mention them in special cases. Instead,
we consider the amount of I/O carried out, in bits.

Step (1) We build the hierarchicdlZTrie from the text. We can then erase the text. The maximum and final
main-memory space islogn + nlogo + O(n) bits.

Step (2) We buildLZTrie from its hierarchical representation. To construct thd fidaarray while trying to
reduce the maximum main-memory space, we do not allocatedpait at once. Since this array is stored
in preorder, and since we perform a preorder traversal otrithaghe values in arrays are produced by a
linear scan. Thus, we only allocate main-memory space fanatant number of components of the array
(e.g., a constant number of disk pages), which are storedstrudon filling them. This process performs
nlogn + O(n) bits of /0, and at the end we free all the hierarchical, components.

Then the symbolsiétts) and the trie topologyzar) are converted into static form in memory, and
their hierarchical versions are freed. The static versamesmaintained in main memory for the next step,
requiring onlynlogo + O(n) bits. The maximum main-memory space used along this stefosn +
nlogo + O(n) bits.

Step (3) We build the hierarchical representation of the reverseftom LZTrie. Recall that every non-
empty RevTrienode stores a pointer to the corresponditigTrie node. These pointergar and letts
are necessary to obtain the skips for navigatteyTrie The maximum and final main-memory usage is
nlogn + 3nlog o + O(n) bits (recall that arrayds is on disk).

Step (4) We build RevTriefrom its hierarchical representation as follows. We firstserthe hierarchical
rletts, components and recompute them using level-ancestor gquamieZTrie, as in Section 4.2. In this
way the static arrayletts is generated in preorder directly on disk. After this theatly static arrayetts
is also moved to disk (that is, progressively written as deteted from main memory).

Now we generateids. We store the pointers toZTrie associated witliRevTrienodes in a linear array,
in the same way as done in Step (2) for aridyin LZTrie. In this way we do not need extra main-memory
space on top of the hierarchicRlevTrie After storing the pointers on disk, the total space is dhige
3nlogn + 3nlogo + O(n) bits, since we have at the same time the flnélrie (arrayids is on disk), the
hierarchicalRevTriepointers (in main memory), and the sta@evTriepointers (on disk). Now we free the
hierarchicalRevTriepointers, thus reducing the main-memory spac@ to) bits.

Then, we proceed to replace the pointers by the corresppmdirase identifiersr{ds). We first load
arrayids into main memory (leaving a copy of it on disk, for further uddow we perform a sequential
scan on the array of pointers, bringing to main memory justrestant number of disk pages, then following
these pointers thZTrie to get the phrase identifier storedqis (note this means that the accessesdto
are at random, hence we negty in main memory) and storing these identifiers in the sameespéthe
pointers, writing them to disk and loading the next portidrthe pointer array. We leave the copy of array
ids in main memory (this shall be useful for the next step).

The maximum main-memory space needed along this stefoisn + 3nlog o + O(n) bits, and we
finish withn log n + O(n) bits in use. The amount of I/O performeddis log n + 3nlog o + O(n) bits.

Step (5) We build Range as in Section 4.3, yet with some care for the peak of main mgmsage. We
computeids—! on the same space requiredday, using the algorithm of Lemma 3. Then, we traversés
in preorder, creating arraRQ[i + 1] « ids~![rids[i + 1] + 1]. Notice that both arraysids and RQ are
accessed sequentially, which means that we can maintdim jeenstant number of components of these
arrays in main memory. Arraitls—*, on the other hand, is accessed randomly, so we maintaimigin
memory. In this way, the maximum main-memory space needaewahis process is logn + O(n) bits.
When this process finishes, the total space is raiséd tog n + 3n log o + O(n) bits, and then we free
arrayids—! (recall that we still have a copy of the original arrais on disk), dropping the main-memory
space ta)(n) bits, since we maintain just the trie topologied @Trie andRevTrie

After building RQ on disk, we move it to main memory and constriinge within O(n) extra bits of
space using the algorithm of Section 4.3. ThHamge is moved to disk. Thus, the maximum main-memory
space requirement to construgtinge is nlogn + O(n) bits. At the end we have onk§(n) bits of main
memory in use. The amount of I/O4s log n + O(n) bits.

Step (6) We build Node from ids, by traversingLZTrie in preorder. In this way, arrajts is sequentially
traversed, whiléVode is randomly accessed. Thus, we allocateg 2n bits of space foNode, and maintain
it in main memory. Arrayids, on the other hand, is brought by parts to main memory, acupreh a
sequential scan. Finally, we saMde to disk. The amount of I/O i&€nlogn + O(n) bits. The amount
of main memory used is logn + O(n) bits. We use the same procedure in case of usindrtiededata
structure instead aRange. At the end we move to disk both trie topologies.

The overall amount of /0 i$1n log n + 3nlog o + O(n) bits. Thus, we have proved:

Theorem 2. LettextT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then there is an algorithm to build the LZ-indexfusing a maximum main-memory spacexdbg n +
3nlog o + O(n) bits andO(u(log o + log log u)) time. The algorithm require®n log n + O(n) bits of I/0O,
plus those needed to write the final index. The total spacg lwsthe algorithm ign log n+3nlogo+0O(n)
bits. The space and time bounds are valid in the standard h¥dgeof memory allocation.

Note that the total I/O is less than 3 times the one requiredeifcan build the whole index in main
memory and then store the final result on disk.

5 Space-Efficient Construction of Reduced-Space LZ-indese

There exist new reduced versions of the LZ-index, some oflwéaie able to replace the original LZ-index in
many practical scenarios [5]. Henceforth, in this secti@wsiow how to adapt our space-efficient algorithm
to build these new indexes. The result is, again, that we odd the indexes within the space of the final
index except for a lower-order term 6f(n) bits, and that we can build them using just the main memory
required for storing the LZ78-compressed text, plus: log o) bits. In the latter case, an amount of I/O is
required that varies depending on the variant we build.

Throughout this section we assume the reduced-memory reersin Section 4.7. We will present the
space usage of our algorithms in two ways: the total maximwimfmemory space and the maximum total
space (main-memory plus secondary-memory space) at eisgry Ehe latter is also the maximum space
usage of the algorithm if we build it entirely in main memory.

5.1 Space-Efficient Construction of Scheme 2

We perform the following steps to build Scheme 2 of the LZexdrecall its definition in Section 3.4).

1. We build the hierarchicdlZTrie from the text. This take® (u(log o + log log u)) time, and the maxi-
mum space requirementiglog n + n log o + O(n) bits.

2. We derive the findlZTriefrom the hierarchical one, which is then freed. The coneertike 0 (u(log o+
loglogu)) time because of the traversals on the hierarcHi@lrie. It creates the static trie topology
par, the symboldetts, and the phrase identifieigds, and requires: logn extra bits. We use the ap-
proach of Section 4.7 to construgts on disk, without requiring extra main-memory space. Ths th

total space usage is againlogn + nlogo + O(n) bits, while the maximum main-memory usage is
nlogn + nlogo + O(n) bits. Arrayspar andletts are kept in main memory for the next steps, so the
main-memory space after this stemi®g o + O(n) bits. The resulting amount of I/O islog n 4+ O(n)
bits, for the construction of arrayis.

3. We build the hierarchicaRevTriefrom LZTrie, as in Section 4.2. This tak&3(u(log o + loglogu))
time. The total space usage is raise@tdogn + 3nlog o + O(n) bits. The maximum main-memory
space isvlogn + 3nlog o + O(n) bits.

