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ABSTRACTThis paper presents a study of di�erent 1-irregular uboids (uboids with at most one Steiner point on eah edge)that an appear when meshes are generated using extensions of the modi�ed otree approah [5℄, and then gives areommendation how to handle them. The study is divided into two parts depending on the type of re�nement used:First, for the bisetion based approah (Steiner points are midpoints of the uboid edges), the 1-irregular uboidsare lassi�ed into equivalene lasses (eah element of the lass is partitioned in the same way) and the exat valueof the number of equivalene lasses is omputed. As this value is not too big, all 1-irregular uboids an be handledusing a hash table, and then a tessellation an be always found in onstant time. Seond, for the intersetion basedapproah (Steiner points an be loated at any position along a uboid edge), the total number of 1-irregular uboids,and upper and lower bounds for the number of equivalene lasses are omputed . The lower bound is too big tohandle all the equivalene lasses in a hash table. In this ase, a mixed approah, i.e., the use of an pattern-wisealgorithm for 1-irregular elements with biseted edges and an algorithm that omputes in real time the tessellationfor the other 1-irregular uboids, is reommended.Keywords: ontrol volume, uboid tessellation, modi�ed otrees1. MOTIVATIONSine the last twenty years, modi�ed otrees havebeen used very often in geometri modeling and meshgeneration[11, 10℄. The modi�ed otree approahworks as follows: The 3-D domain is enlosed in aube, whose otants are repeatedly re�ned at theiredge midpoints until the boundary and internal quan-tities are suÆiently approximated. Elements withand without edge midpoints are partitioned into tetra-hedra. In ase of using a otree based mesh generationfor numerial methods, the �nal elements have to ful-�ll additional requirements.Several aspets in the generation of meshes based onotrees and modi�ed otrees have been already gener-alized in order to get a �nal domain representation

that ontains fewer basi elements than former ap-proahes [5℄: (1) The domain an be enlosed for auboid. A uboid has retangular faes. (2) The in-ternal elements (maro-elements) an belong to a setof well shaped elements, suh as pyramids, prismsand tetrahedra, and uboids. The set of elements thatis alled well-shaped depends on the appliation. Thisset has to be losed under the re�nement operator,i.e, eah element an be re�ned in suh a way thatall newly generated elements belong to this set. Thetrees that an handle di�erent element types as in-ternal nodes are alled mixed element trees [7℄. (3)The re�nement an be either bisetion or what wehave alled the intersetion based approah [6, 5℄.Using the bisetion based approah the re�nement isalways made at the edge midpoints. Using the inter-setion based approah the re�nement is made at the



most onvenient edge point. The best point|the onewhose assoiated re�nement generates hildren withthe smallest aspet ratio |is hosen from the avail-able Steiner points (points generated by the re�nementof the neighboring elements) and intersetion points(points generated by the intersetion between the ob-jet geometry and the urrent element). (4) Internalelements an be re�ned into a di�erent number of ele-ments and into elements of di�erent type depending onthe type of the internal node and on the re�nement di-retion. For example, if a re�nement is required alongone, two, or three oordinate axes, uboids, are sub-divided into two halves, four quadrants, and eight o-tants, respetively. (5) The set of �nal elements isde�ned by the appliation. This set an be the setof maro-elements or a set omposed of other elementtypes. What we keep of the modi�ed otree approahis the re�nement parallel to the axes of the oordinatesystem.The mesh generators known as 
mebi [6℄ and 
mein [5℄have inluded several of the extensions mentionedabove. Both mesh generators follow the same step se-quene: (1) �t �rst exatly the objet geometry (if pos-sible) with a set of maro elements (uboids, prisms,pyramids, and tetrahedra), (2) re�ne eah element un-til the required mesh density is obtained, (3) generatea 1-irregular mesh (all the leaves are 1-irregular) thatallows the generation of a Delaunay mesh by the unionof the Delaunay tessellation of eah leaf. (Note that inthis ase, the loal omputation of the 1-irregular ele-ments must be done after the omputation of the 2-Dtessellations of the 1-irregular element faes, and afterall these new faes ful�lled the empty sphere riterion.)and (4) generate the Delaunay mesh by omputing theloal tessellation of eah leaf. The di�erenes betweenboth are that eah maro-element is re�ned by biset-ing its edges, while 
mein generates a nononforminginitial mesh where the maro-element edges an getseveral Steiner points at any position. The requireddensity is obtained either biseting the target edgesor utting the element at the position of one of thealready inserted Steiner points.The number of 1-irregular on�gurations depends onthe element type (uboid, prism, pyramid, et) andon the re�nement approah. The number of useful1-irregular on�gurations, i.e, the ones that gener-ate well-shaped �nal elements, depends also on thenumerial method. In this ase we onsider thatthe �nal mesh is a Delaunay tessellation. Eah o-irular(spherial) set of points is not divided intomore simple elements, suh that, tetrahedra, if it satis-�es the Delaunay ondition. An algorithm that tessel-lates any 1-irregular on�guration into elements whoseverties are o-spherial was presented in [8℄. That pa-per does not inlude any omputation of the numberof di�erent 1-irregular on�gurations and equivalene

