
Compact Representations of Spatial Hierarchical
Structures with Support for Topological Queries⋆

José Fuentes-Sepúlvedaa,d, Diego Gaticaa,d, Gonzalo Navarrob,d, M. Andrea
Rodŕıgueza,d, Diego Secoc,d

aDepartment of Computer Science, Universidad de Concepción, Chile.
bDepartment of Computer Science, University of Chile, Chile.

cCITIC, Facultade de Informática, Universidade da Coruña, Spain.
dMillennium Institute for Foundational Research on Data, Chile.

Abstract

Among different spatial data models, the topological model for spatial regions

explicitly represents common boundaries. This model pursues the efficiency

of topology-related queries and the elimination of data redundancy. This pa-

per proposes several space-efficient data structures to support access to the

topological representation of two-dimensional regions that are organized in a

multi-granular or hierarchical structure, such as the political and administra-

tive partition of a country. In the context of these hierarchies, we focus on

queries that search for inclusion, disjointness, and adjacency between regions.

The proposed structures build upon compact planar graph embeddings, which

show to have a good trade-off between space and time.

Keywords: Multi-granular hierarchy, Topological model, Spatial partition,

Compact data structures

2020 MSC: 68P05, 68P30

⋆This work was funded by: ANID Millennium Science Initiative Program - Code
ICN17 002; PAI grant 77190038 (1st author); PFCHA/Doctorado Nacional/2020-21201986
(2nd author); FONDECYT Grant 1-200038 (3rd author); CYTED grant 519RT0579 (4th and
5th authors); GRC: ED431C 2021/53, partially funded by GAIN/Xunta de Galicia (5th au-
thor); TED2021-129245B-C21 (PLAGEMIS), PDC2021-120917-C21 (SIGTRANS), PID2020-
114635RB-I00 (EXTRACompact) and PID2019-105221RB-C41 (MAGIST), partially funded
by MCIN/AEI/10.13039/501100011033 and “NextGenerationEU”/PRTR (5th author). An
early partial version of this paper appeared in Proc. DCC 2021 [1].

Preprint submitted to Journal of LATEX Templates March 29, 2023

1. Introduction

Spatial modeling usually distinguishes between field- and entity-based views

of the space [2, 3]. While the field-based view of the space associates attributes

with areas in the space, the entity-based view represents the space as spa-

tial objects with explicit identities. The latter is the most common approach5

to represent objects in spatial databases, and thus there exist several spatial

data models implementing it. Within these spatial data models, the topological

model [4, 5] explicitly represents common boundaries between entities. Basic el-

ements of this model are points, nodes, arcs, and regions. An arc is composed of

its extreme nodes (or points of intersection), a sequence of points between those10

nodes, and the two regions that share the arc. By using the concept of arcs, the

representation of a common boundary is unique, eliminating duplication when

representing two adjacent entities. Such a model is useful to answer topological

queries that search for objects that are adjacent or disjoint. Adjacency and dis-

jointness are the most useful topological relations when the space is partitioned15

into regions, that is, it is divided into disjoint regions whose geometric union

make up the whole space.

Partitions are a central notion for the spatial domain [6]. They can be also

formalized as a form of granularity composed of granules that cannot partially20

overlap. The notion of granularity refers to the level of detail used in the rep-

resentation of a domain composed of identifiable and disjoint units [7, 8]. For

example, the spatial granularity of ‘county’ contains all counties that are spatial

regions that do not overlap. The definition of granularity we use in this work

generalizes spatial partitions, but we analyze the relation between these two25

concepts in Section 2. Partitions can be organized in terms of a partial order

relation by the topological relation of inclusion (inside or part-of) creating spa-

tial hierarchical structures such as the administrative subdivisions of a country,

which are useful to associate spatial references with statistical or non spatial

data in traditional databases, and also to define dimensions in data warehous-30

2

ing systems. Such a structure captures different levels of detail or granularity

in the representation of space.

The work in this paper proposes new data structures to implement a topolog-

ical model that represents and accesses data organized as a hierarchical structure35

of regions defined by the inclusion relation. Our approach differs from classical

indexing structures that optimize spatial queries [9, 10, 11], which are specially

designed to answer spatial range queries that return objects that are inside of

a specific region given as the input of the query.

40

The new structures are based on Compact Data Structures (CDSs) [12],

which have proven to successfully represent different data types in small space

while supporting rich sets of operations. CDSs have obtained remarkable results

in domains where there is a need to handle data in devices whose capacity is

surpassed by the data volume. The sheer volume of data is known to be one45

of the main characteristics of the spatial domain, and hence, CDSs have been

also successfully applied in this domain [13, 14, 15, 16]. With this approach

we expect not only to handle large volume of spatial data, but also to support

spatial algorithms on small devices such as sensors, wearables or smartphones.

50

In this regard, the work by [17] showed how to implement the topological

spatial data model using a planar-graph compact structure, which is based on

Turán’s representation [18]. We extended their work by adding extensions to

answer the topological relations of disjointness, inclusion, and adjacency at dif-

ferent levels of detail, which are useful in the context of spatial partitions such55

as administrative subdivision of the space. Note that this approach restricts

our results to the two-dimensional space. Recently, the work by [1] introduced

a compact data structure to support the same relations. Our work includes

the following contributions: i) we propose two new approaches that offer good

space-time trade-offs, ii) we show how to generalize our approaches to the case60

where the maps are composed by more than one connected component, and iii)

3

we perform a comprehensive experimental evaluation of the three approaches.

Our three approaches use planar graphs to represent partitions of the space,

which allows us to use well-studied properties and methods from graph the-65

ory [19, 20]. The main difference between our approaches is in how they repre-

sent inclusion relationships between regions at different granularities. Both the

representation of these relationships and the planar graphs use compact data

structures, which allows performing most of the work in main memory, resorting

to secondary memory only to solve operations about the actual geometries. Our70

strategies then complement classical spatial indexing methods.

The organization of the paper is as follows. Section 2 describes related work

and preliminaries including syntax notation used along the paper. Sections 3, 4

and 5 introduce the three proposed data structures. Then, Section 6 generalizes75

those data structures to domains composed by more than one connected com-

ponent. Section 7 experimentally evaluates our structures. Final conclusions

and research directions are in Section 8.

2. Related work and preliminaries

2.1. Multi-granular hierarchies80

The definition of spatial granularity [8] comes from the definition of tem-

poral granularity by [21]. Formally, the spatial granularity is a function that

maps non-overlapping portions, referred as granules of the spatial domain, into

indexes or identifiers. [22] defined a spatio-temporal granule as a tuple (s, t),

meaning that at time index t, the spatial index s is valid. [23] assigns to each85

spatio-temporal granule a sequence of spatial granules, one per temporal gran-

ule.

There exist several relations between granularities. Among them, a granular-

ity P is said to be a partition of a granularity Q, if for each granule g ∈ Q, there90

4

exists a set S of granules in P whose geometric union makes up q [21, 8, 22, 24].

This definition of spatial partition is a natural realization of a granularity, but

the notion of granularity is more general because the set of granules that form

the granularity may not cover the whole spatial domain.

95

Partitions have been an important notion to model the spatial domain [6,

25, 26]. Concepts of maps, resolution, spatial objects and topological reasoning

build on partitions and their properties. [27] proposed a formalization based

on the theory of rough sets [28] to deal with resolution and multi-resolutions in

geographic spaces and vague spatial objects. In this work, a resolution is a finite100

partition of a set S of locations on a plane. Partitions can be organized in terms

of a partial order relation; in this sense, the notion of resolution is equivalent to

the notion of granularity.

[29] propose a taxonomy of granular partitions. This taxonomy classifies105

partitions in terms of: i) degree of structural fit, which refers to the concept of

mereological structure; ii) degree of completeness and exhaustiveness of projec-

tion, where projection refers to the notion that objects are located at particular

cells or granules of a partition; iii) degree of redundancy, in which cells may

belong to different partitions.110

As seen, multi-granular topological hierarchies, or restricted versions thereof

such as spatial partitions, have been studied in the past from different commu-

nities, which emphasizes the importance of this model and its implementation.

2.2. Multi-granular spatial hierarchy115

Given a geographic connected regionR,1 the formalization of a multi-granular

spatial hierarchy is as follows. A partition L = {r1, . . . rn} is a granularity com-

1In Section 6, we extend our proposal for regions that are not necessarily connected (e.g.,

islands).

5

posed of regions ri (called granules), such that (i) ∀ri, rj ∈ L, ri ∩ rj = ∅ (i.e.,

regions are disjoint or touch each other, but they do not internally intersect)

and (ii) R =
⋃n

1 ri (i.e., the geometric union of regions makes the whole R). We120

will say that regions in L are neighbors if they share common boundaries. A

partition can be seen as a planar graph, where nodes represent regions and an

edge between two nodes indicates that the corresponding regions are neighbors.