4. We build the finaRevTriefrom the hierarchical one, storing the trie topolagyar, the symbols-letts,
and bit vectorB marking the empty nodes. As before, we can eraselifes, structures and re-create
the static array-letts directly on disk, from the topologypar and the statid. ZT'rie, so that no extra
space is required. Arrai® is now built from the pointers taZTrie, by replacing the pointers with the
correspondind_ZTrie preorder (recall that we apphunk on par to get theLZTrie preorder of a node).
We constructR by using the same approach as for aridy in Step (2), performing: logn + O(n)
bits of extra 1/Os. The total time i©(u(log o + loglogu)). We then free the space of the hierarchical
RevTriepointers. The maximum total space3dslogn + 3nlogo + O(n) bits, while the maximum
main-memory space islogn + 3nlogo + O(n) bits. At this point we can mové:tts and both tries
topologies definitely to disk, and leave the main memory gmpt

5. To space-efficiently construct arrayds—!, we first construct-ids in the following way: we start by
moving arrayids to main memory. Then we computéis|j] < ids[R|[j]] for increasing values of. As
arraysrids andR are traversed sequentially, we can store/load them to/flisknby parts (respectively),
without requiring extra main-memory space. After we butilds, the total space has raised@log n+
3nlog o + O(n) bits. We then move arrayls back to disk. Finally, we loadids to main memory, and
use the procedure of Lemma 3 to construigts ' on top ofrids, to finally storerids—! to disk. The
overall time isO(n). The maximum total space 3% log n + 3n log o + O(n) bits, while the maximum
main-memory space islogn + 3nlog o + O(n) bits. The total number of disk /O performed by this
process i$n logn + O(n) bits.

This is a practical version of the LZ-index, and thus we dogtote Range. Thus, we conclude:

Theorem 3. Let textT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the Scheme 2eof Zhindex forT' using a total space of
3nlogn + 3nlog o+ O(n) bits andO(u(log o + log log w)) time. The maximum main-memory space used
at any time to construct Scheme 2 can be reduceddg n+3n log 0 +O(n) bits, in such a case performing
5nlogn + O(n) bits of I/O, plus those needed to write the final index. Thesgand time bounds are valid

in the standard modéW g of memory allocation.

5.2 Space-Efficient Construction of Scheme 3

To build Scheme 3 of the LZ-index, we first bull@ Triein O(u(log o + log log u)) time, storingpar, letts,
andids, the latter directly on disk using the procedure of Sectiafh) &tep (2). This requires a maximum
of 2nlogn + nlogo + O(n) bits of total spacenlogn + nlogo + O(n) bits of main memory, and
nlogn + O(n) bits of I/O. It ends up using log o + O(n) bits in main memory.

We then construct the hierarchidevTrie The space requirement raise2iolog n + 3nlog o + O(n)
bits. We build the finaRevTriestoring justrpar andrletts in main memory, and discard the pointers to

LZTrie, temporarily losing the connectivity between tries. We thse method of Section 4.7 to generate
rletts, i.e., we erase the hierarchiedktts, arrays and then re-create the stafietts from the statid_ZTrie
par andletts components. This time, before discarding the pointers, \llecveate explicitly the static
skips[1..n'] array, so thaskips[i] is the skip by which one arrives at tiieh node ofRevTriein preorder.

Array skips is created together withietts and in similar fashion, by traversiri@evTrieand using the
information ofLZTrie. The total time isD (u(1+ log’i‘gu)) because, as explained in Section 4.2, all the skips
add up at most ta. We reduce the number of skips stored to at mdg2 < n, by not storing the skips of
the leaf nodes. As we see soon, these will not be necessaryopblogy representatiarpar allows one to
count the number of leaves to the left of a node [8], so thataveiledex into the reduced arrayips.

Note that each skip may be as largeuagiowever, as they are at mastand add up to at most, we
can set up a bitmag[1..u] where we write each skip a¢:ip[i] — 1 Os followed by a 1. Hence later we can
recoverskip|i] = select1(S,1) — select;1(S,i — 1). By choosing a suitable static bitmap encoding method
for S [60], the structure requires at mostog = + O(n) bits, and answersclect queries in constant timé

The peak of memory usage right after freeing the pointersusst log n + nlogu + 3nlogo + O(n),
of which all but the first: log n term is in main memory. After freeing the pointers, the magmmory space
becomes: log & + 3nlog o + O(n) bits.

Next we allocate main memory space for arrays, requiringnlogn + O(n) extra bits. We traverse
LZTriein preorder, and generate every phragetored in it (wheré is the preorder of theZTrie node). We
then look forB] in RevTrie Recall that at this point we do not have the connectivityMeein tries, which
is generally used to search RevTrig but we haverletts and skips. Moreover, since string3; exists for
sure inRevTrie(because it exists as an LZ78 phras& #Trie), we only need to descend iRevTriewithout
the Patricia-tree verifications, up to consumiBg. For this reason we do not need the skips at the leaves
either: when we arrive at a leaf we must have consumedVhen we arrive at the (leaf or internal) node for
B7, which has preordej in RevTrig we setrids[j] < ids]i]. Notice the sequential scan aths, which is
brought to main memory by parts. The overall workldfiTrieis O(n log o), since each string is generated
in O(log o) time (because of the data structure used to représ&n). For RevTrie on the other hand, we
have thafy ;" | |B!| < u, and thus the overall time 9(ulog).

Finally we moverletts and trie topologies to disk. The skips can be erased or maveisk, as desired
for the final representation. Note that arrays is still in main memory. Before moving it to disk, we create
rids~! within en log n+0O(n) extra main-memory bits, and then move bottis andrids~—* to disk. Finally,
we moveids to main memory, creatéls—! in the same way, and move it back to disk, writiiits—! as
well. The whole process of creatimgds, rids~! andids~!, requires(4 + 2¢)n log n + O(n) extra 1/O bits.

For creatingids—! (the process forids—! is identical) we build onds the data structure of Munro et
al. [52] (Section 2.4), as follows. Let;;,[1..n] be an auxiliary bitmap, an®;,,[1..n] be a bitmap marking
which elements ofds have an associated backward pointer. Both bitmaps arelipid to all zeros.

We start from the first position afis, and follow the cycles of the permutation. We mark everyteti
position: of the permutation asl;s[i] — 1. We also mark one out df/e elements when following the
cycles, by setting td the appropriate position iR;;. We stop following the current cycle upon arriving to
a positionj such thatd,,[j] = 1; then, we move sequentially from positigrto the next positiory’ such
that A;4[j’] = 0, and repeat the previous process.

11 Although Okanohara and Sadakane report a non-constantrtitheir article [60], this is easily converted into congtay using
a constant-timeelect implementation for their internal dense array@fn) bits. Note also that this space is preferable to the
O(nloglogu) 4+ o(u) used in previous static versions [5] whepu is sufficiently small. We prefer it in this paper to free us
from any super-logarithmic dependencewon

Each element irds is visited twice in this process (this is similar to the prexelone in the proof of
Lemma 3), thus this first scan takegn) time.

Then, we go on a second scan on the cyclesleof We setA;,, to all zeros again, and allocate array
Buwd of enlogn bits of space, which shall store the backward pointers optrenutation. We preprocess
array B,y With data structures to suppoténk. We start from the first element and follow the cycles once
again. Visited elements are markedAry,,, as before. Every time we reach a position the permutation
such thatB;4;[i] = 1, we store a backward pointer to the previously visited jsit in the cycle, such that
Bigs[j] = 1 (this means that there at¢e elements between these two positions within the cycle)thero
words, we seBwd|rank; (Bigs,1)] < j.

This second scan takes al&gn) time. We finally free the space &f;;; and maintain bit vectoB;,s as
a marker of the positions storing the backward pointers.dystinge to /2 as in the static case we obtain:

Theorem 4. LettextT'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the Scheme ZdfZhindex forT" usingn(logn + max((1 +
€)logn,logu)) + 3nlog o + O(n) bits of space an@ (u(log o + loglog u)) time, for anyd < e < 1. The
main-memory space used at any time to construct Scheme &ceadulred tor max((1+ ¢€) log n, logu) +
3nlog o + O(n) bits, in such a case performirgn log n + O(n) bits of 1/O, plus those needed to write the
final index. The space and time bounds are valid in the stahdadelM z of memory allocation.