lasses that an be produed.This paper presents a study of the number ofdi�erent 1-irregular uboids that an appear inmixed-element meshes generated by mesh genera-tors 
mebi and 
mein, and reommends a way tohandle them. It ounts and �nds all the equivalenelasses for 1-irregular uboids using a bisetion basedapproah, and shows that is possible to �nd all thetessellations using a hash table (pre-omputed tessella-tions). For the intersetion based approah, it presentsupper and lower bounds, and reommends the use ofa mixed approah.Whenever possible, the use of pre-omputed tessella-tions as a method to �nd the tessellation of any 1-irregular element (independent of the algorithm usedto generate them) should be preferred over other meth-ods, beause it is a robust method. It always omputesthe right tessellation and avoids preision problems.2. BASIC CONCEPTSDe�nition 1 A d-uboid is the notation for auboid of dimension d: 0-uboid is point, 1-uboidis a segment, 2-uboid is a retangle and a 3-uboidis the uboid (default).De�nition 2 A tessellation T of a set of pointsS is a Delaunay tessellation if there exists a point-free irumsphere for eah �nal element.We use the term Delaunay tessellation and not De-launay triangulation [3, 1, 4, 9℄ beause our meshesinlude element types other than tetrahedra if theirverties are o-spherial. The most known of theseelements are uboids and some kinds of prisms andpyramids. Note that mesh generators based on o-trees normally generate points that are not loated ina general position, then it is possible to �nd manyo-spherial on�gurations.Delaunay tessellations are very useful in ontrol vol-ume methods that use the Voronoi region as integra-tion volume. Co-spherial on�gurations (elements)that satisfy the Delaunay ondition are not requiredto be tessellated into smaller elements beause the nu-merial method only need the Delaunay edges with as-soiated Voronoi edge in 2D (fae in 3D) whose length(area) is not equal to 0.The following de�nition introdues the onept ofequivalene lass and pattern type.De�nition 3 Let 1 and 2 be two 1-irregularon�gurations, 1 and 2 belong to the same equiv-alene lass if 1 an be transformed to 2 throughrotations or reetions. The representative ele-ment of an equivalene lass is alled pattern type.



