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Abstract—A large fraction of an XML document typically
consists of text data. The XPath query language allows text
search via the equal, contains, and starts-with predicates. Such
predicates can be efficiently implemented using a compressed
self-index of the document’s text nodes. Most queries, however,
contain some parts querying the text of the document, plus some
parts querying the tree structure. It is therefore a challenge to
choose an appropriate evaluation order for a given query, which
optimally leverages the execution speeds of the text and tree
indexes. Here the SXSI system is introduced. It stores the tree
structure of an XML document using a bit array of opening and
closing brackets plus a sequence of labels, and stores the text
nodes of the document using a global compressed self-index. On
top of these indexes sits an XPath query engine that is based
on tree automata. The engine uses fast counting queries of the
text index in order to dynamically determine whether to evaluate
top-down or bottom-up with respect to the tree structure. The
resulting system has several advantages over existing systems: (1)
on pure tree queries (without text search) such as the XPathMark
queries, the SXSI system performs on par or better than the
fastest known systems MonetDB and Qizx, (2) on queries that
use text search, SXSI outperforms the existing systems by 1–3
orders of magnitude (depending on the size of the result set),
and (3) with respect to memory consumption, SXSI outperforms
all other systems for counting-only queries.

I. INTRODUCTION

As more and more data is stored, transmitted, queried,

and manipulated in XML form, the popularity of XPath

and XQuery as languages for querying semi-structured data

spreads faster. Solving those queries efficiently has proved to

be quite challenging, and has triggered much research. Today

there is a wealth of public and commercial XPath/XQuery

engines, apart from several theoretical proposals.

In this paper we focus on XPath, which is simpler and forms

the basis of XQuery. XPath query engines can be roughly

divided into two categories: sequential and indexed. In the

former, which follows a streaming approach, no preprocessing

of the XML data is necessary. Each query must sequentially

read the whole collection, and the goal is to be as close as

possible to making just one pass over the data, while using

as little main memory as possible to hold intermediate results

and data structures. Instead, the indexed approach preprocesses

the XML collection to build a data structure on it, so that

later queries can be solved without traversing the whole

collection. A serious challenge of the indexed approach is

that the index can use much more space than the original

data, and thus may have to be manipulated on disk. There are

two approaches for dealing with this problem: (1) to load the

index only partially (by using clever clustering techniques),

or (2) to use less powerful indexes which require less space.

Examples of systems using these approaches are Qizx/DB [1],

MonetDB/XQuery [2] and Tauro [3].

In this work we aim at an index for XML that uses little

space compared to the size of the data, so that the indexed

collection can fit in main memory for moderate-sized data,

thereby solving XPath queries without any need of resorting

to disk. An in-memory index should outperform streaming

approaches, even when the data fits in RAM. Note that

usually, main memory XML query systems (such as Saxon [4],

Galax [5], Qizx/Open [1], etc.) use machine pointers to repre-

sent XML data. We observed that on various well-established

DOM implementations, this representation blows up memory

consumption to about 5–10 times the size of the original XML

document.

An XML collection can be regarded essentially as a text

collection (that is, a set of strings) organized into a tree

structure, so that the strings correspond to the text data and the

tree structure corresponds to the nesting of tags. The problem

of manipulating text collections within compressed space is

now well understood [6]–[8], and also much work has been

carried out on compact data structures for trees (see, e.g., [9]

and references therein). In this paper we show how both types

of compact data structures can be integrated into a compressed

index representation for XML data, which is able to efficiently

solve XPath queries.



A feature inherited from its components is that the com-

pressed index replaces the XML collection, in the sense that

the data (or any part of it) can be efficiently reproduced from

the index (and thus the data itself can be discarded). The result

is called a self-index, as the data is inextricably tied to its

index. A self-index for XML data was recently proposed [10],

[11], yet its support for XPath is reduced to a very limited

class of queries that are handled particularly well.

The main value of our work is to provide the first practical

and public tool for compressed indexing of XML data, dubbed

Succinct XML Self-Index (SXSI), which takes little space,

solves a significant portion of XPath (currently we support

at least Core XPath [12], i.e., all navigational axes, plus the

three text predicates = (equality), contains, and starts-with),

and largely outperforms the best public softwares supporting

XPath we are aware of, namely MonetDB and Qizx. The

main challenges in achieving our results have been to obtain

practical implementations of compact data structures (for texts,

trees, and others) that are at a theoretical stage, to develop

new compact schemes tailored to this particular problem, and

to develop query processing strategies tuned for the specific

cost model that emerges from the use of these compact data

structures. The limitations of our scheme are that it is in-

memory (this is a basic design decision, actually), that it is

static (i.e., the index must be rebuilt when the XML data

changes), and that it does not handle XQuery. The last two

limitations are subject of future work.

II. BASIC CONCEPTS AND MODEL

We regard an XML collection as (i) a set of strings and

(ii) a labeled tree. The latter is the natural XML parse tree

defined by the hierarchical tags, where the (normalized) tag

name labels the corresponding node. We add a dummy root

so that we have a tree instead of a forest. Moreover, each text

node is represented as a leaf labeled #. Attributes are handled

as follows in this model. Each node with attributes is added a

single child labeled @, and for each attribute @attr=value

of the node, we add a child labeled attr to its @-node, and a

leaf child labeled % to the attr-node. The text content value

is then associated to that leaf. Therefore, there is exactly one

string content associated to each tree leaf. We will refer to

those strings as texts.

Let us call T the set of all the texts and u its total length

measured in symbols, n the total number of tree nodes, Σ
the alphabet of the strings and σ = |Σ|, t the total number

of different tag and attribute names, and d the number of

texts (or tree leaves). These receive text identifiers which are

consecutive numbers assigned in a left-to-right parsing of the

data. In our implementation Σ is simply the set of byte values

1 to 255, and 0 will act as a special terminator called $. This
symbol occurs exactly once at the end of each text in T . We

can easily support multi-byte encodings such as Unicode.

To connect tree nodes and texts, we define global identifiers,

which give unique numbers to both internal and leaf nodes,

in depth-first preorder. Fig. 1 shows a toy collection (top left)

and our model of it (top right), as well as its representation

using our data structures (bottom), which serves as a running

example for the rest of the paper. In the model, the tree is

formed by the solid edges, whereas dotted edges display the

connection with the set of texts. We created a dummy root

labeled &, as well as dummy internal nodes #, @, and %.

Note how the attributes are handled. There are 6 texts, which

are associated to the tree leaves and receive consecutive text

numbers (marked in italics at their right). Global identifiers

are associated to each node and leaf (drawn at their left).

The conversion between tag names and symbols, drawn within

the bottom-left component, is used to translate queries and to

recreate the XML data, and will not be further mentioned.
Some notation and measures of compressibility follow,

preceding a rough description of our space complexities.