Note that, by virtue of Lemma 2, the total space can be uppanded by(2 + €)uH(T') + o(ulog o),
which is asymptotically the same space of the final index utle weaker model. Similarly, the main-
memory space is at moét + e)uHj, + o(ulog o), the same of the compressed text.

5.3 Space-Efficient Construction of Index of Lemma 4 and Relives

The LZ-index of Lemma 4 is the smallest variant, requiringf ji + €)n logn + 3nlog o + O(n) bits (plus
the space for the skips, if desired). Recall from Sectiortt®ad this LZ-index is a reduced-space version of
Scheme 4. Hence, the procedure below

To construct it using the minimum possible extra space, wenged two passes over the text, and
several traversals ovérZTrie and RevTrie(yet the number of traversals is a constant). We carry out the
following steps:

1. We build the hierarchicalZTrie, just storing the trie topology;,, and the symbolgetts,, without storing
the phrase identifiersis, in each trie blockp. This requiresilog o + O(n) bits of space, and takes
O(u(log o + loglog u)) time. We cannot yet erase the text, as we need it at a later step

2. We build the finaLZTrie from its hierarchical representation, @ u(log o + loglogw)) time and re-
quiring 2nlog o + O(n) bits of space. Recall that we do not store the phrase idestifis. We then
free the hierarchicdlZTrie, leavingn log o + O(n) bits in use.

3. We travers&ZTriein preorder, generating each LZ78 phrden constant time per string, and insétf
into a hierarchicaRevTrie We store pointers thZTrie nodes in thdRevTrienodes, just as in Section 4.
This requires a maximum oflogn 4+ 3nlog o + O(n) bits of space after the hierarchidakvTrieis
built, and takesD (u(log o + loglog u)) time.

4. We build the finaRevTriefrom its hierarchical representation, storing the treeokogy rpar and re-
creating theskips andrietts arrays, which requires logu + 3nlogo + O(n) bits. The pointers to
LZTrie nodes are now deleted, as these were used just to providethedtivity between tries while

constructingRevTrie This takegD (u(log o + log log u)) time. After freeing the hierarchic&evTriewe
end up using just log ©* + 3nlog o + O(n) bits.

5. We allocate memory for arraf[1..n]|, of nlogn + O(n) bits, which is constructed as follows. We
traverseLZTrie in preorder, and for every phradg; corresponding to node;., we look for B} in
RevTrie obtaining nodev, as in Section 5.2. Then we stofpreorder(v,)] < preorder(v;,). The
overall work isO(ulog o). At this point we free the skip information (or we could retat if desired
for the final structure). ArrayR will be represented more space-efficiently (using functigrwhich
represents suffix links iRevTrie see below). We then sample values ofR, as explained in Arroyuelo
et al. [7], ensuring that at moél(1/¢) suffix links are followed in order to compute a givéi].

6. We allocate space for array¥%, and .Sy [7], which are used to compute functignt in RevTrie This
addsnlog o + O(n) extra bits. We traversRevTriein preorder, and for every non-empty node with
preorderi we map toLZTrie using R][i], and then write sequentially the degreeRjfi] in unary in
Vi, and the symbols labeling the children Bfi] in Sy,. Then we preprocesky, and Sy with data
structures to supportank andselect on them. This take®(n log o) time overall.

7. We build onR the data structure for inverse permutations of Munro e62l},[using the same procedure
as in Section 5.2. This take3(n) time. In a similar way as done for arrdy in Step 5 above, we
sampleen values of R~1, as explained in Arroyuelo et al. [7]. The overall space iegment raises to
(14 3¢)nlogn + 4nlogo + O(n) bits.

8. We use the approach of Chan et al. [11] to constpyethich is originally defined for building function
¥ of Compressed Suffix Arrays [26, 65] requiring oiiyu log o) bits of space. In our case we compute
¢[i] = R~ Y(parent;,(R][i])) for consecutivei values, each in timé&(1/¢) as we haveR stored in
plain form andR~! represented with the structure of Munro et al. [52]. Sin@zetis no point in using

€= O(loén) (as by therenlogn = o(n), so the times would increase without any asymptotic space
gain), the overall time i®)(n/e) = O(nlogn) = O(ulog). We producep left-to-right, and thus we
can directly generate it in compressed form: TH#& values for all the preorderisof RevTrienodes that
descend from the same child of the root form an increasingesaxg of values up ta [7]. So each of
the (at most) increasing sequences can be represented using OkanoldaBadakane’s bitmaps [60],
for a total space ofi log o + O(n) bits. Eachp|i] value is then retrieved in constant time uskugect; .

The space has reachét+ 3¢)nlogn + 5nlog o + O(n) bits. We freeR now.

9. We finally allocate memory for arrayls, and set it with all zeros. We also set— 1. We perform
a second pass dh to enumerate the LZ78 phrases (this yield®g o extra 1/O bits in case the text
is stored on disk), descending itZTrie with the symbols ofl". Every time we reach a nodg, in
LZTrie, we check whetheids|preorder(v;,)] is O or not. In the affirmative case, this means that the
corresponding phrase has not yet been enumerated, and éhstorgids|preorder(v;,)] < i and set
i «— i+ 1. We go back to th&ZTrie root and go on with the next symbol @f. In case we arrive at a
nodev;, with ids[preorder(v;,)] # 0, then we continue the descent from this node, since its phras
been already enumerated. This tak¥s: log o) time. Finally, we can erase the text.

By rewriting 3¢ ase, which does not change time complexities, we obtain:

Theorem 5. Let textT[1..u], over an alphabet of size, be parseable inta: phrases by the LZ78 al-
gorithm. Then there exists an algorithm to construct theihdex of Lemma 4 fof” usingn max((1 +
¢)logn,logu) + 5nlogo + O(n) bits of space and)(u(log o + loglogw)) time. This holds for any
0 < e < 1. The algorithm performs two passes over téxtthus requiringulog o 1/0 bits in addition

to those for writing the final index. The space and time bowmdsvalid in the standard modéilg of
memory allocation.

We can use this algorithm to construct the LZ-index of Lemmavbich only adds thdRangedata
structure. For this sake, we do not del&eat the end of Step (8) of the previous algorithm, but rathevemo
it to disk and then execute Step (9), after which we hiaksen main memory. Now we rea®® sequentially
from disk and compose it withds, progressively replacing by rids on disk. Now we inverids in main
memory (using)(n) extra bits, Lemma 3), and readds sequentially from disk, progressively replacing it
by arrayRQ[i + 1] = ids~![rids[i + 1] + 1]. Now we invert agairids ! to obtainids, which is swapped
with the RQ array that is on disk. FinallyRange is built from RQ as explained in Section 4.7, Step (5),
and the result written to disk.

Corollary 1. LettextI'[1..u], over an alphabet of size, be parseable inta phrases by the LZ78 algorithm.
Then there exists an algorithm to construct the LZ-indexeshina 5 forT" usingnlogn + nmax((1 +
€)logn,logu) + 5nlog o 4+ O(n) bits of space an®d (u(log o + loglog u)) time. This holds for ang <

e < 1. The algorithm requires log o + 5n log n + O(n) bits of I/O in addition to those needed to write the
final index to disk. The space and time bounds are valid intdredsrd modeM g of memory allocation.