Partitions can be organized into hierarchical structures by inclusion rela-

tions. Let L1 = {r1,1, . . . r1,n1
} and L2 = {r2,1, . . . r2,n2

} be two partitions,125

with n1 ≤ n2 being the number of regions per partition. Let contains(r, r′) be a

function that returns true if region r contains region r′. Then, L1 is a coarser

level of granularity than L2, denoted by L1 ≺ L2, if (i) ∀r2,i ∈ L2, ∃r1,j ∈ L1

such that contains(r1,j , r2,i) holds (i.e., every region in L2 is within a region in

L1) and (ii) ∀r1,i ∈ L1, ∃S ⊆ L2 r1,i =
⋃

r2,j∈S r2,j (i.e., each r1,i is made of the130

union of regions in L2). We can generalize to several partitions (granularities)

L1 ≺ L2 ≺ · · · ≺ Lh, with L1 being the coarsest or lowest granularity and Lh

the finest or highest level of granularity. Figure 1 shows a spatial hierarchy

composed of three granularity levels: L1 is the region level (Figure 1(c)), L2

is the state level (Figure 1(b)), and L3 is the county level (Figure 1(a)), so135

L1 ≺ L2 ≺ L3.

Based on this definition of a partition and of the multi-granular hierarchy,

the following properties hold.

140

• Let Li ≺ Lj , with i < j, then for each r′ ∈ Lj , there is only one r ∈ Li

such that contains(r, r′). Conversely, for each r ∈ Li, there must be at

least one r′ ∈ Lj such that contains(r, r′).

• Because a partition Li can be represented as a planar graph, with ni = |Li|145

nodes and mi edges (the number of pairs of neighboring regions in Li), it

holds ni < mi ≤ 3ni − 6.

6

(a) Geographic division at county level.

(b) Geographic division at

state level.

(c) Geographic division at

region level.

Figure 1: Example of a geographic division with aggregation levels Region, State, and County.

• Let rj , r
′
j ∈ Lj be regions of a partition, if there is an Li such that

Li ≺ Lj , then there exist ri, r
′
i ∈ Li, not necessarily different, such that150

contains(ri, rj) and contains(r′i, r
′
j). Further, if rj and r′j are neighbors

(i.e., they share a boundary) and ri ̸= r′i, then ri and r′i must be neigh-

bors. Further, when rj and r′j are neighbors, contains(ri, rj) holds and

contains(ri, r
′
j) does not hold, we say that ri and r′j are neighbors as well.

2.3. Topological queries155

As in the work of [17], we restrict our scope to pure topological queries and to

the static version of the model. We then leave out the queries that use geometric

information such as, given the coordinates of a point, find the granule it belongs

to. A simple information-theoretic argument shows that basic queries that refer

7

Operation Complexity

Do regions r1 and r2 share a boundary? any in ω(1)

Is boundary e on the border of region r1? O(1)

Regions separated by boundary edge e O(1)

Boundary edges of region r1 O(1) per boundary edge

Regions adjacent to region r1 O(1) per region

Number of regions adjacent to region r1 any in ω(1)

Table 1: Topological operations considered in [17, 30]. Let r1 and r2 be two regions and e be

a boundary edge.

to geometry cannot be answered without using a linear number of integers per160

granule. Several well-known spatial data structures fitting in this space, like R-

trees [9] and Quadtrees [10], can efficiently answer geometry queries like spatial

range, spatial join, and nearest neighbor queries. These indexes were especially

designed to answer spatial point or range queries, but they are inefficient to solve

pure topological queries such as overlapping, touching, and inclusion. If we re-165

strict the queries to the topological domain, instead, it is possible to represent

the data within a linear number of bits, and furthermore, efficiently solve many

queries; see Table 1. Those queries, however, do not consider multi-granular

models, just a single space partition.

170

In this work we explore the space and time complexities that can be achieved

on pure topological queries over multi-granular models. The set of queries we

consider is based on the international standard ISO/IEC 13249-3:2016 [31].

Most of those operations are also implemented in flagship spatial databases,

such as PostgreSQL.2. In addition to those already considered in Table 1,175

we handle operations that relate regions (i.e., granules) of different level of

granularity. In particular, contains(r1, r2) (i.e., do region r1 contains region

r2?), touches(r1, r2) (i.e., do regions r1 and r2 share a common boundary?),

2http://postgis.net/docs/Topology.html

8

http://postgis.net/docs/Topology.html

R Partition into top-level regions

h Number of levels in the hierarchy, 1 to h

Li Set of regions of level i, L1 corresponds to R

ni Number of regions at level i, ni = |Li|

mi Number of pairs of neighboring regions of level i, mi = Θ(ni)

dr Number of neighbors of region r at its same level

n Total regions of all levels, n =
∑h

i=1 ni

m Total neighboring pairs at all levels, m =
∑h

i=1 mi = Θ(n)

Si Representation of the planar embedding of level i

Table 2: Notations.

and contained(Lj , r) (i.e., list all regions at granularity level Lj that are con-

tained in region r). As example, consider again Figure 1. Then, relation180

contains(state H , county n) is true, whereas relation contains(state C , county o)

is false. Further, contained(L3, region α) returns the counties {m,n, r, q, u, t, s, p, l}.

Using the notation summarized in Table 2, Table 3 lists the operations we

consider and the complexities we obtain. We analyze the space in general and185

also under the realistic exponential growing assumption, that there is a constant

c > 1 such that ni ≥ c · ni−1 for all i. This assumption implies that the

number of regions grows exponentially with the level and thus h = O(lg nh).

The assumption holds, for example, if every region is split into at least two

regions in the next level (thus c = 2).190

2.4. Compact data structures

With the main purpose of manipulating huge amounts of data, compact data

structures [12] aim to represent data in space close to its information-theoretic

lower bound. Unlike compression techniques, where decompression is needed to

support operations, compact data structures allow us to implement operations195

directly over the compact representation. Through this work we use compact

data structures for sequences and ordinal trees.

9

Operation Complexities

Approach 1 Approach 2 Approach 3

contains(r1, r2) O(1) O(lgn lg h) O(1)

touches(r1, r2) O(min(dr1 , dr2)) O(min(dr1 , dr2) lgn lg h) O(min(dr1 , dr2))

contained(Lj , r1) O(1) O(lgn lg h) O(1)

Space in bits O(n lg h) + o(hnh) O(n lg h) O(n lgn)

Space w/exponential growing O(n) O(n) O(n lgn)

Table 3: Multi-granular operations considered in this article, where r1 and r2 are regions at

levels i ≤ j, respectively, and dr1 and dr2 are their respective number of neighboring regions.

The complexity of the contained query is per returned element. We present three solutions

(one per column) with different complexities.

Bitmaps. A bitmap B[1..n] is an array of bits supporting three operations:

access(B, i) (the bit in B at position i), rankb(B, i) (the number of occurrences200

of bit b ∈ {0, 1} in B up to position i), and selectb(B, i) (the position of the i-th

appearance of bit b in B). One can support all those operations in O(1) time

using n + o(n) bits [32]. When B has m ≪ n 1s, it can be represented within

m lg n
m + O(m + n/ lgc n) bits, for any constant c, still solving the operations

O(c) time [33].205

Compact sequences. Compact sequences are well-known compact data struc-

tures with a myriad of applications, ranging from text indexing to planar maps.

Given a sequence A[1..n], where A[i] ∈ Σ, interesting operations are the same

access(A, i), ranka(A, i), and selecta(A, i), which extend those of bitmaps for210

any a ∈ Σ. The sequence can be represented in nH0 + o(n lg σ lg lg n/ lg n)

bits, supporting the operations in time O(lg σ/ lg lg n) [34]. Here, H0 is the

zero-order empirical entropy of A, H0 =
∑

a∈Σ
na

n lg n
na

, where a appears na

times in A. Note the time is constant if σ ∈ O(polylog n). Using the basic

operations, more complex ones can be implemented, such as rightmosta(A, i) =215

selecta(A, ranka(A, i)), the position of the rightmost symbol a up to position

10

i, and leftmosta(A, i) = selecta(A, ranka(A, i) + 1), the position of the leftmost

symbol a after position i.

Generalizations of rank and select, rank≤a(A, i) (the number of occurrences220

of symbols less than or equal to a in A up to position i), select≤a(A, i) (the

position of the i-th symbol less than or equal to a in A), and leftmost≤a(A, i)

(the position of the leftmost symbol less than or equal to a after position i),

can be supported in time O(lg σ), O(lg n lg σ) and O(lg σ), respectively, using

wavelet trees [35].225

Compact trees. The topology of a tree with n nodes can be represented by a

balanced parenthesis sequence of length 2n. The sequence is obtained by per-

forming a DFS traversal of the tree, writing an open parenthesis every time

an edge is visited for the first time, and a close parenthesis when an edge is230

visited for the second time. Given a balanced parentheses sequence B[1..2n],

the operation find close(B, i) returns the position of the matching closing paren-

thesis of the opening parenthesis B[i], and find open(B, i) returns the position

of the matching opening parenthesis of B[i]. Operation enclose(B, i) returns

the position of the opening parenthesis that, together with its matching closing235

parenthesis, most tightly contains i. Those operations are supported in constant

time using 2n+ o(n) bits [36].