1-irregular on�gurations that belong to the sameequivalene lass are partitioned in the same way.Eah pattern type an have a bounded number ofpossible Delaunay tessellations depending on its edgelength ratio. Figure 1(a) shows a 1-irregular retanglewhere depending on ratio between w (its width) and h(its height), the verties 5, 7 are onneted (Figure 1(b)), or verties 4 and 6 are onneted (Figure 1 ()),or 4,5,6,7 are o-irular (Figure 1 (d)).
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Figure 1. The tessellation of a 1-irregular retangle with 4Steiner points depends on the edge length ratio2.1 Bisetion Based ApproahCuboids an be split into two halves, four quarters oreight otants as shown in Figure 2. The Steiner pointsde�ning a 1-irregular element are always loated atthe edge midpoints. In this ase, the loation of theSteiner points an be used to represent uniquely eah1-irregular uboid.
Figure 2. Briks re�ned in one, two, or three diretions gener-ate two, four, and eight uboids, respetivelyFigure 3 shows several 1-irregular uboids. The 1-irregular uboid of Figure 3(b) an be transformedto the 1-irregular uboid if Figure 3(a) by rotating itproperly. We say then that the 1-irregular uboidsof Figure 3(a) and (b) belong to the same equiva-lene lass. The two 1-irregular uboids of Figure 3()and (d), respetively, have three biseted edges butthey do not belong to the same equivalene lass.Conti [2℄ has already used the idea of equivalenelasses in the implementation of a mesh generatorbased on modi�ed otrees [11℄. The information aboutthe most ommon 1-irregular uboids were stored ina hash table, whose hash funtion is a value obtainedfrom a odi�ation of the split edges. The edges are
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(a) (b) (d)(c)Figure 3. Di�erent 1-irregular on�gurationslabeled in the order shown in Figure 4(a) and the ver-ties in the order shown in Figure 4(b). For eah 1-irregular uboid, the hash table stores the pattern typeand the orner permutation to transform the urrenton�guration to the on�guration of the pattern type.For example, if Figure 4() is the pattern type forthe 1-irregular elements with one split edge, the in-formation stored in the hash table for the 1-irregularuboid shown in Figure 4(d) is the bitode of the pat-tern type (00000000001) and its orner permutation(1,4,0,5,2,7,3,6). Only the tessellation for the patterntype is omputed and stored. The elements of the �-nal tessellation were tetrahedra, pyramids, prisms anduboids.
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Figure 4. (a) Cuboid edge numeration, (b) uboid vertex nu-meration, () one split edge pattern type, and (d) one split edge1-irregular uboidThe Conti's mesh generator only stored the twentymost used pattern types in a hash table. The timeto �nd the tessellation of a 1-irregular uboid thatwas stored was onstant. But if the pattern type wasnot stored, new points were inserted until all the 1-irregular uboids ould be solved. This approah wasextended for other element types in the implementa-tion of a mixed element mesh generator [7℄.2.2 Intersetion Based ApproahCuboids are split into two halves, four quarters or eightotants as before but edges are not neessary biseted.Figure 5 shows the di�erent ways to split a uboid us-ing arbitrary re�nement points. The only restritionis that parallel edges have to be split at the same rela-tive position from their endpoints in order to generateuboids and not general polyhedra.



Figure 5. Briks re�ned in one, two, or three diretions gener-ate two, four, and eight uboids, respetivelyDuring the tessellation of 1-irregular elements using abisetion-based approah, the type of the element, itsaspet ratio, and the edges arrying a Steiner pointare enough to identify uniquely a 1-irregular element.This ondition does not hold for an intersetion-basedapproah.Figure 6 shows a set of 1-irregular uboids with thesame four split edges. Using a bisetion-based ap-proah, only the 1-irregular uboid shown in Fig. 6(a)an our. The four edges are biseted and the 1-irregular element is partitioned into two uboids. Us-ing an intersetion based approah all these asesshown in Figure6 an our.
(a) (b) ()Figure 6. 1-irregular uboids with the same split edges butdi�erent tessellationsIn the event that Steiner points are loated on orthog-onal edges, (e.g., in a uboid, at most three Steinerpoints), the tessellation is the same for both ap-proahes: only the size of the �nal elements hanges.Figure 7 shows two 1-irregular uboids with the sameSteiner-point but in a di�erent position along the sameedge. Both ases are tessellated in the same way.