Finally, the LZ-index of Lemma 6 adds th&lphabet-Friendly FM-indeX19], which according to
Gonzéalez and Navarro [24] can be constructed withy, (7) + o(ulog o) bits of space irO(ulogu(1 +

%27 _)) time. Then, we have:
oglogu

Corollary 2. There exists an algorithm to construct the LZ-index of Lenénfar a text7'[1..u] over an
alphabet of sizer, and withk-th order empirical entropyH (T'), using(3 + e€)uHy(T) + o(ulog o) bits of
space and (u log u(1+ lolg"lgo‘;u)) time. This holds for ang < ¢ < 1 and anyk = o(log,, u). The algorithm
requiresulog o + 5uHy(T) + o(ulog o) 1/O bits, in addition to those needed to write the final indEe
space and time bounds are valid in the standard madgl of memory allocation.

6 Experimental Results

We implemented a simplification of the algorithm presentedseéction 4, which shall be tested in this
section. We run our experiments on an Intel(R) Pentium(Ryatgssor at 3 GHz, 4 GB of RAM and
1MB of L2 cache, running version 2.6.13-gentoo of Linux leriwe compiled the code withhcc 3. 3. 6
using full optimization. The disk is a Maxtor DiamondMax B#® of 120GB and 7,000 rpm, with interface
DMAJ/ATA-133 (Ultra) Fast Drives, buffer of 2MB, average settme of 9 ms, and transfer rate of 133
MB/sec (yet we will soon show that the influence of the disksunperformance is very slight). Construction
times were averaged over 10 repetitions.

6.1 A Practical Implementation of Hierarchical Tries

We implement our construction algorithms for Scheme 2 arte®e 3, and use a simpler representation
for the hierarchical trie, just as defined in our original Wwft]. In this simpler representation, every block
in the tree uses contiguous memory space, which storesahltick components. We define different block
capacitiesNV,, < Ns... < Ny, and say that a block of siz¥; is able to store up tdV; nodes. When we
want to insert a node in a blogkof size N; < Nj; which is already full, we first create a new block of size

N;+1, copy the content op to the new one, and then insert the new node within this bldbis is called
agrow operation. If the full blockp is of size N, we say thap overflows. In such a case we proceed as
explained in Section 4.1, with the only difference that thbteee to be reinserted is searched by traversing
the whole block (we choose the subtree of maximum size na&eshng/N,, /2 nodes, just as in our previous
work [4]).

To ensure a minimum fill rati6 < « < 1 in the trie blocks, thus controlling the wasted space, wandefi
N; = Nj_1/a, fori =2,...,M,andl < N,, < 1/a. Notice that parameter allows us for time/space
trade-offs: smaller values ef yield a poor utilization of blocks, yet they trigger a smaleimber ofgrow
operations (which are expensive) as we insert new nodesofpasite occurs for large values @f

The block representation is completely static: the whadekblis rebuilt from scratch upon insertions, or
upon block overflows. Each block is allocated as a single klofimain memory, using the standard function
mal | oc. We represent the trie topologies with balanced parenshegber than wittbFups. We do not
store information to quickly navigate the parenthesesiwihch block. So, we navigate them by brute force
(using precomputed tables to avoid a bit-per-bit scan,gador the balanced parentheses data structure of
Navarro [56]). In the case dRevtrie we storerletts in each block, yet the skips value are not stored, but
computed by successively going to the parent&irie (which is by then already in static form). In this
way, navigations can be a little bit slower, yet we save spantktime reconstructing these data structures
after every insertion. We will show, however, that we achiesmpetitive results in practice.

We use the following parameters throughout our experime¥ts = 2, Ny; = 1024, anda. = 0.95,
according to the preliminary results obtained in our presiwork [4]. We implement the reduced-memory
model presented in Section 4.7. We also show the resultshéonmtodel in which only main memory is
used, where in most cases the maximum total space coinciitleshe size of the final LZ-index. We use
the menrusage application by Ulrich Dreppéf to measure the peaks of main memory usage. Since our
algorithms need to use the disk to store intermediate pagsalts, we measure the user time plus the
system time of our algorithms.

We show the results only for Scheme 2 and Scheme 3, since #éihedhe most competitive in prac-
tice [5], and also because the most critical points alongrttiexing algorithm (i.e., the construction of the
hierarchical tries) is the same for all schemes (includheydriginal LZ-index). For Scheme 3, we choose
parameterd /e = 1 and1/e = 15 for the inverse-permutation data structures. These reptése extreme
cases (both for time and space requirements) tested in égloyand Navarro [5]; intermediate values offer
interesting results as well. Note that whefe = 1 the space requirement of Scheme 3 is the same as that of
the original LZ-index.

6.2 Indexing English Texts

For the experiments with English texts we use the 1-GB fil@igedl in thePizza&Chili Corpus download-
able fromht t p: // pi zzachi li.dcc. uchile.cl/texts/nlang/english.1024MB. gz.

In Table 3(a) we show the results for English text. As it carsben, the most time-consuming tasks
along the construction process are that of building theahihical representations of the tries, taking up
96-98% of the time. FotZTrie, the construction rate is about 1.01 MB/sec, while RavTriethe result
is about 0.39 MB/sec. ThuevTrieis much slower thahZTrie to be built. The overall average indexing
rate is 0.29 MB/sec for Scheme 2, 0.29 MB/sec for Scheme/8 £ 1), and 0.28 MB/sec for Scheme 3

2http://pizzachili.dcc.uchile.cl/utils/menusage/ nenusage-2.2.2.tar. gz

(1/e = 15). As it can be seen, the sample rate of the inverse permugaiticScheme 3 does not affect much
the indexing speed. Furthermore, because the construatitiies is an in-memory task, one can see that
the impact of moving data from/to disk is very low, thus thagtical performance of our reduced-memory

schemes is almost the same as those using all the main menegrpded.

Table 3. Experimental results for English text and Human Genome. bamin boldface indicate the final index size in every case.

(a) English Text.

(b) Human Genome.

Index Indexing Main-memory Total space Time Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs step space (bytes) (bytes) secs
Scheme 2 1 411,928,076 411,928,076 909.3Bcheme 2 1 1,233,336,206 1,233,336,206 2,440.33
2 505,729,592 822,801,159 17.55 2 1,428,595,278 2,442,409,424 51.73
3 574,548,639 819,749,431 2,554.07 3 1,677,938,853 2,467,406,392 13,966.22
4 454,026,216 883,576,755 15.01 4 1,405,350,330 2,665,257,752 45.00
5&6 491,169,360 965,869,767 52.19 5&6 1,579,033,69€,985,958,274 181.96
Peak 574,548,639 965,869,767 3,549.20 Peak 1,677,938,853 2,985,958,274 16,685.28
Scheme 3 1 411,928,076 411,928,076 898.4®Bcheme 3 1 1,233,336,206 1,233,336,206 2,443.83
l/e=1 2 505,729,592 822,801,159 17511/e=1 2 1,428,595,278 2,442,409,424 51.98
3 574,548,639 819,749,431 2,590.78 3 1,677,938,853 2,467,406,392 13,791.08
4 454,026,216 883,576,755 14.86 4 1,405,350,330 2,665,257,752 44.93
5&6 491,169,3601,204,608,375 62.00 5&6 1,579,033,696,775,475,122 211.81
Peak 574,548,639 1,204,608,375 3,583.56 Peak 1,677,938,853 3,775,475,122 16,543.63
Scheme 3 1 411,928,076 411,928,076 896.8&cheme 3 1 1,233,336,206 1,233,336,206 2,445.02
1/e=15 2 505,729,592 822,801,159 17.461/e=15 2 1,428,595,278 2,442,409,424 51.61
3 574,548,639 819,749,431 2,588.83 3 1,677,938,853 2,467,406,392 13,812.29
4 454,026,216 883,576,755 14.81 4 1,405,350,330 2,665,257,752 44.92
5&6 274,463,684 771,197,007 102.80 5&6 841,516,9322,300,440,426 365.18
Peak 574,548,639 883,576,755 3,620.87 Peak 1,677,938,853 2,665,257,752 16,719.02

For Scheme 2, the maximum main-memory peak is reached aBS#aml it is of about 548 MB. This
means about 0.54 times the size of the original text neededrtstruct the Scheme 2 for the English text.
Also, this space is 0.59 times that of the final Scheme 2. Whenparing the space required by the hier-
archical trie representations with that required by thel fina representations, we have 411,928,076 bytes
for the hierarchical.ZTrie and 408,876,348 bytes for the hierarchi®avTrie versus 410,873,083 bytes
for LZTrie and 309,412,004 bytes f&evTrie This means that the hierarchidaZ Trie requires about 1.01
times the size of the finalZTrie, while the hierarchicaRevTrierequires about 1.32 times the size of the fi-
nal RevTrie The bigger difference betwe&evTrierepresentations comes from the fact that the hierarchical
RevTriestores the symbols labeling the arcs, while the fiRelTriedoes not. Table 4(a) summarizes.