The most practical compact representation for ordinal trees is the range

min-max tree (rmmt) [36]. The rmmt is a complete binary tree that stores240

some statistics about the number of opening and closing parentheses of the

balanced parenthesis sequence B. The compact tree is built upon a basic op-

eration called excess, defined as excess(i) = excess(i − 1) + 1 if B[i] = ‘(’, or

excess(i) = excess(i − 1) − 1 if B[i] = ‘)’. The sequence B is virtually di-

vided into blocks of length l, where each block is represented by a leaf of the245

rmmt. For the leaf v associated with a block B[s..e], the whole excess, defined as

11

v.e = excess(e)−excess(s−1), and the minimum excess value of the leaf, defined

as v.min = mini∈[s,e]{excess(i)−excess(s−1)}, are stored. For an internal node

u with left child ul and right child ur, the whole and minimum excess values are

also stored, defined as u.e = ul.e+ur.e and u.min = min{ul.min, ul.e+ur.min},250

respectively. Once those values are stored in the rmmt, the operations find open,

find close and enclose are reduced to the primitive operations fwd search(B, i, d)

(the leftmost position j > i in B, such that excess(i) + d = excess(j), with

d < 0) and bwd search(B, i, d) (the rigthmost position j < i in B, such that

excess(i) + d = excess(j), with d < 0). Both primitive operations scan sequen-255

tially a constant number of blocks of B and move up and down in the rmmt

looking for the answer, spending O(l + lg n
l) time. We assume l = Θ(lg n) in

this paper, so the time is O(lg n) and the space is O(n) bits. These complexities

can be reduced to O(1) and o(n) by means of more complex data structures [36].

260

Within the same time and space complexities, the rmmt can also support

rank((B, i) and select((B, i) by storing a new field n′ on each node of the rmmt.

For each leaf v of the rmmt, v.n′ stores the number of opening parentheses in

the block B[s..e] associated with v, and for each internal node u with left and

right children ul and ur, we store u.n′ = ul.n
′ + ur.n

′.265

All previous operations can be applied to a sequence S[1..n] composed by

two intertwined balanced parenthesis sequences, B and B∗. For convenience,

B is represented with parentheses, B∗ with brackets (for the remainder of the

paper, parentheses refers to round brackets (), while brackets refers to square270

brackets []), and the intertwine is represented with a bitmap A[1..n], such that

A[i] = 1 iff S[i] = ‘(’ or S[i] = ‘)’, and A[i] = 0, otherwise. Thus, the operation

rank()(S, i) (the number of opening or closing parentheses in S up to position

i) is supported in constant time by rank1(A, i). Similarly, select()(S, i) (the po-

sition of the i-th opening or closing parenthesis in S) is supported in constant275

time by select1(A, i). In the same way, for S[i] = ‘)’, find open(S, i) is mapped to

select1(A, find open(B, rank1(A, i))). Operations find close and enclose are sup-

12

(a) Planar graph at county level.

(b) Planar graph at state level.

(c) Planar graph at region

level.

Figure 2: Planar graph representations of the aggregation levels of Figure 1. Spanning trees

are represented with thick edges.

ported similarly.

2.5. Compact representation of topology data280

We focus on the planar graph embedding representation of a geographic area

divided into regions whose interiors do not overlap. The embedding is composed

by nodes representing the geographic regions and edges connecting two regions

that share a geographic boundary. Figure 2 shows the induced planar embed-

ding of the geographic area of Figure 1.285

Although there exist various compact representations of planar graph em-

beddings [37, 12], the representation of [18] is one of the simplest. It consists

of a sequence S of length 2m, where m is the number of edges of the planar

embedding. For its construction, Turán’s representation performs a depth-first290

13

search (DFS) traversal over an arbitrary spanning of the planar embedding, ap-

pending to S a ‘(’ or a ‘)’ depending on whether it is the first or second time

that an edge of the spanning tree is visited. For edges that do not belong to the

spanning tree, a ‘[’ or a ‘]’ is appended following the same conditions. By using

two bits per symbol of S, the representation uses 4m bits of space. For exam-295

ple, the embedding of Figure 2(a) can be represented by sequence S3 in Figure 3.

Although Turan’s representation does not provide primitives to navigate the

graph, [38] augmented it using compact representations of trees and bitmaps

that add up o(m) extra bits, and enable navigation operations. The extended300

representation lists the incident edges of a vertex and the edges bounding a face

both in O(1) time per edge, computes the vertex degree in any time in ω(1),

and checks whether two vertices are neighbors in any time in ω(lgm). Later,

[17, 30] improved the time bounds and extended the representation to support

the topological model (without multi-granularity) using 4m + o(m) bits and305

offering relevant time guarantees; recall Table 1. Hereinafter, we refer to their

work as pemb.

In this work, we generalize pemb in order to support multi-granular hierar-

chies of spatial objects. A map with several levels of granularity can be seen as a310

set of planar embeddings, one per level, plus the information about containment

relationships among levels. The embedding of level i has ni nodes and mi edges.

A straightforward representation consists of using pemb to represent each pla-

nar embedding of the collection (using 4mi + o(mi) bits per level i), plus h− 1

integer vectors to store the region of the preceding level that contains each re-315

gion. This arrangement, for example, supports the query contains in O(h) time.

Its main drawback is the space consumption of the vectors, ⌈ni lg ni−1⌉ bits at

each level i > 1. In what follows, we introduce three approaches to represent a

multi-granular map in less space while efficiently supporting the queries.

14

3. Approach 1: Mapping via bitmaps320

This section summarizes the results of [1], which we complement with a

new proof of correctness of the construction method, and a tighter time/space

complexity analysis for the construction algorithm and for the contained oper-

ation (see Table 3). Instead of building pemb independently for each planar

embedding of the collection, they proposed an approach to synchronize the con-325

struction of the compact representation of the embeddings, which allows to im-

plicitly encode the mapping among consecutive granularity levels in less space.

The synchronization is made by the spanning trees of the different aggregation

levels. In Section 3.2 we present an algorithm to compute a spanning tree at

level h, from which we can induce valid spanning trees for the other aggregation330

levels as follows (we prove later than this construction is correct).

Definition 1. Given a spanning tree T of the planar embedding of Lh, we in-

duce spanning trees for the planar embeddings of L1, L2, . . . , Lh−1 using the

following rules:

335

• Let (u, v) be an edge of T , and let ui and vi be the regions containing

regions u and v at level Li, respectively. Then, the edge (ui, vi) belongs to

the spanning tree of level Li.

• Multiple edges and self-loops are deleted.

Figure 2 shows an example of spanning trees following Definition 1. From340

the spanning tree of Figure 2(a) we can induce the spanning trees of Figures 2(b)

and 2(c).

3.1. Structure

Each granularity level Li is stored in two components (see Figure 3): 1)

The planar graph embedding is stored using pemb, generating a sequence Si of345

parentheses and brackets, where parentheses represent the spanning tree of the

planar embedding and brackets represent the edges not in the spanning tree. In

15

S3 =

S2 =

B2 = 101010110110100001011010000001100101010001

S1 =

B1 = 100000100000000000000000000001000000000001

Figure 3: Compact representation of the geographic division of Figure 2.

Section 3.2, we show how to construct the sequence Si. The space consumption

for the h granularity levels is 4
∑h

i=1 mi+o(
∑h

i=1 mi) = 4m+o(m) bits; 2) The

mapping among granularity levels is stored as a bitmap Bi of length 2nh with350

support for rank and select operations. Following Definition 1, the edges of the

spanning tree of Li, induced from the spanning tree of Lh, are marked in the

bitmap Bi. Precisely, let e be an edge of the spanning tree of Li, then we set

Bi[p] = 1 and Bi[q] = 1, where p and q are the positions in Sh of the opening

and closing parentheses of the edge in Lh that induced e. Notice that for level h355

we do not need to store a bitmap Bh. Since Bi has only 2ni 1s, its compressed

representation requires 2ni lg
nh

ni
+O(ni) + o(nh) bits; recall Section 2.4.

Overall, the space of this representation is 4m + o(m) + 2
∑

i ni lg
nh

ni
+

O(n)+o(hnh) = 2
∑

i ni lg
nh

ni
+O(n)+o(hnh) bits. Since lg

nh

ni
≤ lg n

ni
and, by360

Jensen’s inequality,
∑

i ni lg
n
ni

≤ n lg h, the total space is in O(n lg h) + o(hnh)

bits. Further, the space is O(n) under the exponential growing assumption:

since ni ≤ nh/c
h−i,

∑
i ni lg

nh

ni
≤

∑
i nh(h− i)/ch−i · lg c = O(nh). In turn, the

o(hnh) term can be O(hnh/ lg nh) = O(nh) [33].

16

3.2. Construction365

The compact representation is built by performing a DFS traversal on the

planar graph of the highest granularity level, h. During the traversal, when we

mark a vertex as visited, we also mark as visited the h− 1 regions that contain

it in coarser granularity levels. Thus, an edge (u, v) is traversed when the target

vertex v has not been visited before and one of the following conditions holds:370

a) u and v are contained by the same region at level h − 1; b) at least one of

the regions containing vertex v has not been visited before.

In the traversal, each edge of the planar embedding of Lh is processed twice3

and only the edges of the spanning tree are traversed. Let us focus on the gen-375

eration of Si and Bi, where, by default, all values of Bi are 0s. Assume that we

are processing the j-th edge e = (r1, r2) of Lh, where regions r′1 ̸= r′2 contain

regions r1 and r2 at level i, respectively. The following conditions are checked:

1. If it is the first time that e is processed and the edge (r′1, r
′
2) belongs to380

the spanning tree of level i, then Bi[j] = 1 and a symbol ‘(’ is appended

to Si.

2. If it is the first time that e is processed and the edge (r′1, r
′
2) does not

belong to the spanning tree of level i, then a symbol ‘[’ is appended to Si.385

3. If it is the second time that e is processed and the edge (r′1, r
′
2) belongs to

the spanning tree of level i, then Bi[j] = 1 and a symbol ‘)’ is appended

to Si.

390

4. Finally, if it is the second time that e is processed and the edge (r′1, r
′
2)

3We assume that the input graph is undirected, and hence each edge is processed twice.