Figure 7. Tessellation of slightly di�erent 1-irregular uboidsinto four pyramids

3. 1-IRREGULAR CUBOIDS ANDEQUIVALENCE CLASSES USING ABISECTION BASED APPROACHIt is already known that the total number of 1-irregularuboids is 212. However, the number of equivalenelasses or pattern types is not known. Its value ismuh lower than the total number of 1-irregular on-�gurations as we will show in this setion.3.1 Theoretial Lower BoundTheorem 1 A d-uboid has 2d verties andd2d�1 edges.Proof. This is known and an be shown by indution.2Theorem 2 Let be a d-uboid. Then, the num-ber of 1-irregular on�guration is 2d2d�1 .Proof. As we have said before, eah edge an be bi-seted or not. Then, there are two possibilities foreah edge (to have one or no one Steiner point) and so2number of edges possible 1-irregular on�gurations.Using theorem 2, a d-uboid has 2d2d�1 1-irregularon�gurations.2Corollary 3 The total number of 1-irregularon�gurations is an upper bound of the number ofequivalene lasses.Theorem 4 A lower bound for the numberof equivalene lasses in a d-uboid of is2d2d�1�2d�lg dProof. The lower bound an be obtained onsideringthat all the rotations and reetions are useful, i.e,eah one transforms a di�erent 1-irregular on�gura-tion into the pattern type.(a) Eah reetion divides the set of 1-irregular on-�gurations into two parts. There is d reetions andtherefore 2d possible on�gurations generated usingreetions.(b) Using rotations, it is possible to bring any edge toa �xed edge. In addition, it is possible to hose twoorientations. Then, the number of 1-irregular on�g-urations that an be generated through rotations istwie the number of edges: 2d2d�1 = d2dIn the best ase, the 2d 1-irregular obtained after dreetions and the d2d on�gurations obtained afterrotations are independents. The redution fator isthen 1=d4d and the lower bound for the number ofon�gurations is 2d2d�1=d4d = 2d2d�1�lgd�2d.2In the ase d = 3, the lower bound for the number ofequivalene lasses is 22. This means, there is at least22 di�erent pattern types.



3.2 Exhaustively Counting in Three Dimen-sionsIn order to ount exatly the number of equivalenelasses, a program that generates the 4096 on�gura-tions , and heks whih of them are equivalent, wasdeveloped.The algorithm is very simple. For eah one of the 4096on�gurations, it generates all the possible ombina-tions of rotations and reetions. The pattern typeis the ube that has the lowest numerial representa-tion. After applying this algorithm, 144 pattern typeswere obtained. (This number is the square of 12, thenumber of edges in 3-D. Then it ould be expetedthat there is a relation between the number of patterntypes and the number of edges. But in 2-D it an beeasy shown that this is not true beause there are 4edges and only 6 pattern types (not 16)).This algorithm an be used to generate automatiallythe orner permutations between any on�gurationand its pattern type, and hene to identify the righttessellation in O(1). The previous algorithm an beimproved to redue the number of superuous rota-tions and reetions. But sine this algorithm is usedonly one, when that hash table is initialized, its eÆ-ieny is not important. The tessellation of the patterntypes an be ful�lled with an ad ho algorithm as theone presented in [8℄.3.3 Number of Delaunay Tessellation for Pat-tern TypesTheorem 5 The number of possible Delaunaytessellation for eah d-uboid pattern type isbounded by F (d) =Qd�1d=1(2d� 1); F (1) = 1.Proof. As we have shown in Figure 1 using a 1-irregular retangle, the Delaunay tessellation of a pat-tern type depends on its edge length ratio. The worstase is when there exists a di�erent tessellation foreah edge length ratio. In the ase of a retangle, edgelengths an vary in two diretions: one edge length anbe smaller than, equal to or greater than the other edgelength. That is why it is possible to have at most threepossible Delaunay tessellations for 1-irregular retan-gle pattern type. In uboids, the edge lengths an varyin three diretions. The �rst edge length an be ho-sen in one way, the seond edge length an be hosensmaller than, equal to or greater than the �rst edgelength, and third, smaller than, in between, equal toor greater than the previous ones.In general, the previous analysis an be desribed us-ing the following expression. Let F (d) be the maxi-mum number of possible Delaunay tessellations for ad-uboid pattern type. (The maximum value is ob-tained by onsidering that eah edge length variation