Logarithms will be in base 2. The empirical k-th order

entropy [13] of a sequence S over alphabet σ, Hk(S) ≤ log σ,
is a lower bound to the output size per symbol of any k-th
order compressor applied to S. We will build on self-indexes

able of handling text collections T of total length u within

uHk(T )+o(u logσ) bits [6], [8], [14]. On the other hand, rep-

resenting an unlabeled tree of n nodes requires 2n−O(log n)
bits, and several representations using 2n + o(n) bits support

many tree query and navigation operations in constant time

(e.g., [9]). The labels require in principle other n log t bits.

Sequences S can be stored within |S| log σ(1+o(1)) bits (and
even |S|H0(S)+o(|S| logσ)), so that any element S[i] can be

accessed, and they can also answer queries rankc(S, i) (the

number of c’s in S[1, i]) and selectc(S, j) (the position of the

j-th c in S) efficiently [14]–[16]. These are essential building

blocks for more complex functionalities, as seen later.
The final space requirement of our index will include:

1) uHk(T ) + o(u log σ) bits for representing the text col-

lection T in self-indexed form. This supports the string

searches of XPath and can (slowly) reproduce any text.

2) 2n + o(n) bits for representing the tree structure. This

supports many navigational operations in constant time.

3) d log d + o(d log d) bits for the string-to-text mapping,

e.g., to determine to which text a string position belongs,

or restricting string searches to some texts.

4) Optionally, u log σ or uHk(T ) + o(u log σ) bits, plus

O(d log u
d
), to achieve faster text extraction than in 1).

5) 4n log t + O(n) bits to represent the tags in a way that

they support very fast XPath searches.

6) 2n+o(n) bits for mapping between tree nodes and texts.

As a practical yardstick: without the extra storage of texts

(item 4) the memory consumption of our system is about

the size of the original XML file (and, being a self-index,

includes it!), and with the extra store the memory consumption

is between 1 and 2 times the size of the original XML file.
In Section III we describe our representation of the set

of strings, including how to obtain text identifiers from text

positions. This explains items 1, 3, and 4 above. Section IV

describes our representation for the tree and the labels, and the

way the correspondence between tree nodes and text identifiers

works. This explains items 2, 5, and 6. Section V describes

how we process XPath queries on top of these compact data
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Fig. 1. Our running example on representing an XML collection.

structures. In Section VI we empirically compare our SXSI

engine with the most relevant public engines we are aware of.

III. TEXT REPRESENTATION

Text data is represented as a succinct full-text self-index

[6] that is generally known as the FM-index [17]. The index

supports efficient pattern matching that can be easily extended

to support different XPath predicates.

A. FM-Index and Backward Searching

Given a string T of total length u, from an alphabet of size

σ, the alphabet-friendly FM-index [14] requires uHk(T ) +
o(u log σ) bits of space. The index supports counting the

number of occurrences of a pattern P in O(|P | log σ) time.

Locating the occurrences takes extra O(log1+ǫ u) time per

answer, for any constant ǫ > 1.
The FM-index is based on the Burrows–Wheeler transform

(BWT) of string T [18]. Assume T ends with the special end-

marker $. Let M be a matrix whose rows are all the cyclic

rotations of T in lexicographic order. The last column L of M
forms a permutation of T which is the BWT string L = T bwt.

The matrix is only conceptual; the FM-index uses only on the

T bwt string. See Fig. 1 (bottom right). Note L[i] is the symbol

preceding the i-th lexicographically smallest row of M.

The resulting permutation is reversible. The first column

of M, denoted F , contains all symbols of T in lexicographic

order. There exists a simple last-to-first mapping from symbols

in L to F [17]: Let C[c] be the total number of symbols in T
that are lexicographically less than c. Now the LF-mapping

can be defined as LF (i) = C[L[i]] + rankL[i](L, i). The

symbols of T can be read in reverse order by starting from the

end-marker location i and applying LF (i) recursively: we get

T bwt[i], T bwt[LF (i)], T bwt[LF (LF (i))] etc. and finally, after

u steps, get the first symbol of T . The values C[c] can be

stored in a small array of σ log u bits. Function rankc(L, i)
can be computed in O(log σ) time with a wavelet tree data

structure requiring only uHk(T ) + o(u log σ) bits [14], [15].

Pattern matching is supported via backward searching on

the BWT [17]. Given a pattern P [1, m], the backward search

starts with the range [sp, ep] = [1, u] of rows in M. At each

step i ∈ {m, m− 1, . . . , 1} of the backward search, the range

[sp, ep] is updated to match all rows of M that have P [i, m]
as a prefix. New range [sp′, ep′] is given by sp′ = C[P [i]] +
rankP [i](L, sp− 1) + 1 and ep′ = C[P [i]] + rankP [i](L, ep).
Each step takes O(log σ) time [14], and finally ep − sp + 1
gives the number of times P occurs in T .

To find out the location of each occurrence, the text is tra-

versed backwards from each sp ≤ i ≤ sp (virtually, using LF
on T bwt) until a sampled position is found. This is a sampling

carried out at regular text positions, so that the corresponding

positions in T bwt are marked in a bitmap Bs[1, u], and the

text position corresponding to T bwt[i], if Bs[i] = 1, is stored
at a samples array Ps[rank1(Bs, i)]. If every l-th position of

T is sampled, the extra space is O((n/l) log n) (including the

compressed Bs [19]) and the locating takes O(l log σ) time per

occurrence. Using l = Θ(log1+ǫ u/ logσ) yields o(u log σ)
extra space and O(log1+ǫ u) locating time.

B. Text Collection and Queries

The textual content of the XML data is stored as $-
terminated strings so that each text corresponds to one string.

Let T be the concatenated sequence of d texts. The sampling is

extended to include all text beginning positions, and to record



both the text identifier and the offset inside it. Since there

are several $’s in T , we fix a special ordering such that the

end-marker of the i-th text will appear at F [i] in M (see

Fig. 1, bottom right). This generates a valid T bwt of all the

texts and makes it easy to extract the i-th text starting from

its $-terminator. The type of wavelet tree actually used was a

Huffman-shaped one using uncompressed bitmaps inside [20].

Now T bwt contains all end-markers in some permuted order.

This permutation is represented with a data structure Doc,
that maps from positions of $s in T bwt to text numbers, and

also allows two-dimensional range searching [21] (see Fig. 1,

bottom right). Thus the text corresponding to a terminator

T bwt[i] = $ is Doc[rank$(T
bwt, i)]. Furthermore, given a

range [sp, ep] of T bwt and a range of text identifiers [x, y],
Doc can be used to output identifiers of all $-terminators

within [sp, ep] × [x, y] range in O(log d) time per answer. In

practice, because we only use the simpler functionality in the

current implementation, Doc is implemented as a plain array

using d log d bits.