17

does not belong to the spanning tree of level i, then a symbol ‘]’ is ap-

pended to Si.

Observe that Bi[j] = 1 indicates that we are entering to or exiting from a395

region at granularity level i, depending on whether it is the first or second time

that such edge has been processed. In particular, exiting from a region means

that all its regions contained at finer granularity levels have been processed.

By using an auxiliary bitmap to mark the processed edges at each i < h,400

all sequences Si and bitmaps Bi can be computed at the same time during the

traversal, obtaining a final time complexity of O(nh + hmh) ⊆ O(hn), domi-

nated by the at most h comparisons per edge. We now prove the correctness of

the construction algorithm.

405

Lemma 1. The algorithm described above computes a valid spanning tree.

Proof. We show by contradiction that there are no cycles and that all regions

of Lh belong to the produced subgraph. On the one hand, a cycle means that

during the construction an edge (u, v), where both u and v and/or their con-

taining regions are marked as visited, was added to the set. However, that410

contradicts the rule that only edges leading to a non-visited target regions are

added at any level i. Therefore, the produced subgraph is acyclic.

Note that, when we leave a region by an edge to another, we do not reenter

the region, to avoid cycles. We resume the traversal of the region only once we415

return from the outgoing edge. This makes the traversal of a region reach all

of its nodes, exactly as if the outgoing edges were ignored. This is the key to

show that all the regions are reached by the tree, which makes it a spanning

tree. Assume the opposite, and let r be a region that is not reached and that

touches a reached region r′. Such a region must exist because there is a path420

18

of regions between every non-reached region and the region where we start the

traversal, which is reached by definition. When the algorithm traversed r′, it

reached all of its nodes, in particular the one with an edge towards r, which

exists because r and r′ are neighbors. At that point, r was not reached and the

traversal should have entered it; a contradiction.425

3.3. Operations

In order to support the operations of Table 3, we provide the following primi-

tive operations to navigate the compact representation, based on the operations

described in Section 2.

Basic primitives. Hereinafter, we consider that each region, represented by a430

vertex in the planar embedding of Li, is identified by its pre-order rank in the

traversal of the spanning tree of level i.

• go up Lh(x, i): This operation allows us to map the x-th region of granu-

larity level i to a region at level h. To do that, we must find the position

of the x-th region in Si with z = select((Si, x), to then map such posi-435

tion into the bitmap Bi, with y = select1(Bi, rank()(Si, z)). Finally, the

position of the output region corresponds to the position of the y-th open

parenthesis in Sh, which can be obtained with select()(Sh, y). The time

complexity is O(1), since it depends on constant time operations rank and

select.440

• go down Lh(x, d): This operation is complementary to go up Lh, mapping

the x-th region of Lh into a region at level h−d. We start as for go up Lh,

finding the position of the x-th region in Sh with z = select((Sh, x), to

then map it to the bitmap Bh−d with p = rank()(Sh, z). The final an-445

swer corresponds to the position in Sh−d of the nearest ancestor y of x

in the spanning tree of level Lh−d that is marked in Bh−d. To do that,

we compute q = select()(Sh−d, rank1(Bh−d, p)). If Sh−d[q] = ‘(’, then q

19

is the answer, otherwise it is q′ = enclose(Sh−d, find open(Sh−d, q)). This

operation takes constant time.450

• region id(Si, x): This operation returns the id of the region represented by

the open parenthesis Si[x] = ‘(’. It can be solved in constant time with

rank((Si, x).

455

• go level(x, i, j): This operation is a generalization of operations go up Lh

and go down Lh, mapping the x-th region of Li into a region at level j.

It can be solved in O(1) time by mapping the x-th region of Li into

a region of Lh, to then map such region of Lh into a region of Lj , as

go down Lh(go up Lh(x, i), h − j). Notice that when j < i, we are going460

down in the hierarchy, whereas when j > i we are going up.

Main operations.. We now focus on the operations of Table 3. Let r1 ∈ Li and

r2 ∈ Lj be two regions such that i ≤ j:

• contains(r1, r2): Does region r1 contain region r2? First, if r1 and r2

belong to the same level (i.e., i = j), we just return whether r1 =465

r2. Otherwise, we compute the region r′2 ∈ Li that contains r2, r′2 =

region id(Si, go level(r2, j, i)), and return whether r1 = r′2. The time com-

plexity of this query is O(1).

• touches(r1, r2): Does region r1 share a boundary with region r2? We dis-470

tinguish two cases: 1) If r2 is not contained in r1 (contains(r1, r2) = false),

we must find a neighbor of r2 that is contained in region r1; and 2) if r2

is contained in r1 (contains(r1, r2)=true), then we must find a neighbor of

r2 that is not contained in r1. For each neighbor w of r2, we compute its

containing region at level i as z = region id(Si, go level(w, j, i)). For the475

first case, if we cannot find a neighbor of r2 such that r1 = z, then we

return false; otherwise we return true. Similarly, for the second case, if we

20

cannot find a neighbor of r2 such that r1 ̸= z, then we return false; oth-

erwise we return true. The time complexity is O(dr2), depending directly

on the number of neighbors of r2.480

• contained(Lj , r1): List all regions at level j contained in region r1. To sup-

port this operation, we report all regions in the range Sj [a..b] that are con-

tained by the region r1, where a = go level(r1, i, j) and b = find close(Sj , a).

To report the regions, we traverse the range left-to-right reporting every485

region region id(Sj , a
′), where initially a′ = a and then it is redefined

as the position of the next open parenthesis, a′ = leftmost((Sj , a
′), until

a′ > b. It is possible, however, that each such position a′ is marked as

the beginning of a new region, in which case we have to skip the subtree

with a′ = leftmost((Sj , find close(Sj , a
′)). An opening parenthesis at posi-490

tion p is marked if Bi[c] = 1, where c = select1(Bj , rank()(Sj , p)). Thus,

this operation can be answered in O(nj) time. Despite its high worst-case

complexity, we implement this solution with competitive practical results,

see Section 7. We can, however, improve the theoretical result so as to

spend O(1) time per output region, by limiting the number of skipped495

subtrees between consecutive output regions. This can be done by adding

dummy vertices that work as the root of consecutive subtrees that must

be skipped. By marking the dummy vertices in the bitmap B, we can skip

them during the left-to-right traversal. Thus, skipping a dummy vertex is

equivalent to skip its descendant subtrees. The dummy vertices skipped500

then amortize to the number of the vertices that belong to the output, be-

cause there is at least one useful node between every two dummy nodes.

The extra space is O(nj) bits in the level j, since we can add up to one

dummy vertex per edge of the planar embedding. Additionally, to distin-

guish the dummy vertices, we can mark them in a bitmap of O(nj) bits.505

Theorem 2 summarizes the results of this first approach:

21

Theorem 2. A geographic connected region organized as a multi-granular hi-

erarchy with n regions in total and h granularity levels can be represented in

O(n lg h)+o(hnh) bits, where nh is the number of regions at granularity level Lh.510

The same representation supports operations contains(r1, r2) in constant time,

touches(r1, r2) in O(min(dr1 , dr2)) time, and contained(Lj , r1) in constant time

per returned element, where r1 and r2 represent a region at granularity levels Li

and Lj, respectively, and dr1 and dr2 are their respective number of neighboring

regions. Under the exponential growing assumption, the space consumption is515

O(n) bits.

Sections 4 and 5 introduce two new approaches that provide trade-offs for

the work of [1]. In particular, the approach of Section 4 improves the space

consumption, both in practice (as we show in Section 7) and in theory by a sub-

linear term, at the cost of increasing the running time by a factor of O(lg n lg h),520

meanwhile the approach of Section 5 reduces in practice the running time of the

operations at the cost of increasing space consumption.

4. Approach 2: Mapping sequence

The data structures of the first approach have two sources of redundancy:

• If Bi[k] = 1, then Bj [k] = 1 for all j ≥ i, that is, the mapping bitmaps525

are contained in the next ones.

• Following Definition 1, from Sh we can derive the sequences Si, i <

h. In particular, the k-th parenthesis of sequence Si corresponds to

Sh[select()(Sh, select1(Bi, k))].530

Our second approach removes both sources of redundancy, in exchange for

higher time complexities.

22

Figure 4: Sequences S
()
3 , S

[]
3 , B() and B[] for the sequence S3 of Figure 3.

The first source of redundancy implies that the mapping bitmaps Bi can be535

replaced by a single sequence that tells the lowest level j a position of Sh belongs

to. In turn, the bitmap Bi defines the sequence Si, so in principle storing the

sequence of lowest levels plus Sh should be sufficient. We need, however, to

navigate the sequence of parentheses and brackets of Si. Although we do not

represent Si explicitly, we will represent the needed rmmts.540

4.1. Structure

Let S
()
h be the sequence composed of only the parentheses of Sh. We define

the sequence B()[1..2nh], which stores the lowest level each parenthesis of S
()
h

belongs to. Formally, B()[k] = j iff the k-th parenthesis of S
()
h is present at

the sequence Sj but not at Sj−1. Thus, the i-th parenthesis of S
()
h is present545

at Sj iff B()[i] ≤ j, and the position in S
()
h of the i-th parenthesis of Sj can

be computed as select≤j(B(), i). Analogously, we define the sequences S
[]
h and

B[][1..2(mh − nh + 2)], associated with the dual graph of the planar embedding

of level h. Figure 4 shows the sequences S
()
3 , S

[]
3 , B(), and B[] corresponding to

the sequence S3 of Figure 3.550

The representation is then composed by:

• The planar graph embedding of Lh, represented with pemb. It uses

4mh + o(mh) bits.