The results are very similar for Scheme 3 dnd = 1. For1/e = 15, however, the peak of memory
usage when considering the total indexing space at eaclisstepched at Step 4, and it is slightly greater
than the space needed by the final Scheme 3 (more precisétirhes the size of the final Scheme 3).

As a comparison, we indexed a 500-MB prefix of this text wita @niginal construction algorithm of
Scheme 2, using an approach similar to that used in Nava@p fth non-space-efficient intermediate
representation for the tries. The peak of main memory is6LMB (this means 3.13 times the size of the

original text}3, with an indexing rate of about 1.29 MB/sec (see Table 4@&pplied on this same prefix, our
new indexing algorithm is 6.45 times slower than the origorae (see column “Slowdown” in Table 4(b)),
yet it requires 4.29 times less memory than the original (s#emn “Space reduction” in Table 4(b)).
The intermediatd_ZTrie of the original algorithm required 751,817,455 bytes (iki2.65 times the size
of our hierarchicalLZTrie on this same prefix, see column “IntermedibiTrie” in Table 4(b)), while the
intermediateRevTrierequired 1,185,969,250 bytes (this is 4.31 times the sipaoiiierarchicaRevTrie see
column “IntermediateRevTri€ in Table 4(b)). Note the bigger difference amoRgvTrierepresentations.
This is because we are not only using a space-efficient reqpiason, but also because we are compressing
empty unary paths at reverse-trie construction time. Thugscan conclude that our space-efficient trie
representations are effective to reduce the indexing spcg-index schemes. The price is, on the other
hand, a slower construction.

6.3 Indexing the Human Genome

For the test on DNA data we indexed the Human Gendmehose size is about 3,182MB. In Table 3(b)
we show the results obtained with our construction algorithe indexing rate for the hierarchidaZ Trie

is about 1.30 MB/sec, while farRevTrieit is about 0.23 MB/sec. The total indexing time (user timespl
system time) is about 4.63 hours, which means an overalkingeate of about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory pédkeoalgorithm, as well as a compari-
son between intermediate and final trie representatiores . T8ele 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefithe Human Genome.

Now we show that the running times of our algorithms are cauatgla to those of state-of-the-art meth-
ods. Hence, we test the practical indexing times for the indsixing algorithms we know of:

— The space-efficient algorithm from Sirén [32] to build therBws-Wheeler transform of a text collec-
tion. In particular, the algorithm is used to build the Rength Compressed Suffix Array [45] (RL-CSA
for short). We divided the Human Genome into several eqgaalfiles. To obtain different space/time
trade-offs, we used 25 (which was the value tested by SB2}),[50, 100 and 500 files. We used the
same construction parameters as in the original articlp 3% program was run in our machine.

— The algorithm for constructing suffix arrays from Dementaal. [15]. Most of the work of this al-
gorithm is carried out on secondary storage, using just ataahamount of main memory. Therefore
its performance depends basically on the speed of the dik weghereas ours depend mostly on the
CPU speed. As the disks they used are similar or faster theam we directly report their experimental
results [15] instead of rerunning them in our machine. Tlepprt results in two scenarios) & 2.0GHz
Intel Xeon processor, 1GB of RAM and eight 80GB ATA IBM 120GHBks (these are similar to those
in our machine: 7,200 rpm, 8.5 ms seek time, 2MB buffer, 100/$4B transfer rate); andia more
powerful SMP system with four 64-bit AMD Opteron 1.8 GHz pessors (just one processor was used),
8GB of RAM (just 1GB was used by the algorithms) and eight 73&ESI Seagate ST373453LC disks
(these spin at 15,000 rpm, have 8 MB buffers and 3.6 ms seek timir transfer rate is 320 MB/sec).

Table 5 shows the results. As can be seen, for 25 files theiimgléme for the RL-CSA ist.33 hours,
with a memory peak of 2,299 MB. Thus, the construction timsigthly better than ours, though using more

13t is important to note that the original algorithm uses justin memory to construct Scheme 2
¥http://hgdownl oad. cse. ucsc. edu/ gol denPat h/ hgl8/ bi gZi ps/ est . fa. gz.

Table 4. Some statistics for our construction algorithms.

(a) Statistics for our space-efficient indexing algorithon $cheme 2. The results for
Scheme 3 are similar.

Text Main-memory Size hierarchical Size hierarchical
peak LZTrie RevTrie

English 0.54 times text size. 411,928,076 bytes 309,4120tes

(1GB) 0.59 times size of final (1.01 times size of (1.32 times of
Scheme 2. finalZTrie) final RevTrig

Human Genome 0.50 times text size. 1,233,336,206 byte®,028,218 bytes

(3.11 GB) 0.44 times size of final (1.02 times size of (1.27etsize of
Scheme 2. findlZTrie) final RevTrig

XML 0.40 times text size. 90,563,835 bytes 84,591,900 bytes

(285 MB) 0.61 times size of final (1.07 times size of (1.29 trs&ze of
Scheme 2. findlZTrie) final RevTrig

Proteins 1.05 times text size. 839,446,471 bytes 807,86M)ytes

(1GB) 0.51 times size of final (0.99 times size of (1.28 tinmies of
Scheme 2. finalZTrie) final RevTrig

(b) Statistics for the construction of Scheme 2 versus thespace-efficient original algo-
rithm. The first two columns refer to the latter. Column “Stimwn” shows the slowdown ex-
perienced by using our space-efficient algorithm insteaebriginal one. “Space reduction”
indicates the factor of space reduction gained by using marithm instead of the original

one. Finally, columns “IntermediateZTrie” and “IntermediateRevTrié show the size of the

(non-space-efficient) intermediate data structures uséditd the final tries, as a fraction of
the size of the final trie representations.

Text Main-memory Indexing rate Slowdown Space Intermedidbtermediate
peak (MB/sec) reduction LZTrie RevTrie
English 1,566 MB 1.29 6.45 4.29 2.65 4.31

(500 MB) (3.13x text)

Genome 1,275 MB 1.86 8.86 4.46 2.74 3.47
(500 MB) (2.55x text)

XML 862 MB 2.31 5.25 7.50 2.68 9.02
(285 MB) (3.02x text)

Proteins 1,781 MB 1.82 8.27 3.63 2.68 3.41
(500 MB) (3.56x text)

main memory. For 500 files, the indexing time raises to 180184y whereas the memory peak decreases to
1,799 MB. This is closer but still higher than our memory wsddence, the indexing space can be reduced
to approach ours, yet at the price of degrading much the ingdime.

Using computerif above, the algorithm of Dementiev et al. [15] indexes thendn Genome in about
8.52 hours, using secondary storage and just a constantnambmain memory. By using computeir)(
on the other hand, the indexing times are reduced to 5.11shdiis is comparable to our results (yet,
remember that different structures are being built, soithisot a direct competition but rather tries to put
the practicality of our LZ-index construction in context).

The comparison shows that our LZ-index construction is astl@s practical as the best constructions
of suffix-array-based indexes. This is a very relevant tesplecifically for biological research, since it
demonstrates that it is feasible to index the Human Genortigndéss than 5 hours and in the main memory
of a desktop computer.