The basic pattern matching feature of the FM-index can be

extended to support XPath functions such as starts-with, ends-

with, contains, and operators =, ≤, <, >, ≥ for lexicographic

ordering. Given a pattern and a range of text identifiers to be

searched, these functions return all text identifiers that match

the query within the range. In addition, existential (is there

a match in the range?) and counting (how many matches

in the range?) queries are supported. Time complexities are

O(|P | log σ) for the search phase, plus an extra for reporting:

1) starts-with(P, [x, y]): The goal is to find texts in [x, y]
range prefixed by the given pattern P . After the normal

backward search, the range [sp, ep] in T bwt contains the end-

markers of all the texts prefixed by P . Now [sp, ep] × [x, y]
can be mapped to Doc, and existential and counting queries

can be answered in O(log d) time. Matching text identifiers

can be reported in O(log d) time per identifier.

2) ends-with(P, [x, y]): Backward searching is localized to

texts [x, y] by choosing [sp, ep] = [x, y] as the starting interval.
After the backward search, the resulting range [sp, ep] contains
all possible matches, thus, existential and counting queries can

be answered in constant time. To find out text identifiers for

each occurrence, text must be traversed backwards to find a

sampled position. Cost is O(l log σ) per answer.

3) operator = (P, [x, y]): texts that are equal to P , and in

range, can be found as follows. Do the backward search as in

ends-with, then map to the $-terminators like in starts-with.

Time complexities are same as in starts-with.

4) contains(P, [x, y]): To find texts that contain P , we start

with the normal backward search and finish like in ends-with.

In this case there might be several occurrences inside one

text, which have to be filtered. Thus, the time complexity is

proportional to the total number of occurrences, O(l log σ)
for each. Existential and counting queries are as slow as

reporting queries, but the O(|P | log σ)-time counting of all the

occurrences of P can still be useful for query optimization.

5) operators ≤, <, >, ≥: The operator ≤ matches texts

that are lexicographically smaller than or equal to the given

pattern. It can be solved like the starts-with query, but updating

only the ep of each backward search step, while sp = 1 stays

constant. If at some point there are no occurrences of P [i] = c
within the prefix L[1, ep], we find those of smaller symbols,

ep = C[c], and continue for P [1, i − 1]. Other operators can
be supported analogously, and costs are as for starts-with.

The new XPath extension, XPath Full Text 1.0 [22], sug-

gests a wider selection of functionality for text searching.

Implementation of these extensions requires regular expres-

sion and approximate searching functionalities, which can be

supported within our index using the general backtracking

framework [23]: The idea is to alter the backward search to

branch recursively to different ranges [sp′, ep′] representing

the suffixes of the text prefixes (i.e. substrings). This is done

by computing sp′c = C[c] + rankc(L, sp − 1) + 1 and ep′c =
C[c] + rankc(L, ep) for all c ∈ Σ at each step and recursing

on each [sp′c, ep
′
c]. Then the pattern (or regular expression)

can be compared with all substrings of the texts, allowing to

search for approximate occurrences [23]. The running time

becomes exponential in the number of errors allowed, but

different branch-and-bound techniques can be used to obtain

practical running times [24], [25]. We omit further details, as

these extensions are out of the scope of this paper.

C. Construction and Text Extraction

The FM-index can be built by adapting any BWT construc-

tion algorithm. Linear time algorithms exist for the task, but

their practical bottleneck is the peak memory consumption.

Although there exist general time- and space-efficient con-

struction algorithms, it turned out that our special case of

text collection admits a tailored incremental BWT construction

algorithm [26] (see the references and experimental compar-

ison therein for previous work on BWT construction): The

text collection is split into several smaller collections, and

a temporary index is built for each of them separately. The

temporary indexes are then merged, and finally converted into

a static FM-index.

The BWT allows extracting the i-th text by successively

applying LF from T bwt[i], at O(log σ) cost per extracted

symbol. To enable faster text extraction, we allow storing the

texts in plain format in n log σ bits, or in an enhanced LZ78-

compressed format (derived from the LZ-index [27]) using

uHk(T )+o(u log σ) bits. These secondary text representations
are coupled with a delta-encoded bit vector storing starting

positions of each text in T . This bitmap requires O(d log u
d
)

more bits.

IV. TREE REPRESENTATION

A. Data Representation

The tree structure of an XML collection is represented

by the following compact data structures, which provide

navigation and indexed access to it. See Fig. 1 (bottom left).

1) Par: The balanced parentheses representation [28] of

the tree structure. This is obtained by traversing the tree in

depth-first-search (DFS) order, writing a "(" whenever we

arrive at a node, and a ")" when we leave it (thus it is



easily produced during the XML parsing). In this way, every

node is represented by a pair of matching opening and closing

parentheses. A tree node will be identified by the position of

its opening parenthesis in Par (that is, a node will be just

an integer index within Par). In particular, we will use the

balanced parentheses implementation of Sadakane [9], which

supports a very complete set of operations, including finding

the i-th child of a node, in constant time. Overall Par uses

2n + o(n) bits. This includes the space needed for constant-

time binary rank on Par, which are very efficient in practice.

2) Tag: A sequence of the tag identifiers of each tree node,

including an opening and a closing version of each tag, to mark

the beginning and ending point of each node. These tags are

numbers in [1, 2t] and are aligned with Par so that the tag of

node i is simply Tag[i].
We will also need rank and select queries on Tag. Several

sequence representations supporting these are known [20].

Given that Tag is not too critical in the overall space, but

it is in time, we opt for a practical representation that favors

speed over space. First, we store the tags in an array using

⌈log 2t⌉ bits per field, which gives constant time access to

Tag[i]. The rank and select queries over the sequence of

tags are answered by a second structure. Consider the binary

matrix R[1..2t][1..2n] such that R[i, j] = 1 if Tag[j] = i.
We represent each row of the matrix using Okanohara and

Sadakane’s structure sarray [29]. Its space requirement for

each row i is ki log 2n
ki

+ ki(2 + o(1)) bits, where ki is the

number of times symbol i appears in Tag. The total space of

both structures adds up to 2n log(2t) + 2nH0(Tag) + n(2 +
o(1)) ≤ 4n log t + O(n) bits. They support access and select

in O(1) time, and rank in O(log n) time.

B. Tree Navigation

We define the following operations over the tree structure,

which will be useful to support XPath queries over the tree.

Most of these operations are supported in constant time, except

when a rank over Tag is involved. Let tag be a tag identifier.

1) Basic Tree Operations: These are direcly inherited from

Sadakane’s implementation [9]. We mention only the most

important ones for this paper; x is a node (a position in Par).

• Close(x): The closing parenthesis matching Par[x]. If x
is a small subtree this takes a few local accesses to Par,
otherwise a few non-local table accesses.

• Preorder(x) = rank((Par, i): Preorder number of x.
• SubtreeSize(x) = (Close(x)−x+1)/2: Number of nodes

in the subtree rooted at x.
• IsAncestor(x, y) = x ≤ y ≤ Close(x): Whether x is an

ancestor of y.
• FirstChild(x) = x + 1: First child of x, if any.
• NextSibling(x) = Close(x)+1: Next sibling of x, if any.
• Parent(x): Parent of x. Somewhat costlier than Close(x)

in practice, because the answer is less likely to be near

x in Par.