555

• The rmmts of the balanced parenthesis sequences S
()
1 , S

()
2 , . . . , S

()
h , and

23

Figure 5: rmmts of balanced parenthesis sequences S
()
1 , S

()
2 and S

()
3 . A node of the rmmt

covering the block S
()
i [i..j] stores: the last excess value of the block (ei), the minimum excess

value of block (mi), and the number of opening parentheses in the block(n′
i). The values and

parentheses in gray are not explicitly stored.

S
[]
1 , S

[]
2 , . . . , S

[]
h . Summing up the 2h rmmts, the space usage is O(m) bits.

See Figure 5 for an example of the rmmts of Figure 3.

• The sequences B() and B[] with support for rank≤ and select≤ operations,560

using 2(mh + 2)⌈lg h⌉+ o(mh lg h) = 2mh lg h+ o(n lg h) bits.

Since mh = O(m) and m = Θ(n), the total space is O(n lg h) bits. In

fact, the sequences B() and B[] can be represented to within their zero-order

entropy. The sequence B() has ni − ni−1 − . . . − n1 ≤ ni occurrences of the565

symbol i, and therefore its entropy H0(B()) is at most
∑

i∈[1..h]
ni

n lg n
ni
. Sim-

ilarly, the entropy H0(B[]) of B[] is at most
∑

i∈[1..h]
mi

m lg m
mi

. Under the ex-

ponential growing assumption, ni ≤ nh/c
h−i and, since mi = Θ(ni), there

exists a constant d such that mi ≤ mh/d
h−i. As shown in the end of Sec-

tion 3.1, both entropies are O(1). Both B() and B[] can then be stored in space570

O(m(H0(B()) + H0(B[])) + o(nh lg h) + O(h lg n) = O(n) + o(n lg h) bits [39],

and the space o(n lg h) can be O(n lg h/ lg n) = O(n) [33]. Thus, the total space

24

is O(n) bits.

We can traverse the implicit sequences S
()
1 , . . . , S

()
h−1 by performing select≤j575

and rank≤j operations over the sequence B(). The i-th parenthesis of Sj is ob-

tained in O(lg nh lg h) time as select≤j(B(), i), and the number of parentheses of

Sj in the range S
()
h [1..i] is obtained in O(lg h) time as rank≤j(B(), i). Similarly,

operations find open(S
()
j , i), find close(S

()
j , i) and enclose(S

()
j , i) are supported

in O(lg nh lg h + lg nh) = O(lg nh lg h) time, where the term lg nh lg h corre-580

sponds to the traversal of a block in the rmmt of S
()
j , performing an operation

leftmost≤j(S
()
h , i) for each parenthesis of the block, and the term lg nh comes

from the up/down traversal of the rmmt.

4.2. Operations

As before, we introduce the implementation of basic primitives upon which585

the main operations are constructed. The time complexities of all the operations

become O(lg nh lg h).

• go up Lh(x, i): To support this operation we use the rmmt of the se-

quence S
()
i to find the x-th open parenthesis, z = select((S

()
i , x). Then,

we map the position of the parenthesis to the sequence B() by computing590

y = select≤i(B(), z). Finally, the position of the sought region in Sh is

select()(Sh, y).

• go down Lh(x, d) : The answer is the parenthesis position q in Sh so

that (q, find close(S
()
h , q)) most tightly encloses the x-th parenthesis of595

Sh and B()[q] ≤ h − d. We find the position of the opening parenthe-

sis representing the x-th region of Lh with p = select((S
()
h , x). Then,

q = rank≤h−d(B(), p) is the number of parentheses in S
()
h [1..p] that belong

to S
()
h−d. If the q-th parenthesis is opening (i.e., S

()
h [select≤h−d(B(), q)] =

‘(’), the answer is q. Otherwise, the answer is its closest ancestor, at po-600

sition q = enclose(S
()
h−d, find open(S

()
h−d, q)).

25

• region id(Si, x): We map the position of x to S
()
h with p = select≤i(B(), x),

and then count the number of opening parentheses up to position p that

belong to Si using its rmmt, rank((S
()
i , p).605

The operation go level is implemented just as in Section 3, go level(x, i, j) =

go down Lh(go up Lh(x, i), h− j), with time complexity O(lg nh lg h).

The implementation of the main operations contains, touches, and contained610

follows the same steps of their counterparts in Section 3, reaching complexities

O(lg nh lg h), O(dr2 lg nh lg h), and O(lg nh lg h) per element, respectively. In

particular, for the operation touches, the traversal of the neighbors of a region

is performed using the rmmt primitives fwd search and bwd search.

The following theorem summarizes the results of this approach:615

Theorem 3. A geographic connected region organized as a multi-granular hi-

erarchy with n regions in total and h granularity levels can be represented in

O(n lg h) bits. The same representation supports operations contains(r1, r2) in

O(lg n lg h) time, touches(r1, r2) in O(min(dr1 , dr2) lg n lg h) time, and contained(Lj , r1)

in O(lg n lg h) time per returned element, where r1 and r2 represent a region at620

granularity levels Li and Lj, respectively, and dr1 and dr2 are their respective

number of neighboring regions. Under the exponential growing assumption, the

space consumption is O(n) bits.

Note that our asymptotic space complexity does not change if we represent

the sequences Si in explicit form. In this case we can operate them directly and,625

although the complexities do not change, we expect them to be much faster in

practice (the structure, in turn, becomes larger in practice). This approach is

much more direct, as we only have to change the operations on bitmaps Bi by

operations on the sequences B() and B[].

26

(a) Hierarchy tree H representing the topological hierarchy of Figure 2. The root of the tree is

a dummy node.

(b) Balanced parenthesis sequence TH , sequence M and offsets O of the tree H of Figure 6(a).

Figure 6: Components to store the topological hierarchy in the third representation.

5. Approach 3: Hierarchy tree630

Our third approach aims to offer better running times in practice, though

using more space, compared to the representation of Section 3. As in our first

representation, the planar embeddings representing the topology of each ag-

gregation level are stored independently using pemb. However, the topological

hierarchy is stored in a different manner. Instead of using the h bitmaps Bi,635

we represent a tree H associated with the relation contains, called the hierarchy

tree. For every pair of regions r1 and r2 such that r1 ∈ Li and r2 ∈ Li+1, and

contains(r1, r2) is true, region r2 is added to the tree H as a child of region

r1. Additionally, a dummy root is added connecting the nodes that represent

regions of L1. Thus, all nodes at depth i in H represent regions at aggregation640

level i. Figure 6(a) shows the tree H for the topological hierarchy of Figure 2.

27

Once the tree H is computed, we store its topology as a balanced parenthe-

sis sequence TH . During the traversal, we additionally store in a permutation

M the pre-order rank in TH of the opening parenthesis representing each node645

of H. The values stored in M are laid level by level (1 to h), in the order the

pemb representation of each Li represents the corresponding nodes. Notice that

such an indexing allows us to map the regions between the topological hierar-

chy and the planar embeddings, and vice-versa. Further, the position of the

leftmost value of each level i in M is stored in an array of offsets O[1..h]. For650

instance, if the region r ∈ Li is the j-th visited region of that level during DFS

traversal of Li, and is also the k-th region visited in the traversal of TH , then,

M [O[i] + j − 1] = k. Figure 6(b) shows an example of TH , M and O.

This representation uses 4m+ o(m) bits for the h planar embeddings. The655

balanced parenthesis sequence TH , supporting navigational operations, uses

2n + o(n) bits. The permutation M uses (1 + ϵ)n lg n + O(n) bits, with a

representation that also computes M−1(j), that is, where in M is the value j,

in time O(1/ϵ) [40]. The total space is then O(n lg n) bits.

5.1. Operations660

We now describe how the operations are computed with this representation.

• contains(r1, r2): We map both regions to TH and check if r1 ∈ Li is an

ancestor of r2 ∈ Lj . Let r
′
1 = M [O[i] + r1 − 1] and r′2 = M [O[j] + r2 − 1]

be the mappings in TH of r1 and r2. Then the answer is true iff r′1 ≤ r′2 ≤

find close(r′1). The operation contains then takes O(1) time.665

• touches(r1, r2): This is built on top of operation contains as in Section 3.

The time complexity is then O(dr2).

• contained(Lj , r1): The regions to report correspond to all the descendants670

of r1 ∈ Li at depth j > i in TH . The node representing r1 in TH is r′1 =

28

M [O[i] + r1 − 1]. Let p = select((T
H , r′1) and q = find close(TH , p) be the

positions of the opening and closing parentheses of r′1 in TH . We then re-

port the regions of all the opening parentheses at depth j−i from p up to q.

To do that, we go down in O(1) time from r′1 up to its leftmost descendant675

u at depth j−i, reporting the position p′ = fwd search(TH , p, j−i). Then,

we keep reporting the region to the right of p′ with its same depth, up

to p′ > q, by computing p′ = level next(p′) = fwd search(TH , close(p′), 1)

[12, p. 270]. For every position p′ to report, we return its region id with

M−1(rank((T
H , p′))−O[j]. The time complexity of operation contained is680

then O(1/ϵ) (i.e., any desired constant) per element reported.