Table 5. Comparison of the best indexing algorithms to construchaex for the Human Genome.

Index Construction Indexing Maximum indexing
algorithm time space (RAM)
Run-length Compressed Suffix Arrays — 25 files [32] 4.33 hours 2,299 MB
Run-length Compressed Suffix Arrays — 50 files [32] 4.98 hours 2,038 MB
Run-length Compressed Suffix Arrays — 100 files [32] 6.33bour 1,904 MB
Run-length Compressed Suffix Arrays — 500 files [32] 18.79b0u 1,799 MB
Suffix array — on compute(ti) [15] 8.52 hours 1,024 MB
Suffix array — on compute(ii) [15] 5.11 hours 1,024 MB
Scheme 2 of LZ-index This paper 4.63 hours 2,847 MB
Scheme 2 — reduced-memory model This paper 4.63 hours 1,897 M

As a historical note to illustrate the evolution of text ingley technologies, there are several results on
indexing the Human Genome in the literature:

— Kurtz [39] indexed this text in less than 9 hours on a Sunddrarc 300 MHz, 192 MB of main memory,
under Solaris 2. The main-memory usage was of about 45.31 GB.

— Sadakane and Shibuya [68] constructed the suffix array éoHtiman Genome, and used it to construct
the Compressed Suffix Array. They used an IBM SP-2 (450MHz Y3ith 64GB of RAM to achieve
7 hours of indexing time. The indexing space was about 12GB.

— Hon et al. [29, 28] indexed the Human Genome with the CSA iruaBd hours, using a Pentium IV
processor at 1.7 GHz with 512 KB of L2 cache, and 4 GB of main orgnmunning Solaris 9 operating
system. They also constructed the FM-index in about 4 extuadh for a total of about 28 hours.

6.4 Indexing XML Data

Another relevant application is that of compressing andcéiag XML texts. Nowadays many applica-
tions handle text data in XML format, which are automaticglenerated in large amounts. It is interesting
therefore to be able to compress such data, while at the samebeing able to search and extract any

part of the text, since XML data is usually queried and naeiddy other applications. We indexed the file
http://pizzachili.dcc.uchile.cl/texts/xm /dblp.xm . gz ofabout 285 MB provided
in the Pizza&Chili Corpus. This text is highly compressible.

In Table 6(a) we show the results for XML text. The indexingeréor LZTrie is about 1.43 MB/sec,
while for RevTrieit is about 0.65 MB/sec. The overall indexing rate is abodddMB/sec. See Table 4(a)
for statistics regarding the memory peak of the algorithsnyall as a comparison between intermediate and
final trie representations. See Table 4(b) for a comparistmtive original construction algorithm.

Table 6. Experimental results for XML text and proteins. Numbersaftdface indicate the final index size in every case.

(@) XML text. (b) Proteins.

Index Indexing Main-memory Total space Time Index Indexing Main-memory Total space Time
step space (bytes) (bytes) secs step space (bytes) (bytes) secs
Scheme 2 1 90,563,835 90,563,835 199.74Scheme 2 1 839,446,471 839,446,471 1,087.58
2 111,467,467 175,009,211 3.82 2 1,018,660,027 1,681,050,175 33.82
3 120,592,538 169,037,276 435.20 3 1,133,180,292 1,649,264,449 4,105.11
4 98,337,536 185,878,936 3.23 4 895,675,465 1,766,181,601 27.83
5&6 97,231,032198,518,068 9.29 5&6 1,032,374,1441,990,895,000 112.75
Peak 120,592,538 198,518,068 651.28 Peak 1,133,180,292 1,990,895,000 5,374.88
Scheme 3 1 90,563,835 90,563,835 201.435cheme 3 1 839,446,471 839,446,471 1,095.56
1/e=1 2 111,467,467 175,009,211 388 1/e=1 2 1,018,660,027 1,681,050,175 33.49
3 120,592,538 169,037,276 441.91 3 1,133,180,292 1,649,264,449 4,113.27
4 98,337,536 185,878,936 3.24 4 895,675,465 1,766,181,601 27.55
5&6 97,231,032245,871,260 11.02 5&6 1,032,374,144£2,502,718,500 134.72
Peak 120,592,538 245,871,260 661.41 Peak 1,133,180,292 2,502,718,500 5,404.62
Scheme 3 1 90,563,835 90,563,835 200.91Scheme 3 1 839,446,471 839,446,471 1,097.09
1/e=15 2 111,467,467 175,009,211 3.791/e=15 2 1,018,660,027 1,681,050,175 33.86
3 120,592,538 169,037,276 441.34 3 1,133,180,292 1,649,264,449 4,117.30
4 98,337,536 185,878,936 3.20 4 895,675,465 1,766,181,601 27.62
5&6 54,641,864160,692,920 18.66 5&6 575,948,0721,589,866,364 232.25
Peak 120,592,538 185,878,936 667.91 Peak 1,133,180,292 1,766,181,601 5,508.14

6.5 Indexing Proteins

Another interesting application of text-indexing toolshiological research is that of indexing proteins.
We indexed the texhtt p: // pi zzachili.dcc. uchile.cl/texts/protein/proteins.gz
of about 1 GB provided in thBizza&Chili Corpus. This is a hot so compressible text.

In Table 6(b) we show the results for proteins. The indexatg for the hierarchicdlZTrieis about 0.92
MB/sec, while forRevTrieit is about 0.24 MB/sec. The indexing rate feevTrieis much slower than for
other texts. This could be mainly because proteins are ncospressible, and then the tries have a greater
number of nodes to be inserted, making the process sloweroWérall indexing rate is about 0.19 MB/sec.

See Table 4(a) for the statistics regarding the memory pédkeoalgorithm, as well as a compari-
son between intermediate and final trie representatiores . T8lele 4(b) for a comparison with the original
construction algorithm for Scheme 2, indexing a 500-MB prefiProteins.

7 Conclusions and Future Work

The space-efficient construction of compressed full-teXtiadexes is a very important aspect regarding
their practicality. In this paper we proposed a space-efficalgorithm to construct Navarro's LZ-index [55].
Given the data structures that conform the LZ-index, thisbfam is highly related to the representa-
tion of succinct dynamie-ary trees. Thus, the basic idea is to construct the trieb@fLZ-index using
space-efficient intermediate representations suppoféisigincremental insertion of nodes. Our algorithm
requires asymptotically the same space as the final LZ-indeixa text7[1..u] over an alphabet of size
o be compressed by the LZ78 algorithm into a representalién Then the size of Navarro’'s LZ-index
is 4|LZ|(1 4 o(1)) bits, and this is also the space needed by the algorithmdnted in this article to
build such index, withinD(u(log o + loglog u)) time. We also show that all LZ-index variants presented
in previous work [7, 5], requiring fronfl + €)|LZ|(1 + o(1)) to 3|LZ|(1 + o(1)) bits, can be constructed
within the same asymptotic space needed by the final index(th-factor is smaII,O(WlLZ')) and within
the same time as before. These smaller indexes are ablelaoedhe original LZ-index in many practical
scenarios [5], hence the importance to space-efficientigtcoct them.

We defined an alternative model in which we have a reduced anhufumain memory to perform the
indexing process (perhaps less memory than that neededdmatdate the whole index). We show that
several LZ-indexes can be constructed withiX | (1 + o(1)) bits of main memory space, i0(u(log o +
log log u)) time and withO(]LZ]) I/Os. Others need slightly more spaef, Z| for a small value) < e < 1
or |LZ|%. This means that the LZ-indexes can be constructed esiemtithin the same space than
that required to store the compressed text.