2) Connecting to Tags: The following operations are es-

sential for our fast XPath evaluation.

• SubtreeTags(x, tag): Returns the number of occurrences

of tag within the subtree rooted at node x. This is

ranktag(Tag,Close(x)) − ranktag(Tag, x − 1).
• Tag(x): Gives the tag identifier of node x. In our repre-

sentation this is just Tag[x].
• TaggedDesc(x, tag): The first node labeled tag

strictly within the subtree rooted at x. This is

selecttag(Tag, ranktag(Tag, x) + 1) if it is ≤ Close(x),
and undefined otherwise.

• TaggedPrec(x, tag): The last node labeled tag with pre-

order smaller than that of node x, and not an ancestor

of x. Let r = ranktag(Tag, x − 1). If selecttag(Tag, r)
is not an ancestor of node x, we stop. Otherwise, we set

r = r − 1 and iterate.

• TaggedFoll(x, tag): The first node labeled tag with pre-

order larger than that of x, and not in the subtree of x.
This is selecttag(Tag, ranktag(Tag,Close(x)) + 1).

3) Connecting the Text and the Tree: Conversion between

text numbers, tree nodes, and global identifiers, is easily

carried out by using Par and a bitmap B of 2n bits that

marks the opening parentheses of tree leaves containing text,

plus o(n) extra bits to support rank/select queries. Bitmap B
enables the computation of the following operations:

• LeafNumber(x): Gives the number of leaves up to x in

Par. This is rank1(B, x).
• TextIds(x): Gives the range of text identifiers that de-

scend from node x. This is simply [LeafNumber(x−1)+
1,LeafNumber(Close(x))].

• XMLIdText(d): Gives the global identifier for the text

with identifier d. This is Preorder(select1(B, d)).
• XMLIdNode(x): Gives the global identifier for a tree

node x. This is just Preorder(x).

C. Displaying Contents

Given a node x, we want to recreate its text (XML) content,

that is, return the string. We traverse the structure starting from

Par[x], retrieving the tag names and the text contents, from the

text identifiers. The time is O(log σ) per text symbol (or O(1)
if we use the redundant text storage described in Section III)

and O(1) per tag.

• GetText(d): Generates the text with identifier d.
• GetSubtree(x): Generates the subtree at node x.

D. Handling Dynamic Sets

During XPath evaluation we need to handle sets of interme-

diate results, that is, global identifiers. Due to the mechanics

of the evaluation, we need to start from an empty set and later

carry out two types of operations:

• Insert a new identifier to the result.

• Remove a range of identifiers (actually, a subtree).

To remove a range faster than by brute force, we use a data

structure of 2n−1 bits representing a perfect binary tree over

the interval of global identifiers, so that leaves of this binary

tree represent individual positions and internal nodes ranges

of positions (i.e., the union of their child ranges). A bit mark



at each such internal node can be set to zero to implicitly set

all its range to zero. A position is in the set if and only if all

of its path from the root to it is not zero. Thus one can easily

insert elements in O(log n) time, and remove ranges within

the same time, as any range can be covered with O(log n)
binary tree nodes.

V. XPATH QUERIES

The aim is to support a practical subset of XPath, while

being able to guarantee efficient evaluation based on the data

structures described before. As a first shot, we target the

“Core XPath” subset [12] of XPath 1.0. It supports all 12

navigational axes, all node tests, and filters with Boolean

operations (and, or, not). In our prototype implementation, all

axes have been implemented, but only part of the forward

fragment (consisting of child and descendant) has been fully

optimized. We therefore focus here only on these two axes. A

node test (non-terminal NodeTest below) is either the wildcard

(’*’), a tag name, or a node type test, i.e., one of text()

or node(); the node type tests comment() and processing-

instruction() are not supported in our current prototype. Of

course, we support all text predicates of XPath 1.0, i.e., the

=, contains, and starts-with predicates. Here is an EBNF for

Core XPath.

Core ::= LocationPath | ‘/’ LocationPath
LocationPath ::= LocationStep (‘/’ LocationStep)*
LocationStep ::= Axis ‘::’ NodeTest

| Axis ‘::’ NodeTest ‘[’ Pred ‘]’
Pred ::= Pred ‘and’ Pred | Pred ‘or’ Pred

| ‘not’ ‘(’ Pred ‘)’ | Core | ‘(’ Pred ‘)’

A data value is the value of an attribute or the content of

a text node. Here, all data values are considered as strings.

If an XPath expression selects only data values, i.e., its final

location step is the attribute-axis or a text() test, then we call it

a value expression. Our XPath fragment (“Core+”), consists of

Core XPath plus the following data value comparisons which

may appear inside filters (that is, may be generated by the

nonterminal Pred of above). Let w be a string and p a value

expression; if p equals . (dot) or self and the XPath expression

to the left of the filter is a value expression, then p is a value

expression as well.

• p = w (equality): tests if a string selected by p is equal

to w.

• contains(w, p): tests if the string w is contained in a string

selected by p.
• starts-with(p, w): tests if the string w is a prefix of a

string selected by p.

A. Tree Automata Representation

It is well-known that Core XPath can be evaluated using

tree automata; see, e.g., [30] and [31]. Here we use alternating

tree automata (as in [32]). Such automata work with Boolean

formulas over states, which must become satisfied for a transi-

tion to fire. This allows much more compact representation of

queries through automata, than ordinary tree automata (without

formulas). Our tree automata work over a binary tree view of

R1,R2, t′ ⊢A ⊤ = (⊤, ∅)
(true)

R1,R2, t′ ⊢A φ = (b, R)

R1,R2, t′ ⊢A ¬φ = (b, ∅)
(not)

R1,R2, t′ ⊢A φ1 = (b1, R1)
R1,R2, t′ ⊢A φ2 = (b2, R2)

R1,R2, t′ ⊢A φ1 ∨ φ2 = (b1, R1) 6 (b2, R2)
(or)

R1,R2, t′ ⊢A φ1 = (b1, R1)
R1,R2, t′ ⊢A φ2 = (b2, R2)

R1,R2, t′ ⊢A φ1 ∧ φ2 = (b1, R1) 7 (b2, R2)
(and)

q ∈ dom(Ri)
R1,R2, t′ ⊢A↓i q = (⊤,R(q))

for i ∈ {1, 2} (left,right)

R1,R2, t′ ⊢A mark = (⊤, {t′})
(mark)

eval pred(p)=b
R1,R2, t′ ⊢A p = (b, ∅)

(pred)
when no other rule applies
R1,R2, t′ ⊢A φ = (⊥, ∅)

where:

⊤ = ⊥ ⊥ = ⊤

(b1, R1) > (b2, R2) =

8

>

<

>

:

⊤, R1 if b1 = ⊤, b2 = ⊥
⊤, R2 if b2 = ⊤, b1 = ⊥

⊤, R1 ∪ R2 if b1 = ⊤, b2 = ⊤
⊥, ∅ otherwise

(b1, R1) ? (b2, R2) =



⊤, R1 ∪ R2 if b1 = ⊤, b2 = ⊤
⊥, ∅ otherwise

Fig. 2. Inference rules defining the evaluation of a formula

the XML tree where the left child is the first child of the XML

node and the right child is the next sibling of the XML node.