The following theorem summarizes the results of this section:

Theorem 4. A geographic connected region organized as a multi-granular hi-

erarchy with n regions in total and h granularity levels can be represented in

O(n lg h) bits. The same representation supports operations contains(r1, r2) in685

O(1) time, touches(r1, r2) in O(min(dr1 , dr2) time, and contained(Lj , r1) in

O(1) time per returned element, where r1 and r2 represent a region at granular-

ity levels Li and Lj, respectively, and dr1 and dr2 are their respective number of

neighboring regions.

6. Storing multiple connected components690

The approaches proposed above support only hierarchies and maps that form

a single connected component. However, in some scenarios, maps can be com-

posed by more than one connected component. An example of this would be

partitions that include islands. In this section, we present a strategy to support

multiple connected components. The strategy is independent of the approaches695

proposed above and can be implemented as an extension of any of them.

Given a region r at level Li, composed by c > 1 connected components, we

treat the connected components as independent regions r1, r2, . . . , rc, increasing

29

Figure 7: Example partitioning a region

the total number of regions at level Li. To store the information that regions700

r1, r2, . . . , rc actually conform only one region r, we store two bitmaps, Di

and MDi, and an integer array Ci. The entry Di[r] = 1 indicates that region

r is conformed by multiple connected components; otherwise, Di[r] = 0. The

bitmap MDi stores in unary the number of connected components of region r

and the array Ci stores the regions r1, r2, . . . , rc, when c > 1. The construction705

of the representation is performed as follows:

1. We perform a traversal of the planar embedding of level Li detecting the

set R of regions composed by multiple connected components with respect

to the level Li+1.

2. For each region r ∈ R, r is partitioned into its c > 1 connected components710

r1, r2, . . . , rc. The entry Di[r] is set to 1, the sequence 0c−21 is appended

to the bitmap MDi, and the regions r1, r2, . . . , rc are appended to the

array Ci.

3. The embedding of level Li is updated with the new regions r1, r2, . . . , rc.

4. We repeat steps 1-3 for level Li−1.715

Figure 7 shows an example of how regions are partitioned.

30

Under this setting, operation contains(r′, r), with r′ ∈ Li, r ∈ Lj and

Li ≺ Lj , refers to whether every connected component of r is contained in

some connected component of r′. To support it, we first recover all the con-720

nected components of r′ and mark them in a bitmap B. Then we check if

Dj [r] = 1, to determine if the region r is partitioned. If needed, we ob-

tain its connected components by traversing the range Cj [p, q], where p =

select1(MDj , rank1(Dj , r) − 1) + 1 and q = select1(MDj , rank1(Dj , r)). We

map each connected component rk of r to its containing region r′k at level i, an725

check if r′k is marked in B. We return whether every component r′k was marked

in B. The time complexity is O(wijc + c′), where c′ and c are the number of

connected components of r′ and r, respectively, and wij is the cost of mapping

regions from level j to level i, which can be done with any of the solutions dis-

cussed in Sections 3–5.730

Similarly, operation touches(r′, r) checks whether some connected compo-

nent of r′ shares a boundary with some connected component of r. To solve

it, for each connected component of r we map its neighbors, at level j, to their

containing regions at level i, marking them in a bitmap B. Finally, we com-735

pare the connected components of r′ with the marked regions in B, and return

whether a coincidence is found. The time complexity is O(d̂rwij + c′), where d̂r

is the number of neighbors of r at level j, computed as the sum of the neighbors

of each connected component that conforms r.

740

Operation contained(Lj , r), with r ∈ Li and Li ≺ Lj , lists all the regions at

granularity level Lj that are contained in some connected component of r. To

implement it, we recover all c connected components at level i of r, and map

each of them to its descendants at level j. Notice that the resulting regions at

level j may be grouped into c′ ≥ 1 connected components, which must be recov-745

ered as for the basic case. Thus, the time complexity is O(wijc+tc′c
′), where tc′

is the cost of traversing the regions contained in the c′ connected components

at level j.

31

The additional space consumption for arrays Ci,MDi, andDi, is O(n+c lg c)750

bits, where c is the number of components across all levels. Note that the

connected regions involve only 1 bit of extra space, used in Di to indicate they

have only one connected component. In practical datasets, c is much smaller

than n (see the next section, for example).

7. Experimental evaluation755

7.1. Experimental setup

All the experiments were carried out on a computer equipped with an Intel

Core i7 (3820) processor, clocked at 3.6 GHz; 32 GB DDR3 RAM memory,

clocked at 1,334 MHz; 4 physical cores each one with L1i, L1d and L2 caches

of size 32 KB, 32 KB and 256 KB, respectively; and a shared L3 cache of760

size 10 MB. The computer runs Linux 3.13.0-86-generic, in 64-bit mode. All

our algorithms and the baseline were implemented in C++, using the library

SDSL [41], and compiled with GCC version 4.8.4 and -O3 optimization flag. For

the compact planar embeddings, we directly use the code of [38]. We measured

running times using the clock gettime function.765

7.1.1. Datasets

The datasets used to evaluate our approaches are based on the TIGER

dataset,4 provided by the U.S. Census Bureau, which corresponds to geographic

and cartographic data of the administrative divisions in the United States. The

dataset is organized as a hierarchy of granularities with levels L1 to L6 being770

State, County, Census tract, Census block group, Census block, and Face, re-

spectively (see Table 4). With this base information, we generated four datasets,

tiger 8s, tiger usa, whole usa, and tiger usa+.

4TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/

32

https://www2.census.gov/geo/tiger/TIGER2019/

The first dataset, tiger 8s, contains the information of eight neighboring775

states (Nevada, Utah, Arizona, Colorado, New Mexico, Kansas, Oklahoma and

Texas), while tiger usa includes the information of the whole continental part

of the country. During the construction of both datasets, we found cases where

a region was composed of disconnected subregions (e.g., Santa Catalina Island

is a disconnected region of the State of California). In such cases, we only con-780

sidered the largest subregion. Additionally, both datasets are conformed by one

connected component.

On the other hand, the dataset whole usa corresponds to the tiger usa

dataset, but including the disconnected subregions, and Alaska, Hawaii and785

overseas U.S. islands, being conformed by 98 connected components. Finally, we

generated the synthetic dataset tiger usa+, which corresponds to the dataset

tiger usa with a different (fictitious) grouping of regions. By choosing random

starting regions at level L6, a BFS traversal was performed to group from 1 up

to 10 contiguous regions into one. The BFS traversals were performed until all790

regions of level L6 were grouped. The procedure was repeated for all levels L5

up to L2. We use this dataset to evaluate situations where the ratio of grouping

is smaller than in the original dataset.

7.2. Evaluated implementations

Based on the approaches described in Sections 3 to 5 for the representation795

of the multi-granular maps, we developed the following implementations:

Approach 1 (T). Implementation based on the approach described in Section

3, which uses compact planar embeddings to represent each level of granularity,

as well as h− 1 bitmaps, where we use a plain bitmap for level h and bitmaps800

of type T for the rest of levels, to store hierarchy-related information, where T

can be: i) Plain (a plain bitvector), ii) SD (the sparse bitmap SD-array [42]),

iii) RRR (an H0-compressed bitvector [39]).

33

Dataset Level Vertices (n) Edges (m)

L1 9 20

L2 595 1,730

tiger 8s L3 11,626 31,412

(1 comp.) L4 33,804 91,891

L5 2,233,031 5,429,483

L6 4,761,354 10,326,904

L1 57 140

L2 3,235 9,102

whole usa L3 74,135 201,824

(98 comp.) L4 220,743 598,245

L5 11,166,337 26,746,322

L6 20,037,199 44,503,624

Dataset Level Vertices (n) Edges (m)

L1 50 140

L2 3,110 9,095

tiger usa L3 72,512 201,631

(1 comp.) L4 216,243 597,784

L5 11,004,160 26,732,935

L6 19,735,874 43,837,150

L1 3,852,017 6,392,483

L2 4,518,394 8,364,881

tiger usa+ L3 5,686,152 11,767,903

(1 comp.) L4 7,821,874 17,711,491

L5 11,846,172 27,868,766

L6 19,735,874 43,837,150

Table 4: Datasets used in our experiments. Each level includes one node representing the

external face of the embedding.

Approach 2 (rmmt). Implementation based on the approach described in Sec-805

tion 4, which uses a compact planar embedding for the highest level of detail,

and range min-max trees (rmmt) for the sequences B[] and B(), to represent

the mapping among aggregation levels.

Approach 2 (Plain-S). A variant of the previous one that uses compact planar810

embeddings to represent each level of granularity, and range min-max trees over

integer vectors (stored as a plain vector) to store the hierarchical information

represented in the sequence B(). Although storing the hierarchical information

implies an increase in the space usage compared to what was proposed in Sec-

tion 4, it drastically improves the query time of the proposed operations. For815

the scanning of the rmmt blocks, two strategies S are evaluated: linear search

(L) and binary search (BS), where binary search can be done by computing

rank≤i on each comparison.

34

Approach 2 (WT-S). Another variant of the approach described in Section820

4, similar to Approach 2 (rmmt). This implementation uses compact planar

embeddings to represent each level of granularity and range min-max trees, with

the difference that it uses a wavelet tree to store the hierarchical information

represented in the sequence B(). This represents a saving in terms of space us-

age when compared with Approach 2 (Plain-S), at the cost of a slower access825

time to the elements in B(). Again, for the scanning of the rmmt blocks, two

strategies S are evaluated: linear search (L) and binary search (BS).