Our experimental results indicate that all LZ-index vensican be constructed in practice within almost
the same amount of memory than needed by the final index. Uhdeeduced-memory scenario, we have
that the LZ-index versions can be constructed requiringymamory to hold 0.40 — 1.05 times, and using
overall space 0.66 — 1.84 times, the size of the original tépending on its compressibility. This means
about 3.39 — 7.50 times less space than that needed by theabiggnstruction algorithm (which works
assuming that there is enough memory to store the whole indagin memory). Our indexing rate is about
0.19 — 0.44 MB/sec., which is 5.25 — 8.86 times slower tharotiggnal construction algorithm. In conclu-
sion, our algorithm requires much less memory than thermalgine, in exchange for a higher construction
time. Still, our indexing algorithm is competitive with eting indexing technologies. For example, we are
able to construct the LZ-index for the Human Genome in leas th hours, indexing algorithms in the
literature for constructing other indexes like suffix aggy5] and Compressed Suffix Arrays [32].

An interesting application of our indexing algorithm is imet construction of the LZ78 parsing of a
text T'. Grossi and Sadakane [66] define an alternative repregsmfat the LZ78 parsing, which has the
nice property of supporting optimal-time access to any seMistring. The parsing consists basically of
LZTrie (the trie topology and the array of edge symbols), plus aayathat, for any phrase identifiér
stores the preorder of the correspondingTrie node. Using our notation, the latter is just arrias .

Jansson et al. [33] propose an algorithm to construct th&rmgain O(logiu%) time and requiring
uH(T) + o(ulog o) bits of space. The algorithm, however, needs two passestowéext, which involves
|T'| = ulog o extra bits of /O if it is stored on disk, which can be expersWe can reduce the number of

disk accesses as follows, mainly when the text is compressib

— We construct the hierarchicaZTrie for T', storing the phrase identifier for each node. We can efase
since it is not anymore necessary. This takés (log o + log log u)) time.

— We build the finaL.ZTrie, storing arrayids on disk, as explained in Section 4.7. This takds(log o +
log log w)) further time, and carries olf Z| extra bits of 1/0.

— We then free the hierarchichlZ Trie and load arrayds back to main memory, performingd.Z| bits of
further 1/0.

— We computeds~ in place, using the algorithm of Lemma 3, and this way we cetephe representa-
tion for the LZ78 parsing of text'.

As seen, we exchange th€| bits of extra I/O of Jansson et al. [33] YL Z|. This can be much better
in the case of large compressible texts. The total tim@(ig(log o + log log u)), and the maximum main-
memory space used j&Z|(1 + o(1)) bits. We think that our methods could be extended to buildteel
LZ-indexes [18, 64] within limited space.

Finally, recent advances [27,59] (not all refereed yethsée indicate that it is possible to handle
all the classical operations on a treerohodes within2n 4 o(n) bits andO(log’ﬁo"n) time; and that a

dynamic sequence of lengthover an alphabet of size can be handled within log o(1 + o(1)) bits and
O(=2sn_(1 4 I lozo 1) time per operation, which also may extend to partial sumsuth a case, we would

loglogn oglogn
be able to handle the operations of our tree blocks of Aizeithin time O(lolgijgvu), and as a consequence

all our construction times would drop fro®(u(log o + log log u)) to the familiarO(u(1 + 1;;1%))- This

is the time for carrying out. operations on atatic FM-index, whereas a dynamic FM-index construction

would pose an extr@(log’igu) factor in the time complexity.

References

1. A Apostolico. The myriad virtues of subword trees.Gombinatorial Algorithms on WordNATO IS Series, pages 85-96.
Springer-Verlag, 1985.

2. D. Arroyuelo. Animproved succinct representation fonamick-ary trees. IrProc. 19th Annual Symposium on Combinato-
rial Pattern Matching (CPM)LNCS 5029, pages 277—-289, 2008.

3. D. Arroyuelo, R. Canovas, G. Navarro, and K. SadakaneciBct trees in practice. IRroc. 11th Workshop on Algorithm
Engineering and Experiments (ALENEXages 84-97, 2010.

4. D. Arroyuelo and G. Navarro. Space-efficient constructd LZ-index. InProc. 16th Annual International Symposium on
Algorithms and Computation (ISAAQNCS 3827, pages 1143-1152. Springer, 2005.

5. D. Arroyuelo and G Navarro. Practical approaches to redtie space requirement of Lempel-Ziv-based com-
pressed text indices. Technical Report TR/DCC-2008-9,tDep Computer Science, University of Chile, 2008.
http://ww. dcc. uchile.cl/TR 2008/ TRDCC- 2008- 009. pdf . Submitted.

6. D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing theepequirement of LZ-index. IRroc. 17th Annual Symposium
on Combinatorial Pattern Matching (CPMI)L.NCS 4009, pages 319-330, 2006.

7. D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lévdpe based compressed
text indexing. To appear in Algorithmica DOl 10.1007/s00453-010-9443-8. See also
http://ww. dcc. uchil e. cl/ ~darroyue/ paper s/ al gor 2010. pdf ., 2010.

8. D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, arfsl. Rao. Representing trees of higher degrdgorithmica
43(4):275-292, 2005.

9. A. Brodnik, S. Carlsson, E. Demaine, J. I. Munro, and R.geadck. Resizable arrays in optimal time and spaceProc.
WADS LNCS 1663, pages 37—-48. Springer, 1999.

10. M. Burrows and D. J. Wheeler. A block-sorting losslega dampression algorithm. Technical Report 124, DigitaliBment
Corporation, 1994.

11. H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Corapee indexes for dynamic text collectio®SCM Transactions
on Algorithms 3(2):article 21, 2007.

12. B. Chazelle. A functional approach to data structuresinuse in multidimensional searchin§LAM Journal on Computing
17(3):427-462, 1988.

13.

14.
15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

28.
20.

30.

31.

32.

33.

34.

35.
36.

37.
38.
39.
40.
41.
42.

43.

D. Clark and J. I. Munro. Efficient suffix trees on secogydsorage. IrProc. 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA)pages 383-391, 1996.

T. Cormen, C. Leiserson, R. Rivest, and C. Stkitroduction to AlgorithmsPrentice—Hall, second edition, 2001.

R. Dementiev, J. Karkkainen, J. Mehnert, and P. Sand&etter external memory suffix array constructiofournal of
Experimental Algorithmics (JEA)2:1-24, article 3.4, 2008.

P. Ferragina, T. Gagie, and G. Manzini. Lightweight datexing and compression in external memory.Phoc. 8th Latin
American Symposium on Theoretical Informatics (LATpdpes 697—710, 2010.

P. Ferragina, R. Gonzalez, G. Navarro, and R. Ventu@ompressed text indexes: From theory to pract®€M Journal of
Experimental Algorithmics (JEA)3:article 12, 2009.

P. Ferragina and G. Manzini. Indexing compressed fextrnal of the ACM54(4):552-581, 2005.

P. Ferragina, G. Manzini, V. Makinen, and G. Navarrompeessed representations of sequences and full-textésdacM
Transactions on Algorithms$(2):article 20, 2007.

F. Fich, J. 1. Munro, and P. Poblete. Permuting in pl&@&M Journal on Computing®4(2):266-278, 1995.

G. Franceschini and S. Muthukrishnan. In-place suffitirep In Proc. of 34th International Colloquium on Automata,
Languages and Programming (ICALRINCS 4596, pages 533-546, 2007.

R. Geary, N. Rahman, R. Raman, and V. Raman. A simple aptiepresentation for balanced parenthes€keoretical
Computer Science868(3):231-246, 2006.

R. Gonzalez, S. Grabowski, V. Makinen, and G. Navarmctical implementation of rank and select querieRdster Proc.
Vol. of 4th Workshop on Experimental and Efficient AlgorghitVEA) pages 27-38. CTI Press and Ellinika Grammata, 2005.
R. Gonzalez and G. Navarro. Rank/select on dynamic cesepd sequences and applicatidriseoretical Computer Science
410:4414-4422, 2008.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropgnpressed text indexes.Pmoc. 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODApages 841-850, 2003.