Definition 5.1 (Non-deterministic marking automaton):

An automaton A is a tuple (L,Q, I, δ), where L is the infinite

set of all possible tree labels, Q is the finite set of states,

I ⊆ Q is the set of initial states, and δ : Q× 2L → F is the

transition function, where F is a set of Boolean formulas. A

Boolean formula φ is generated by the following EBNF.

φ ::= ⊤ | ⊥ | φ ∨ φ | φ ∧ φ | ¬φ | a | p (formula)

a ::= ↓1 q | ↓2 q (atom)

where p ∈ P is a built-in predicate and q is a state. We call

F the set of well-formed formulas.

Definition 5.2 (Evaluation of a formula):

Given an automaton A and an input tree t, the

evaluation of a formula is given by the judgement

R1,R2, t
′ ⊢A φ = (b, R)

where R1 and R2 are mappings from states to sets of subtrees

of t, t′ is a subtree of t, φ is a formula, b ∈ {⊤,⊥} and

R is a set of subtrees of t. We define the semantics of this

judgment by the mean of inference rules, given in Fig. 2.

These rules are pretty straightforward and combine the

rules for a classical alternating automaton, with the rules of

a marking automaton. Rule (or) and (and) implements the

Boolean connective of the formula and collect the marking

found in their true sub-formulas. Rules (left) and (right)

(written as a rule schema for concision) evaluate to true if the

state q is in the corresponding set. Intuitively,R1 (resp. R2) is



the set of states accepted in the left (resp. right) subtree of the

input tree. Rule (pred) supposes the existence of an evaluation

function for built-in predicates. Among the latter, we suppose

the existence of a special predicate, mark which evaluates to

⊤ and returns the singleton set containing the current subtree.

We can now give the semantics of an automaton, by the means

of a run function.

Algorithm 5.1 (Top-down run function):

Input: A = (L,Q, I, δ), t, r Output: R
where A is the automaton, t the input tree, r a set of states and R
a mapping from states of Q to sets of subtrees of t and such that
dom(R) ⊆ r.

1 function top down run A t r =
2 if t is the empty tree then return ∅ else
3 let trans = {(q, ℓ) → φ | q ∈ r and Tag(t) ∈ ℓ} in
4 let ri = {q | ↓i q ∈ φ,∀φ ∈ trans} in
5 let R1 = top down run A FirstChild(t) r1

6 and R2 = top down run A NextSibling(t) r2

7 in return

8 {q 7→ R |
R1,R2, t ⊢A, φ = (⊤,R),
∀(q, ℓ → φ) ∈ trans

}

This algorithm works in a very general setting. Considering

any subtree t of our input tree, let R be the result of

top down run(A, t,Q). Then dom(R) is the set of states

which accepts t and ∀q ∈ dom(R), R(q) is the set of subtrees
of t marked during a run starting from q on the tree t. It
is easy to see that the evaluation of top down run(A, t, r)
takes time O(|A|×|t|), provided that the operations >, ? and

eval pred can be evaluated in constant time.

B. From XPath to Automata

The translation from XPath to alternating automata is

simple and can be done in one pass through the parse tree

of the XPath expression. Roughly speaking, the resulting

automaton is “isomorphic” to the original query (and

has approximately the same size). All our optimization

discussed later are on-the-fly algorithms; for instance, we

only determinize the automaton during its run on the

input tree. We illustrate the process by giving a query

and its corresponding automaton. Consider the query

/descendant::listitem/descendant::keyword.

The corresponding automaton is A = (L, {q0, q1}, {q0}, δ)
where δ contains the following transitions:

1 q0, {listitem}→↓1 q1

2 q0,L − {@, #} →↓1 q0

3 q0,L →↓2 q0

4 q1, {keyword}→mark

5 q1,L − {@, #} →↓1 q1

6 q1,L →↓2 q1

The automaton starts in state {q0} and traverses the tree until it
finds a subtree labeled listitem. At such a subtree, the au-

tomaton changes to state {q0, q1} on the left subtree (because

it is non-deterministic and two transitions fire), looking for a

tag keyword or possibly another tag listitem and it will

recurse on the right subtree in state {q0} again. Transitions

2 and 5 make sure that, according to the semantics of the

descendant axis, only element nodes (and not text or attributes)

are considered. If, in state {q0, q1} it finds a node labeled

keyword then this node is marked as a result node.

C. General Optimizations, On-the-fly Determinisation

In Algorithm 5.1 the most expensive operation is in Line 11,

which is evaluating the set of possible transitions and accu-

mulating the mappings. First, note that only the states outside

of filters actually accumulate nodes. All other states always

yield empty bindings. Thus we can split the set of states into

marking and regular states. This reduces the number of > and

? operations on result sets. Note also that given a transition

qi, ℓ →↓1 qj∨ ↓2 qk where qi, qj and qk are marking states,

all nodes accumulated in qj are subtrees of the left subtree

of the input tree. Likewise, all the nodes accumulated in qk

are subtrees of the right subtree of the input tree. Thus both

sets of nodes are disjoint. Therefore, we do not need to keep

sorted sets of nodes but only need sequences which support

O(1) concatenation. Thus, computing the union of two result

sets Rj and Rk can be done in constant time and therefore >

and ? can be implemented in constant time.

Another important practical improvement exploits the fact

that the automata are very repetitive. For instance if an XPath

query does not contain any data value predicate (such as

contains) then its evaluation only depends on the tags of

the input tree. We can use this to our advantage to memoize

the results based on the tag of the input tree and the set r.
Indeed, the set r and the tag of the input tree t uniquely

define the set trans of possible transitions. So instead of

computing such a set at every step, we can cache it in a hash-

table where the key is the pair (Tag(t),r); this corresponds

to an on-the-fly determinization of automata. We can apply

a similar technique for the other expensive operation, that

is, the evaluation of the set of formulas. This operation

can be split in two parts: the evaluation of the formulas

and the propagation of the result sets for the corresponding

marking states. Again, if the formulas do not contain data

value predicates, then their value only depends on the states

present in R1 and R2, the results of the recursive calls.