Approach 3. Implementation based on the approach described in Section 5,

which uses compact planar embeddings to represent each level of granularity in830

combination with a balanced parenthesis sequence representing the hierarchy

tree and a compact permutation data structure representing M , for the map-

ping between planar embeddings and the hierarchy tree.

Baseline. As a baseline, we developed a data structure that also uses the com-835

pact planar embeddings of [38] to represent each level, but the hierarchy is stored

in non-compact form. Specifically, each level i ∈ {0..h − 1} of the hierarchy is

stored in a vector in which position j, representing a region r′, stores the index

of the region r at level i− 1 that contains r′. In addition, for a region r at level

i, the data structure stores pointers to all the regions at level i + 1 contained840

in r. In this data structure, the operation go level(x, i, j) is supported in O(h)

time, because all the levels of the hierarchy are traversed in the worst case. All

the main operations were implemented in a similar fashion to our approaches,

hence providing running times of O(h), O(min(dr1 , dr2)h) and O(
∑j

k=i nk), for

contains(r1, r2), touches(r1, r2), and contained(Lj , r1), respectively, where r1 is845

a region at level Li and r2 a region at level Lj .

35

7.3. Performance on connected regions

We first consider the basic case of connected regions. The performance of

Approach 2 variants is mainly dependent on the use of the rmmt, and this850

in turn depends on the length l of the rmmt blocks. We considered values

l ∈ [24 .. 215].

Regarding the evaluation of operations contains and touches, we executed

200 random operations for each pair of aggregation levels.5 As for operation855

contained, we executed the queries between all possible pairs of aggregation lev-

els. For contains and contained, there are 15 valid pairs ((Li, Lj), i ∈ [1, 5], j ∈

[i + 1, 6]), whereas for touches there are 21 valid pairs ((Li, Lj), i ∈ [1, 6], j ∈

[i, 6]). This gives a total of 3,000 operations of the first type, 4,200 operations

of the second type, and 11,666,872 operations of third type. In the results, for860

each experiment we show the average time of 30 repetitions.

Figure 8 shows the space-time tradeoffs obtained on the datasets tiger usa

and tiger usa+ (we omit dataset tiger 8s because it performed similarly to

tiger usa), with the three operations.865

The first observation is that, as expected, Approach 2 (rmmt) uses by far

the least amount of space, using as little as 8–12 bits per region. In exchange,

however, it is one and even two orders of magnitude slower than other ap-

proaches, because of the need to navigate over simulated parenthesis sequences.870

The second observation is that Approach 1 (SD) essentially dominates all

the other approaches in the space-time tradeoff map of tiger usa, using 15–16

bits per region and taking 0.4–10 nanoseconds per operation. The only excep-

tion is the baseline, which sometimes outperforms Approach 1 (SD) in time,875

5The outer face is omitted from the pool of candidates because of its very large number of

neighbors, which may impact the results.

36

yet at the cost of using 80–135 bits per region, that is, about 5–8 times more

space.

On the synthetic dataset tiger usa+, we use Approach 1 (RRR) instead

of Approach 1 (SD), because it saves more space. In this dataset, the least-880

space variant of Approach 2 (WT-BS) is equally fast and uses slightly less

space (indeed, the sweet points of several other variants are pretty close). In

this dataset, Approach 3 offers considerably better times using about twice

the space, around 34 bits per region.

885

The only considerably worse variant is Approach 2 (Plain-BS), followed

by Approach 2 (Plain-L) in the dataset tiger usa.

Figures 9 and 10 show the results grouped by distance level, where all valid

pairs (Li, Lj), i ∈ [1, 6− c], j = i+ c are grouped into the distance level c. For890

Approach 2 we only maintain the variants Approach 2 (rmmt) with block

length l = 29 and Approach 2 (WT-BS) with l = 215. For the contained

operation, the running time was normalized by the number of regions returned.

In general, the distance c does not significantly affect the time performance895

of the operations, except for the operation contained, where times tend to im-

prove with larger distances. This is because more regions are reported as the

distance grows, and this decreases the time per reported region due to cache

effects. In general, the baseline is the fastest implementation on all the oper-

ations. It is, however, closely followed in almost all cases by some variant of900

Approach 1, which uses many times less space.

Similar results can be observed for the dataset tiger usa+, except that

Approach 3 becomes the second fastest on the operation contained. This owes

to the way this dataset was constructed: its hierarchy tree is wider and has more905

nodes than the hierarchy tree of tiger usa. Approach 3 is more cache-friendly

37

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 15 20 25 30 35

T
im

e
 (

n
s
)

bits per region

 75 80

Approach 1(Plain)
Approach 1(RRR)

Approach 2(Rmmt)
Approach 2(WT−BS)

Approach 2(WT−L)
Approach 2(P−BS)

Approach 2(P−L)
Approach 3

Baseline

(a) Operation contains dataset tiger usa.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 15 20 25 30

T
im

e
 (

n
s
)

bits per region

 130 135

Approach 1(Plain)
Approach 1(RRR)

Approach 2(Rmmt)
Approach 2(WT−BS)

Approach 2(WT−L)
Approach 2(P−BS)

Approach 2(P−L)
Approach 3

Baseline

(b) Operation contains dataset tiger usa+.

10
0

10
1

10
2

10
3

10
4

10
5

 10 15 20 25 30 35

T
im

e
 (

n
s
)

bits per region

 75 80

Approach 1(Plain)
Approach 1(RRR)

Approach 2(Rmmt)
Approach 2(WT−BS)

Approach 2(WT−L)
Approach 2(P−BS)

Approach 2(P−L)
Approach 3

Baseline

(c) Operation touches dataset tiger usa.

10
0

10
1

10
2

10
3

10
4

10
5

 10 15 20 25 30

T
im

e
 (

n
s
)

bits per region

 130 135

Approach 1(Plain)
Approach 1(RRR)

Approach 2(Rmmt)
Approach 2(WT−BS)

Approach 2(WT−L)
Approach 2(P−BS)

Approach 2(P−L)
Approach 3

Baseline

(d) Operation touches dataset tiger usa+.

 0

 1

 2

 3

 4

 5

 6

 10 15 20 25 30 35

T
im

e
 (

n
s
)

bits per region

 75 80

Approach 1(Plain)
Approach 1(RRR)

Approach 2(Rmmt)
Approach 2(WT−BS)

Approach 2(WT−L)
Approach 2(P−BS)

Approach 2(P−L)
Approach 3

Baseline

(e) Operation contained dataset tiger usa.

 0

 2

 4

 6

 8

 10

 12

 14

 10 15 20 25 30

T
im

e
 (

n
s
)

bits per region

 130 135

Approach 1(Plain)
Approach 1(RRR)

Approach 2(Rmmt)
Approach 2(WT−BS)

Approach 2(WT−L)
Approach 2(P−BS)

Approach 2(P−L)
Approach 3

Baseline

(f) Operation contained dataset tiger usa+.

Figure 8: Running time in nanoseconds using the datasets tiger usa and tiger usa+.

when reporting many nearby regions.

38

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

T
im

e
 (

n
s
)

Distance level

Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT−BS)
Approach 3
Baseline

(a) Operation contains.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 3 4 5 6

Distance level

Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT−BS)
Approach 3
Baseline

(b) Operation touches.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5

Distance level

Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT−BS)
Approach 3
Baseline

(c) Operation contained.

Figure 9: Running time in nanoseconds using the dataset tiger usa, where distance level

corresponds to the distance between the levels of the queried granules.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

T
im

e
 (

n
s
)

Distance level

Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT−BS)
Approach 3
Baseline

(a) Operation contains.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 3 4 5 6

Distance level

Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT−BS)
Approach 3
Baseline

(b) Operation touches.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5

Distance level

Approach 1(Plain)
Approach 1(SD)
Approach 2 (Rmmt)
Approach 2(WT−BS)
Approach 3
Baseline

(c) Operation contained.

Figure 10: Running time in nanoseconds using the dataset tiger usa+.

7.4. Performance with non-connected components

A final experimental evaluation was performed using the dataset whole usa

in order to measure the impact of the proposed strategy for dealing with more910

than one connected component. Since the number of connected components

is low regarding to the total number of regions (98 connected components and

around 20 million regions at level L6), the expected overhead of the proposed

strategy is very limited. Thus, to represent non-connected components, we ex-

tended the approach with the most interesting time-space trade-off, Approach915

1 (SD).

Regarding space consumption, the baseline uses 325.2 MB, while Approach

1 (SD) uses 60.1 MB, where 0.5 MB correspond to space consumption of

bitmaps D, MD and C. The proposed strategy of Section 6 adds 43,009 new920

regions obtained from the partition of regions with more than one connected

39

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5

T
im

e
 (

n
s
)

Distance level

Approach 1(SD)
Baseline

(a) Operation contains.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6

Distance level

Approach 1(SD)
Baseline

(b) Operation touches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

Distance level

Approach 1(SD)
Baseline

(c) Operation contained.

Figure 11: Running time in nanoseconds using the dataset whole usa.

component, which induces less than 1% of extra space.

Figure 11 shows the average running time for the three operations. From the

figure, we can conclude that the proposed strategy to deal with multiple con-925

nected components impacts the execution time in a negligible way, maintaining

running times similar to those of Figure 9.