R. Grossi and J. S. Vitter. Compressed suffix arrays affik stees with applications to text indexing and string nidibg.
SIAM Journal on Computing35(2):378-407, 2005.

M. He and I. Munro. Succinct representations of dynammnings. InProc. 17th International Symposium on String Processing
and Information Retrieval (SPIRE2010. To appear.

W.-K. Hon.On the Construction and Application of Compressed Textdeslé>hD thesis, University of Hong Kong, 2004.
W. K. Hon, T. W. Lam, K. Sadakane, and W. K. Sung. Consitlngatompressed suffix arrays with large alphabetsProrc.
14th Annual International Symposium on Algorithms and Qatatpn (ISAAC)LNCS 2906, pages 240-249, 2003.

W. K. Hon, T. W. Lam, K. Sadakane, W.-K. Sung, and M. Yiu.pase and time efficient algorithm for constructing compedss
suffix arrays.Algorithmica 48(1):23-36, 2007.

W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a timé-space barrier in constructing full-text indiceSIAM J.
Comput, 38(6):2162—-2178, 2009.

Siren J. Compressed suffix arrays for massive datarda. 16th International Symposium on String Processing)laforma-
tion Retrieval (SPIRE)LNCS 5721, pages 63—74, 2009.

J. Jansson, K. Sadakane, and W.-K. Sung. Compressenhidytnees with applications to LZ-compression in sublindare
and space. I27th Int. Conf. on Foundations of Software Technology aneofdtical Computer Science (FSTTCRages
424-435, 2007.

J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-sua@poesentation of ordered trees. Rroc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODpgages 575-584, 2007.

J. Karkkainen. Fast BWT in small space by blockwiséixssbrting. Theoretical Computer Sciencg87(3):249-257, 2007.
J. Karkkainen and E. Ukkonen. Lempel-Ziv parsing artgigear-size index structures for string matchingPhoc. 3rd South
American Workshop on String Processing (W$Rpes 141-155, 1996.

D. Kim, J. Na, J. Kim, and K. Park. Efficient implementatiaf rank and select functions for succinct representatiofroc.
4th Workshop on Experimental and Efficient Algorithms (WpAges 315-327. LNCS 3503, 2005.

R. Kosaraju and G. Manzini. Compression of low entropings with Lempel-Ziv algorithmsSIAM Journal on Computing
29(3):893-911, 1999.

S. Kurtz. Reducing the space requeriments of suffix tr@ekware Practice and Experienc29(13):1149-1171, 1999.

J. Larsson and K. Sadakane. Faster suffix sorfiingoretical Computer Sciencgg7(3):258-272, 2007.

V. Makinen. Compact suffix array - a space-efficientfellt index. Fundamenta Informaticaé6(1-2):191-210, 2003.

V. Makinen and G. Navarro. Succinct suffix arrays baseruo-length encodingNordic Journal of Computingl2(1):40-66,
2005.

V. Makinen and G. Navarro. Rank and select revisitedeteinded.Theoretical Computer Sciencg87(3):332—-347, 2007.

44.
45.
46.
47.
48.
49.

50.
51.

52.

53.

54.

55.
56.

57.
58.

50.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

V. Mékinen and G. Navarro. Dynamic entropy-compressfliences and full-text indexe8CM Transactions on Algorithms
4(3):article 32, 2008.

V. Makinen, G. Navarro, J. Sirén, and N. Valimakioigige and retrieval of highly repetitive sequence colteti Journal of
Computational Biology17(3):281-308, 2010.

U. Manber and G. Myers. Suffix arrays: A new method forioe-ktring searchesSIAM Journal on Computing2(5):935—
948, 1993.

G. Manzini. An analysis of the Burrows-Wheeler transfodournal of the ACM48(3):407—-430, 2001.

G. Manzini and P. Ferragina. Engineering a lightweiglffissarray construction algorithmAlgorithmica 40(1):33-50, 2004.
D. R. Morrison. Patricia — practical algorithm to reégeénformation coded in alphanumerigdournal of the ACM15(4):514—
534, 1968.

I. Munro, V. Raman, and S. Rao. Space efficient suffix tréasrnal of Algorithms39(2):205-222, 2001.

J. . Munro. Tables. IfProc. 16th Conference on Foundations of Software Techyodogl Theoretical Computer Science
(FSTTCS)LNCS 1180, pages 37-42, 1996.

J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinceseptations of permutations. Rroc. 30th International
Colloquium on Automata, Languages and Computation (ICALRLCS 2719, pages 345-356, 2003.

J. I. Munro and V. Raman. Succinct representation ofrfoald parentheses and static tre€&AM Journal on Computing
31(3):762-776, 2001.

J. Na and K. Park. Alphabet-independent linear-timesttantion of compressed suffix arrays usis(@ log n)-bit working
space.Theoretical Computer Sciencgg85:127-136, 2007.

G. Navarro. Indexing text using the Ziv-Lempel trdpurnal of Discrete Algorithms (JDAR(1):87-114, 2004.

G. Navarro. Implementing the LZ-index: Theory versiwactice. ACM Journal of Experimental Algorithmics (JEAR(article
2), 2009.

G. Navarro and V. Makinen. Compressed full-text index¢CM Computing Survey89(1):article 2, 2007.

G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Ba¥ates. Adding compression to block addressing invertdexas.
Information Retrieval3(1):49-77, 2000.

G. Navarro and K. Sadakane. Fully-functional staticéyrhmic succinct trees. Technical Report arXiv:0905.0468\rXiv,
2010.

D. Okanohara and K. Sadakane. Practical entropy-casederank/select dictionary. Rroc. Workshop on Algorithm Engi-
neering and Experiments (ALENEXpges 60-70, 2007.

M. Patrascu. Succincter. Rroc. 49th Annual IEEE Symposium on Foundations of Com@dience (FOCSpages 305-313,
2008.

R. Raman, V. Raman, and S. S. Rao. Succinct indexabiertictes with applications to encodirigary trees and multisets.
In Proc. 13th Annual ACM-SIAM Symposium on Discrete AlgorstiBODA) pages 233—-242, 2002.

R. Raman and S. S. Rao. Succinct dynamic dictionariedrard. InProc. 30th International Colloquium on Automata,
Languages and Computation (ICALRNCS 2719, pages 357-368, 2003.

L. Russo and A. Oliveira. A compressed self-index usidgd empel dictionary.Information Retrieval5(3):501-513, 2007.
K. Sadakane. New text indexing functionalities of thmpeessed suffix arraygournal of Algorithms48(2):294-313, 2003.
K. Sadakane and R. Grossi. Squeezing succinct datawtadnto entropy bounds. IRroc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODggges 1230-1239, 2006.

K. Sadakane and G. Navarro. Fully-functional succineéd. InProc. 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA)pages 134-149, 2010.

K. Sadakane and T. Shibuya. Indexing huge genome sesgiéarcsolving various problemsGenome Informatigsl2:175—
183, 2001.

J. S. VitterAlgorithms and Data Structures for External MemoS8eries on Foundations and Trends in Theoretical Computer
Science. Now Publishers, 2008.

P. Weiner. Linear pattern matching algorithmsPtoc. 14th Annual Symposium on Foundations of Computen&eig-OCS)
pages 1-11, 1973.

I. Witten, A. Moffat, and T. BellManaging GigabytesMorgan Kaufmann Publishers, second edition, 1999.

J. Ziv and A. Lempel. A universal algorithm for sequelntiata compressionlEEE Transactions on Information Theory
23(3):337-343, 1977.

J. Ziv and A. Lempel. Compression of individual sequendga variable-rate codinglEEE Transactions on Information
Theory 24(5):530-536, 1978.