Using the same technique, we can memoize the results in

a hash table indexed by the key (dom(R1), dom(R2)). This
hash table contains the pair dom(R) of the states in the

result mapping and a sequence of affectation to evaluate, of

the form [qi:=concat(qj , qk), . . . ], which represents results

that need to be propagated between the different marking

states. Another optimization is for the result set associated

with the initial state of the automaton, which is answer of the

query. This result set is “final” in the sense that anything that

was propagated up to it will be in the result of the query. We

can exploit this fact and use a more compact data-structure for

this set of results (for instance the one described in Section IV-

D). Thus we can trade time complexity (since insertion is

O(log(n)) in this structure) for space. Using this scheme, we

are able to answer queries containing billions of result nodes

using little memory.

D. Leveraging the Speed of the Low-Level Interface

Conventionally, the run of a tree automaton visits every

node of the input tree. This is for instance the behaviour

of the tree automata presented in [30], which performs two



scans of the whole XML document (the latter being stored

on disk in a particular format). For highly efficient XPath

evaluation, this is not good enough and we must find ways to

restrict the run to the nodes that are “relevant” for the query

(this is precisely what is also done through “partitioning

and pruning” in the staircase join [33]). Consider the query

/descendant::listitem/descendant::keyword

of before. Clearly, we only care about listitem and keyword

nodes for this query, and how they are situated with respect

to each other. This is precisely the information that is

provided through the TaggedDesc and TaggedFoll functions

of the tree representation. These functions allow us to have

a “contracted” view of the tree, restricted to nodes with

certain labels of interest (but preserving the overall tree

structure). For instance, to solve the above query we can call

TaggedDesc(Root,listitem) which selects the first listitem-node

x. Now we can apply recursively TaggedDesc(x,keyword)

and TaggedFoll(y,keyword) in order to select all keyword-

descendants of x. We do this optimization of “jumping run”

based on the automaton: for a given set of states of the

automaton we compute the set of relevant transitions which

cause a state change.

Bottom-up run: While the previous technique works

well for tree-based queries it still remains slow for

value-based queries. For instance, consider the query

//listitem//keyword[contains(.,"Unique")].

The text interface described in Section III can answer

the string query very efficiently returning the set of text

nodes matching this contains query. It is also able to count

globally the number of such results. If this number is low,

and in particular smaller than the number of listitem

or keyword tags in the document (which can also be

determined efficiently through the tree structure interface),

then it would be faster to take these text nodes as starting

point for query evaluation and test if their path to the root

matches the XPath expression //listitem//keyword.

This scheme is particularly useful for text oriented queries

with low selectivity. However, it also applies for tree only

queries: imagine the query //listitem//keyword on a

tree with many listitem nodes but only a few keyword nodes.

We can start bottom-up by jumping to the keyword nodes

and then checking their ancestors for listitem nodes.

To achieve this goal, we devise a real bottom-up eval-

uation algorithm of an automaton. The algorithm takes an

automaton and a sequence of potential matching nodes (in our

example, the text nodes containing the string "Unique"). It

then moves up to the root, using the parent function and

checks that the automaton arrives at the root node in its initial

state qi. The technique used is similar to shift-reduce parsing.

Consider a sequence [t1,. . . ,tn] (ordered in pre-order) of

potentially matching subtrees. In our previous example these

were text nodes but this is not a necessary condition. The

algorithm starts on tree t1. First, if the tree is not a leaf, we

call the top down run function on t1 with r = Q. This

returns the mapping R1 of all states accepting t1. We now

want to move from t1 upwards to the document root, starting

with states dom(R1). Once we arrive at a node t′1 which

is an ancestor of the next potential matching subtree t2, we
stop at t′1 and start the algorithm on t2 until it reaches t′1.
Once this is done, we can merge both mappings and continue

upwards until we reach the root or a common ancestor of t′1
and t3, and so on. The idea of merging the runs at the lowest

common ancestor makes sure that we never touch any node

more than once, during a bottom-up run. We now give formally

the bottom up algorithm.

Algorithm 5.2 (Bottom-up run function):
Input: A, s Output: R
where A is an automaton, s a sequence of subtrees of the input tree,
and R a mapping from states of A to subtrees of the input tree.

1 function bottom up run A s =
2 if s = [] then return ∅ else

3 let t,s′ = hd(s), tl(s) in
4 let R = top down run A t Q in

5 let R′, s′′ = match above A t s′ R # in
6 R′∪ (bottom up run A s′′)
7

8 function match above A t s R1 stop =
9 if t = stop then R1, s else
10 let pt = Parent(t) in
11 let R2, s

′ =
12 if s = [] or not (IsAncestor(pt,hd(s)))
13 then ∅, s else
14 let t2,s

′ = hd(s), tl(s) in
15 let R = top down run A t2 Q in

16 match above A 2 s′ R pt in

17 let trans = {q, ℓ → φ |
∃q′ ∈ dom(Ri)s.t. ↓i q′ ∈ φ
label(pt) ∈ ℓ

}

18 in

19 let R′ = {q 7→ R |
R1,R2, t ⊢A, φ = (⊤, R),
∀(q, ℓ → φ) ∈ trans

}

20 in

21 match above A pt s′ R′ stop

The first function in Algorithm 5.2 iterates the func-

tion match above on every tree in the sequence s. The

match above function is the one “climbing-up” the tree.

We assume that the Parent( ) function returns the empty tree

when applied to the root node. If the input tree is not equal

to the tree stop (which is initially the empty tree #, allowing

to stop only after the root node has been processed) then we

first check whether the next (we use the function hd and tl

which returns the first element of the list and its tail) potential

tree is a descendant of our parent (Line 14). If it is so, then we

pause for the current branch and recursively call match above

with our parent as stop tree. Once it returns, we compute

all the possible transitions that the automata can take from

the parent node to arrive on the left and right subtree with

the correct configuration (Line 21). Once this is done, we

merge both configuration using the same computation as in

the top-down algorithm (Line 23). Finally, we recursively call

match above on the parent node, with the new configuration

and sequence of potential matching nodes (Line 25).

VI. EXPERIMENTAL RESULTS

We have implemented a prototype XPath evaluator based

on the data structures and algorithms presented in previous



sections. Both the tree structure and the FM-Index were

developed in C++, while the XPath engine was written using

the Objective Caml language.

A. Protocol

To validate our approach, we benchmarked our implemen-

tation against two other well established XQuery implemen-

tations, namely MonetDB/XQuery and Qizx/DB. We describe

our experimental settings hereafter.
Test machine: Our test machine features an Intel Core2

Xeon processor at 3.6Ghz, 3.8 GB of RAM and a S-ATA

hard drive. The OS is a 64-bit version of Ubuntu Linux. The

kernel version is 2.6.27 and the file system used to store the

various files is ext3, with default settings. All tests were run

on a minimal environment where only the tested program and

essential services were running. We used the standard compiler

and libraries available on this distribution (namely g++ 4.3.2,

libxml2 2.6.32 for document parsing and OCaml 3.11.0).
Qizx/DB: We used version 3.0 of Qizx/DB engine (free

edition), running on top of the 64-bit version of the JVM

(with the -server flag set as recommended in the Qizx user

manual). The maximal amount of memory of the JVM set

to the maximal amount of physical memory (using the -Xmx

flag). We also used the flag -r of the Qizx/DB command

line interface, which allows us to re-run the same query

without restarting the whole program (this ensures that the

JVM’s garbage collector and thread machinery do not impact

the performances). We used the timing provided by Qizx

debugging flags, and reported the serialization time (which

actually includes the materialization of the results in memory

and the serialization).
MonetDB/XQuery: We used version Feb2009-SP2 of

MonetDB, and in particular, version 4.28.4 of MonetDB4

server and version 0.28.4 of the XQuery module (pathfinder).