8. Conclusions and Future Work

We have focused on the problem of compactly representing a hierarchical

partitioning of the space, so that basic queries regarding containment and ad-930

jacency of regions of arbitrary levels can be computed efficiently. It is known

that a set of n regions without a hierarchy can be efficiently manipulated within

4n+ o(n) bits. On a hierarchy of height h, our representation requires as little

as O(n lg h) bits, which becomes O(n) if the number of regions increases by a

multiplicative constant from each level to the next. Within this asymptotically935

optimal space, we design various representations that efficiently determine (1)

whether a region contains another, (2) whether a region touches another, and

(3) all the regions of some level contained by a given region.

Our experimental results show that we can represent the partitioning and940

hierarchical information within as little as 8 bits per region in practice, which

is about twice the space required to represent a partition without hierarchies.

40

Further, with about 16 bits per region (i.e., roughly 4 times the space without

hierarchies) our data structures answer all queries within 10 nanoseconds per

retrieved elements, and in some cases less than half a nanosecond.945

A challenge for future work is to obtain better theoretical complexities for the

operations. Despite the good times obtained in practice, operation (2) requires

time proportional to the number of neighbors of one of the regions, for example.

Another line of future work is to expand the set of operations. Postgresql, for950

example, implements eight named spatial relationship predicates defined in the

standard OGC SFS, and three non-standard relationship predicates. Some of

them do not apply in our domain given the restrictions of a spatial partition, in

which the interior of the granules cannot intersect (see Section 2.2). This is the

case of overlaps, for example. Some others, such as equals and disjoint can be955

easily implemented with the operations provided in our work. In some domains,

the contains predicate has a variant named containsProperly or includes, which

returns true when a region contains another and there is no intersection in the

boundary of such regions.

Data and codes availability statement960

The data and codes that support the findings of this study are available at

https://figshare.com/s/2d0d3f0825666c9c595c.

References

[1] J. Fuentes-Sepúlveda, D. Gatica, G. Navarro, M. A. Rodŕıguez, D. Seco,

Compact representation of spatial hierarchies and topological relationships,965

in: 31st Data Compression Conference, DCC 2021, IEEE, 2021, pp. 113–

122.

[2] H. Couclelis, People manipulate objects (but cultivate fields): Beyond the

raster-vecter debate in gis, in: Theories and Methods of Spatio-Temporal

41

https://figshare.com/s/2d0d3f0825666c9c595c

Reasoning in Geographic Space. LNCS vol. 639, Springer-Verlag, 1992, pp.970

65–77.

[3] S. Shekhar, M. Coyle, B. Goyal, D.-R. Liu, S. Sarkar, Data models in

geographic information systems, Comm. ACM 40 (4) (1997) 103–111.

[4] B. Kuijpers, J. Paredaens, J. V. den Bussche, Lossless representation of

topological spatial data, in: SSD, 1995, pp. 1–13.975

[5] Y. Deng, P. Z. Revesz, Spatial and topological data models, in: Information

Modeling in the New Millennium, Idea Group, 2001, pp. 345–359.

[6] M. Erwig, M. Schneider, Partition and conquer, in: COSIT, Vol. 1329,

Springer, 1997, pp. 389–407.

[7] C. Bettini, X. Wang, S. Jajodia, A general framework for time granularity980

and its application to temporal reasoning, Ann.Math.Art. Intell. 22 (1998)

29–58.

[8] S. Wang, D. Liu, Spatio-temporal database with multi-granularities, in:

WAIM, Vol. 3129, Springer, 2004, pp. 137–146.

[9] A. Guttman, R-trees: A dynamic index structure for spatial searching,985

SIGMOD Rec. 14 (2) (1984) 47–57.

[10] H. Samet, Bibliography on quadtrees and related hierarchical data struc-

tures, in: Data Structures for Raster Graphics, 1986, pp. 181–201.

[11] M. Hadjieleftheriou, E. Hoel, V. J. Tsotras, Sail: A spatial index library

for efficient application integration, Geoinformatica 9 (4) (2005) 367–389.990

[12] G. Navarro, Compact Data Structures – A Practical Approach,

Camb.U.Press, 2016.

[13] N. R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, G. Navarro, O. Pedreira,

Extending general compact querieable representations to GIS applications,

Inf. Sci. 506 (2020) 196–216.995

42

[14] N. R. Brisaboa, M. R. Luaces, G. Navarro, D. Seco, Space-efficient repre-

sentations of rectangle datasets supporting orthogonal range querying, Inf.

Syst. 38 (5) (2013) 635–655.

[15] N. R. Brisaboa, A. Gómez-Brandón, G. Navarro, J. R. Paramá, Gract: A

grammar-based compressed index for trajectory data, Inf. Sci. 483 (2019)1000

106–135.

[16] N. R. Brisaboa, A. Fariña, D. Galaktionov, M. A. Rodŕıguez, A compact

representation for trips over networks built on self-indexes, Inf. Syst. 78

(2018) 1–22.

[17] J. Fuentes-Sepúlveda, G. Navarro, D. Seco, Implementing the topological1005

model succinctly, in: SPIRE, 2019, pp. 499–512.

[18] G. Turán, On the succinct representation of graphs, Discr. Appl. Math.

8 (3) (1984) 289 – 294.

[19] Z. Chen, M. Grigni, C. H. Papadimitriou, Planar map graphs, in: STOC,

1998, pp. 514–523.1010

[20] M. J. Alam, M. Kaufmann, S. G. Kobourov, T. Mchedlidze, Fitting planar

graphs on planar maps, J. Graph Algorithms Appl. 19 (1) (2015) 413–440.

[21] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, X. S. Wang, A

glossary of time granularity concepts, in: Temporal Databases, Dagstuhl,

1997, pp. 406–413.1015

[22] E. Camossi, M. Bertolotto, E. Bertino, A multigranular object-oriented

framework supporting spatio-temporal granularity conversions, Int. J. Geo.

Inf. Sci. 20 (5) (2006) 511–534.

[23] A. Belussi, C. Combi, G. Pozzani, Formal and conceptual modeling of

spatio-temporal granularities, in: IDEAS, 2009, pp. 275–283.1020

[24] M. A. Mach, M. L. Owoc, Knowledge granularity and representation of

knowledge: Towards knowledge grid, in: IIP, Vol. 340, 2010, pp. 251–258.

43

[25] M. McKenney, M. Schneider, Spatial partition graphs: A graph theoretic

model of maps, in: SSTD, Vol. 4605, Springer, 2007, pp. 167–184.

[26] M. P. Dube, M. J. Egenhofer, Partitions to improve spatial reasoning, in:1025

SIGSPATIAL PhD, ACM, 2014, pp. 1:1–1:5.

[27] M. F. Worboys, Imprecision in finite resolution spatial data, GeoInformat-

ica 2 (3) (1998) 257–279.

[28] Z. Pawlak, Rough sets, J. Parallel Program. 11 (5) (1982) 341–356.

[29] T. Bittner, B. Smith, A taxonomy of granular partitions, in: COSIT, Vol.1030

2205, Springer, 2001, pp. 28–43.

[30] J. Fuentes-Sepúlveda, G. Navarro, D. Seco, Implementing the topological

model in near-optimal space and time, CoRR abs/1911.09498.

[31] ISO/IEC 13249-3:2016. Information technology – Database languages –

SQL multimedia and application packages – Part 3: Spatial, Tech. rep.1035

(2016).

[32] J. I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS), LNCS 1180,

1996, pp. 37–42.

[33] M. Pătraşcu, Succincter, in: Proc. 49th Annual IEEE Symposium on Foun-1040

dations of Computer Science (FOCS), 2008, pp. 305–313.

[34] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representa-

tions of sequences and full-text indexes, ACM Transactions on Algorithms

3 (2) (2007) article 20.

[35] G. Navarro, Wavelet trees for all, Journal of Discrete Algorithms 25 (2014)1045

2–20.

[36] G. Navarro, K. Sadakane, Fully-functional static and dynamic succinct

trees, ACM Transactions on Algorithms 10 (3) (2014) article 16.

44

[37] J. I. Munro, P. K. Nicholson, Compressed representations of graphs, in:

Encyclopedia of Algorithms, Springer, 2016, pp. 382–386.1050

[38] L. Ferres, J. Fuentes-Sepúlveda, T. Gagie, M. He, G. Navarro, Fast and

compact planar embeddings, Comput. Geom. 89 (2020) 101630.

[39] R. Raman, V. Raman, S. R. Satti, Succinct indexable dictionaries with ap-

plications to encoding k-ary trees, prefix sums and multisets, ACM Trans.

Algorithms 3 (4) (2007) 43–es.1055

[40] J. I. Munro, R. Raman, V. Raman, S. R. S., Succinct representations of

permutations and functions, Theoret. Comput. Sci. 438 (2012) 74–88.

[41] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: Plug and

play with succinct data structures, in: SEA, 2014, pp. 326–337.

[42] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dic-1060

tionary, in: ALENEX, SIAM, 2007.

45

	Introduction
	Related work and preliminaries
	Multi-granular hierarchies
	Multi-granular spatial hierarchy
	Topological queries
	Compact data structures
	Compact representation of topology data

	Approach 1: Mapping via bitmaps
	Structure
	Construction
	Operations

	Approach 2: Mapping sequence
	Structure
	Operations

	Approach 3: Hierarchy tree
	Operations

	Storing multiple connected components
	Experimental evaluation
	Experimental setup
	Datasets

	Evaluated implementations
	Performance on connected regions
	Performance with non-connected components

	Conclusions and Future Work