produes a new Delaunay tessellation). Then,F (d+ 1) = (2d+ 1)F (d)F (d+ 1) = dYd=1(2d+ 1); F (1) = 1This formula an be shown by indution. It is easy tosee, that if F (d) is already omputed, the new edgelength an be the length of one of the previous edges(there are d possible lengths) or an be in between theprevious ones (there are d+1 possible lengths). Then,the possible lengths in the new diretion are (2d+1).Therefore, the total number of edge length ratio indimension d+ 1 is (2d+ 1)F (d).The number of possible tessellation of a 1-irregularuboid is bounded by F (3) = 15. 24. 1-IRREGULAR CUBOIDS ANDEQUIVALENCE CLASSES USING ANINTERSECTION BASED APPROACHThe number of 1-irregular uboids and the numberof equivalene lasses using an intersetion based ap-proah are still unknown. In this setion, we will �rstde�ne a new notion of equal 1-irregular on�gurations,and then ompute the number of 1-irregular uboids,and a theoretial upper and lower bound for the num-ber of equivalene lasses in 2D and 3D.In order to generate the Delaunay tessellation of a 1-irregular on�guration with Steiner points at any po-sition, together with the element aspet ratio, the rel-ative position of the Steiner points is relevant (see Fig-ure 6 of setion 2.2).De�nition 4 A 1-irregular on�guration i1 isonsidered equal to a 1-irregular on�guration i2if the relative position between the Steiner pointsloated in the parallel edges of i1 and i2 is the samewith respet to a normalized 1-irregular on�gura-tion.Aording to de�nition 4, the 1-irregular uboids ofFigure 8(a) and Figure 8(b) are equal and the 1-irregular uboid shown in Figure 8() is not equal tothe ones shown in Figure 8(a) and (b). The 1-irregularuboid in Figure 8(d) is also not equal to the ones inFigure 8(a) and (b) but it belongs to their same equiv-alene lass, beause it an be onsidered equal to theones in Figure 8(a) and (b) after two rotations aboutthe y axis.
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(a) (b) (d)(c)Figure 8. 1-irregular uboids: (a) and (b) are onsidered equal,() is di�erent from (a) and (b), and (a),(b) and (d) belong tothe same equivalene lass.4.1 Number of 1-Irregular Con�gurationsThis setion introdues �rst several properties thatsimplify the omputation of the number of 1-irregularuboids, and then presents the results.Proposition 1 Let  be a d-uboid and n thenumber of the 1-irregular uboids with Steinerpoints in only one of the orthogonal axis. The totalnumber of 1-irregular uboids of  is ndProof. The omputation of the total number of 1-irregular uboids an be done by �rst ounting thenumber of 1-irregular uboids in eah orthogonal dire-tion independently. These numbers an then be mul-tiplied together beause the insertion of a new Steinerpoint has only an inuene in the omputation if itan be loated to the left, right or on the same lineof already inserted Steiner points. This ours only innonorthogonal edges. Sine the uboid has d orthogo-nal diretions and has the same shape in eah one, thetotal number of 1-irregular uboids is nd. 2Proposition 2 Let ni be, the number of 1-irregular d-uboids with i Steiner points on par-allel edges (only one of the orthogonal diretionsis used), then n is :n = 2d�1Xi=0 niProof. The parameter i is bounded by 0 and the num-ber of parallel edges in any of the orthogonal axes ofthe d-uboid. The number of parallel edges of a d-uboid an be omputed dividing the number of edgesby the dimension. Using the theorem 1, the numberof parallel edges is 2d�1.2Proposition 3 Let  be a d-uboid with i Steinerpoints on parallel edges. The number of loationsto insert a new Steiner point along a target emptyedge onsidering the already inserted points is 2i+1.

Proof. Eah Steiner point an be inserted along a tar-get empty edge to the left, to the right or aligned toone of the already inserted points. If there are i in-serted points, the number of possible loations amongthe inserted points is i+1. In addition, the number ofpossible loations aligned to one of the inserted pointsis i. Then, the number of possible loations for thenew point is 2i+ 1.2Theorem 6 The number of 1-irregular retan-gles are 62Proof. In 2D, the expression for n is the following:n = 2Xi=0 niIt an be easy shown that n0 = 1, n1 = 1 � 2 = 2,n2 = 3 � 1 and n = 6 Then, the number of 1-irregularretangles is N = n2 = 62. 2Theorem 7 The number of 1-irregular uboidsis N = 1873Proof. In 3d, the expression for n is the following:n = 4Xi=0 niThe next table shows the values of eah ni. Eah niwas omputed separately using proposition 3:i ni0 11 42 183 604 105Case i = 0: If there is no point inserted, n0 = 0.Case i = 1: If we insert one point in a uboid with nopoint, one one edge is hosen, there is only one wayto hoose the loation on it (2 � 0+1). Sine there arefour parallel edges, n1 = 4.Case i = 2: If we have already inserted one point on auboid edge (Figure 9(a)), one we hoose the emptyedge on whih we will insert the next point, we havethree possibilities (2 � 1 + 1 = 3). The empty edgean be hosen in two ways: (1) the new edge belongsto the same fae of the previous edge (Figure 9(b)).Sine there are four faes, this ase produes 4 � 3 1-irregular uboids. (2) The new edge is opposite to