We used the timing reported by the “-t” flag of MonetDB

client program, mclient. We kept the materialization time

and the serialization time separated.
Running times and memory reporting: For each query,

we kept the best of five runs. For Qizx/DB, each individual

run consists of two repeated runs (“-r 2”), the second one

being always faster. For MonetDB, before each batch of five

runs, the server was exited properly and restarted. We excluded

from the running times the time used for loading the index

into main memory (based on the engines timing reports). We

monitored the memory the resident set size of each process,

which correspond to the amount of process memory actually

mapped in physical memory. For MonetDB, we kept track

of the memory usage of both server and client. The peak of

memory reported was the maximum of the sum of client’s

memory plus server’s memory use, at the same instant.
For the tests where serialization was involved, we serialized

to the /dev/null device (that is, all the results were

discarded without causing any output operation).

B. Indexing

Our implementation features a versatile index. It is divided

into three parts. First, the tree representation composed of the

Document Size (MB) 116 223 335 447 559
Index construction time (min) 6 12 20 29 36
Index construction mem. use (MB) 296 568 844 1085 1387

Index loading time (s) 2.0 3.8 5.7 8.1 10.1

Fig. 3. Indexing of XMark documents

parenthesis structure, as well as the tag structure. Second, the

FM-Index encoding the text collection. Third, the auxiliary

text representation allowing fast extraction of text content.

It is easy to determine from the query which parts of

the index are needed in order to solve it, and thus load

only those into main memory. For instance, if a query only

involves tree navigation, then having the FM-Index in memory

is unnecessary. On the other hand, if we are interested in

very selective text-oriented queries, then only the tree part

and FM-Index are needed (both for counting and serializing

the results). In this case, serialization is a bit slower (due to

the cost of text extraction from the FM-Index) but remains

acceptable since the number of results is low.
Figure 3 reports the construction time and memory con-

sumption of the indexing process, the loading time from disk

into main memory of a constructed index and a comparison

between the size of the original document and the size of our

in-memory structures. For these indexes, a sampling factor

l = 64 (cf. Section III) was chosen. It should be noted that

the size of the tree index plus the size of the FM-index is

always less than the size of the original document.

It should be noted that although loading time is acceptable,

it dominates query answering time. This is however not a

problem for the use case we have targeted: a main memory

query engine where the same large document is queried many

times. As mentioned in the Introduction, systems such as

MonetDB load their indexes only partially; this gives superior

performance in a cold-cache scenario than our system.

C. Tree Queries

We benchmarked tree queries using the queries given in

Fig. 4. Queries Q01 to Q11 were taken from the XPathMark

benchmark [34], derived from the XMark XQuery benchmark

suite. Q12 to Q16 are “crash tests” that are either simple

(Q12 selects only the root since it always has at least one

descendant in our files) or generate the same amount of results

but with various intermediate result sizes. For this experiment

we used XMark documents of size 116MB and 1GB. In the

cases of MonetDB and Qizx, the files were indexed using



Q01 /site/regions
Q02 /site/closed auctions
Q03 /site/regions/europe/item/mailbox/mail/text/keyword
Q04 /site/closed auctions/closed auction/annotation/description/

parlist/listitem
Q05 /site/closed auctions/closed auction/annotation/description/

parlist/listitem/parlist/listitem/*//keyword
Q06 /site/regions/*/item
Q07 //listitem//keyword
Q08 /site/regions/*/item//keyword
Q09 /site/regions/*/person[ address and (phone or homepage) ]
Q10 //listitem[.//keyword and .//emph]//parlist
Q11 /site/regions/*/item[ mailbox/mail/date ]/mailbox/mail
Q12 /*[ descendant::* ]
Q13 //*
Q14 //*//*
Q15 //*//*//*//*
Q16 //*//*//*//*//*//*//*//*

Fig. 4. Tree oriented queries
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the default settings. Fig. 5 reports the running times for both

counting and materialization (construction of a result set in

memory) and serialization (the output of a result set). As

previously mentioned, since Qizx interleaves serialization and

materialization, therefore the timing we report include both. In

this table, we marked in bold font the lowest materialization

time for a given query and we underlined the materialization

and serialization time whose sum was the lowest (or in other

words underlined numbers correspond to the lowest overall

execution time, excluding index loading).

We report in Fig. 6 the peak memory usage for each query,

for the 116MB document.

From the results of Fig. 5, we see how the different

components of SXSI contribute to the efficient evaluation

model. First, queries Q01 to Q06 —which are fully qualified

paths— illustrate the sheer speed of the tree structure and

in particular the efficiency of its basic operations (such as

FirstChild and NextSibling, which are used for the child

axis), as well as the efficient execution scheme provided by

the automaton. Query Q07 to Q11 illustrate the impact of the

jumping. Moreover, it shows that filters do not impact the

execution speed: the conditions they express are efficiently

checked by the formula evaluation procedure. Finally, Q12

to Q16 illustrate the robustness of our automata model. In-

deed while such queries might seem unrealistic, the good

performances that we obtain are only the consequence of

using an automata model, which factors in its states all the

necessary computation and thus do not materialize unneeded

intermediate results. This, coupled together with the compact

dynamic set of Section IV-D, allows us to keep a very low

memory footprint even when the query returns a lot of results

or that each step generates a lot of intermediate results (cf.

Fig. 6).

It is well-known that MonetDB’s policy is to use as much

memory as available to answer queries efficiently and to

preserve memory only if there is not enough physical memory

available. Our goal by providing memory use experiment

was not to argue that we would use less memory than e.g.

MonetDB but rather to show that even though we remain mem-

ory conscious, we can outperform engines using a “greedier”

memory policy.

D. Text Queries

We tested the text capabilities of our XPath engine against

the most advanced text oriented features of other query en-

gines.

Qizx/DB: We used the newly introduced Full-Text ex-

tension of XQuery available in Qizx/DB v. 3.0. We tried to

write queries as efficiently as possible while preserving the

same semantics as our original queries. The query we used

always gave better results than their pure XPath counterpart. In

particular, we used the ftcontains text predicate [22] im-

plemented by Qizx/DB. The ftcontains predicate allows

one to express not only contains-like queries but also Boolean

operations on text predicates, regular expression matching and

so on. It is more efficient than the standard contains. In

particular we used regular expression matching instead of

of the starts-with and ends-with operators since the

latter were slower in our experiments.

MonetDB: MonetDB supports some full-text capabilities

through the use of the PF/Tijah text index ( [35]). However,

this index only supports a complex about operator, similar to

contains but returning ranked results by order of relevance.

Although its semantics does not exactly match the one of

contains, its execution is often faster while providing richer

results. We measured MonetDB timings both for standard

XPath operator and about.

Experiments were made on a 122MB Medline file. This

file contains bibliographic information about life sciences



Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16

116 MB Document, counting
SXSI 1 1 14 16 24 12 36 31 5 70 34 1 309 309 313 330

MonetDB 7 7 28 24 40 16 24 30 87 61 60 183 75 239 597 957
Qizx 1 1 26 29 31 17 19 39 48 109 158 1 2090 8804 28005 34800

116 MB Document, materializing and serializing
SXSI 1 1 15 21 26 120 64 65 5 83 52 1 974 975 987 465

198 66 7 36 7 256 74 85 0.1 43 96 566 5847 5295 4076 573
MonetDB 7 7 28 27 40 16 25 25 29 88 60 179 71 238 591 966

672 208 10 76 10 671 90 81 0.1 104 181 1653 10023 8288 4959 667
Qizx 3153 1260 65 567 103 3487 1029 307 50 991 1179 8387 45157 44264 8181 21680

1 GB Document, counting
SXSI 2 2 107 149 207 79 665 342 5 990 317 2 4376 4371 4382 4500

MonetDB 8 8 519 576 597 1557 3383 1623 1557 3719 1799 16274 7779 25493 60555 77337
Qizx 1 1 185 135 230 45 101 302 291 185 186 14 17368 ++ ++ ++

1 GB Document, materializing and serializing
SXSI 2 2 140 238 256 1110 1654 771 5 1372 543 2 15246 15254 15461 6567

1920 637 74 359 69 2488 727 835 0.1 411 927 5413 57880 51915 40103 5662
MonetDB 8 8 587 617 648 1554 3405 1710 1600 3739 1810 18203 ⋆ ⋆ ⋆ 80394

20999 200770 22586 158548 37469 11740 53067 16360 0.1 43688 16882 26858 ⋆ ⋆ ⋆ 31818
Qizx 29998 9363 368 4517 417 29543 9061 1989 317 8452 9424 74843 414086 ⋆⋆ ⋆⋆ ⋆⋆

++: Running time exceeded 20 minutes ⋆: MonetDB server ran out of memory. ⋆⋆: Qizx/DB ran out of memory.

We mark in bold face the fastest query execution time and we underline the fastest execution and serialization time.

Fig. 5. Running time for the tree based queries (in milliseconds)

T1 //MedlineCitation//*/text()[contains( ., ”brain”)]
T2 //MedlineCitation//Country/text()[

contains(., ”AUSTRALIA”)]
T3 //Country/text()[ contains(. , ”AUSTRALIA”)]
T4 //*/text()[ contains( . , ”1930”)]
T5 //MedlineCitation//*/text()[ contains( . , ”1930”) ]
T6 //MedlineCitation/Article/AuthorList/Author/

LastName/text()[startswith(., ”Bar”)]
T7 //MedlineCitation[ MedlineJournalInfo/

Country/text()[ ends-with(.,”LAND”)]]
T8 //*[ Year = ”2001”]
T9 //*[ LastName = ”Nguyen”]

Fig. 7. Text oriented queries

and biomedical publications. This test file featured 5,732,159

text elements, for a total amount of 95MB of text content.

Fig. 7 shows the text queries we tested. We used count

queries for both MonetDB and Qizx —enclosing the query

in an fn:count() predicate— while in our implementation

we ran the queries in “materialization” mode but without

serializing the output. The table in Fig. 8 summarizes the

running times for each query. As we target very selective text

queries, we also give, for each query, the number of results

it returned. Since for these queries our automata worked in

“bottom-up” mode, we detail the two following operations:

• Calling the text predicate globally on the text collection,

thus retrieving all the probable matches of the query (Text

query line in the table of Fig. 8)

• Running the automaton bottom up from the set of proba-

ble matches to keep those satisfying the path expression

T1 T2 T3 T4 T5 T6 T7 T8 T9

Text query 69 0.1 0.1 0.2 0.2 0.01 23 0.07 0.01
Automaton run 27 7 4 0.9 1.2 18 110 95 2.5

SXSI: Total 96 7.1 4.1 1.1 1.4 18 133 95.1 2.5

MonetDB 1769 72 81 1203 301 180 256 473 505
MonetDB/tijah 336 118 117 252 - - - - -
Qizx/DB 108 10 6 99 107 244 259 2469 1397

# of results 1493 438 438 32 32 680 6935 6685 36

T1 T2 T3 T4 T5 T6 T7 T8 T9
0

40

80

120

160

200

Peak Memory Use (MB)

SXSI MonetDB QizX/DB

Fig. 8. Running times (in ms) and memory consumption (in MB) for
the text-oriented queries

(Automaton run line in the table of Fig. 8)

As it is clear from the experiments the bottom-up strategy

pays off. The only down-side of this approach is that the

automaton uses Parent moves, which are less efficient than

FirstChild and NextSibling. This is clear in queries T7 and

T8 where the increase in number of results makes the relative

slowness of the automata more visible. However our evaluator

still outperforms the other engines even in those cases.

E. Remarks

We also compared with Tauro [3]. Yet, as it uses a tailored

query language, we could not produce comparable results.



We limited the experiments to natural language XML,

although our engine (unlike the inverted file based engines)

supports as well queries on XML databases of continuous

sequences such as DNA and proteins. Realistic queries on such

biosequence XMLs require approximate / regular expression

search functionalities, that we already support but whose

experimental study is out of the scope of this paper.

VII. CONCLUSIONS AND FUTURE WORK

We have presented SXSI, a system for representing an XML

collection in compact form so that fast indexed XPath queries

can be carried out on it. Even in its current prototype stage,

SXSI is already competitive with well-known efficient systems

such as MonetDB and Qizx. As such, a number of avenues

for future work are open. We mention the broadest ones here.

Handling updates to the collections is possible in principle,

as there are dynamic data structures for sequences, trees, and

text collections [7]–[9]. What remains to be verified is how

practical can those theoretical solutions be made.

As seen, the compact data structures support several fancy

operations beyond those actually used by our XPath evalu-

ator. A matter of future work is to explore other evaluation

strategies that take advantage of those nonstandard capabilities.

As an example, the current XPath evaluator does not use

the range search capabilities of structure Doc of Section III.

An interesting challenge is to support XPath string-value

semantics, where strings spanning more than one text node

can be searched for. This, at least at a rough level, is not hard

to achieve with our FM-index, by removing the $-terminators

and marking them on a separate bitmap instead. Beyond that,

we would like to extend our implementation to full XPath 1.0,

and add core functionalities of XQuery.
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