previous one ((Figure 9()) . Sine there are two waysto selet opposite edges, this ase produes 2 � 3 1-irregular uboids. Then, n2 = 18.
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Figure 9. (a) 1-irregular uboids with one Steiner point, (b)and () possibilities of inserting a new pointCase i = 3: We already know that the �rst point isinserted in one way, the seond point in three ways andthe third point in 5 ways, then one we have hosen thethree edges we have 1 � 3 � 5 = 15 1-irregular uboids.Sine there are 4 ways to hoose the three involvededges, n3 = 60.Case i = 4: Eah edge get a point. The number of1-irregular uboids is 1 � 3 � 5 � 7 = 105.n = (4 + 18 + 60 + 105) = 187;N = 187324.2 Number of Equivalene ClassesAn upper bound for the number of equivalene lassesis the number of 1-irregular uboids.In the same way as in the bisetion based approah,a lower bound for the equivalene lasses an be ob-tained if the total number of 1-irregular uboids is di-vided by the number of possible rotation and reetiontransformations.Corollary 8 Let N be the number of 1-irregulard-uboids. A lower bound for the number of equiv-alene lasses of 1-irregular d-uboids is Nd4d . Inthe partiular ase of the uboid, the value is1873192 > 34; 0585. CONCLUSIONSThis paper presents the omputation of the exat num-ber of 1-irregular retangles and uboids for both a bi-setion and an intersetion based approah. In ase ofthe bisetion based approah, it presents the theoret-ial omputation of upper and lower bounds, and theempirial omputation of the exat number of equiv-alene lasses. In ase of an intersetion based ap-proah, it presents the theoretial omputation of the

upper and lower bounds for the number of equivalenelasses.The number of equivalene lasses of a uboid in abisetion based approah is 144. This allows us tostore the neessary information of all the 1-irregularuboids (212) and the tessellation of all the patterntypes in a hash table. Then, the time to get the righttessellation of any 1-irregular uboid is O(1).The number of equivalene lasses of a uboid usingan intersetion based approah is too high for stor-ing all of them in a hash table. It is also not learif there exists a good hash funtion, beause the rela-tive position between Steiner points on parallel edgesshould also be onsidered. Sine the mesh generatorthat uses an intersetion based approah to �t the de-vie geometry, re�nes the oarse elements by bisetingtheir edges wherever required, most of the 1-irregularelements have biseted edges. Then, it is onvenient touse a mixed approah, i.e, an hash table for 1-irregularelements with biseted edges and an algorithm for therest of 1-irregular elements.The use of pre-omputed tessellations as a methodto �nd the tessellation of any 1-irregular element (in-dependent of the algorithm used to generate them)should be preferred over other methods, beause it isa robust method (for example, it avoids the preisionproblems that an our, when 1-irregular elementsbelong to very thin layers). In addition it omputesalways the right tessellation and take less omputa-tional time than a real time algorithm.ACKNOWLEDGMENTThis work was supported by Fondeyt projet No1960735. REFERENCES[1℄ Marshall Bern and David Eppstein. " MeshGeneration and Optimal Triangulation. "Palo Alto Researh Center. Xerox, Marh 1992.[2℄ P. Conti. " Grid Generation for Three-dimensional Devie Simulation. " PhD the-sis, ETH Z�urih, 1991. " published by Hartung-Gorre Verlag, Konstanz, Germany.[3℄ B. Delaunay. " Sur la sph�ere vide. " Bull. Aad.Si. USSR(VII), pages 793{800, 1934.[4℄ P L George and H Borouhaki. " Delaunay Tri-angulation and Meshing. " Hermes, 1998.[5℄ N. Hitshfeld. " Generalization of Modi�ed O-trees for Geometri Modeling. " In Geometri
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