Compact Representations of Spatial Hierarchical Structures with Support for Topological Queries^

José Fuentes-Sepúlveda ${ }^{\text {a,d }}$, Diego Gatica ${ }^{\text {a,d }}$, Gonzalo Navarro ${ }^{\text {b,d }}$, M. Andrea Rodríguez ${ }^{\text {a,d }}$, Diego Seco ${ }^{\text {c,d }}$
${ }^{a}$ Department of Computer Science, Universidad de Concepción, Chile.
${ }^{b}$ Department of Computer Science, University of Chile, Chile.
${ }^{c}$ CITIC, Facultade de Informática, Universidade da Coruña, Spain.
${ }^{d}$ Millennium Institute for Foundational Research on Data, Chile.

Abstract

Among different spatial data models, the topological model for spatial regions explicitly represents common boundaries. This model pursues the efficiency of topology-related queries and the elimination of data redundancy. This paper proposes several space-efficient data structures to support access to the topological representation of two-dimensional regions that are organized in a multi-granular or hierarchical structure, such as the political and administrative partition of a country. In the context of these hierarchies, we focus on queries that search for inclusion, disjointness, and adjacency between regions. The proposed structures build upon compact planar graph embeddings, which

 show to have a good trade-off between space and time.Keywords: Multi-granular hierarchy, Topological model, Spatial partition,
Compact data structures
2020 MSC: 68P05, 68P30

[^0]
1. Introduction

Spatial modeling usually distinguishes between field- and entity-based views of the space 2, 3. While the field-based view of the space associates attributes with areas in the space, the entity-based view represents the space as spa5 tial objects with explicit identities. The latter is the most common approach to represent objects in spatial databases, and thus there exist several spatial data models implementing it. Within these spatial data models, the topological model [4, 5] explicitly represents common boundaries between entities. Basic elements of this model are points, nodes, arcs, and regions. An arc is composed of its extreme nodes (or points of intersection), a sequence of points between those nodes, and the two regions that share the arc. By using the concept of arcs, the representation of a common boundary is unique, eliminating duplication when representing two adjacent entities. Such a model is useful to answer topological queries that search for objects that are adjacent or disjoint. Adjacency and disjointness are the most useful topological relations when the space is partitioned into regions, that is, it is divided into disjoint regions whose geometric union make up the whole space.

Partitions are a central notion for the spatial domain [6]. They can be also formalized as a form of granularity composed of granules that cannot partially overlap. The notion of granularity refers to the level of detail used in the representation of a domain composed of identifiable and disjoint units [7, 8. For example, the spatial granularity of 'county' contains all counties that are spatial regions that do not overlap. The definition of granularity we use in this work generalizes spatial partitions, but we analyze the relation between these two concepts in Section 2. Partitions can be organized in terms of a partial order relation by the topological relation of inclusion (inside or part-of) creating spatial hierarchical structures such as the administrative subdivisions of a country, which are useful to associate spatial references with statistical or non spatial data in traditional databases, and also to define dimensions in data warehous-
ing systems. Such a structure captures different levels of detail or granularity in the representation of space.

The work in this paper proposes new data structures to implement a topologof regions defined by the inclusion relation. Our approach differs from classical indexing structures that optimize spatial queries (9, 10, 11, which are specially designed to answer spatial range queries that return objects that are inside of a specific region given as the input of the query.

The new structures are based on Compact Data Structures (CDSs) [12, which have proven to successfully represent different data types in small space while supporting rich sets of operations. CDSs have obtained remarkable results in domains where there is a need to handle data in devices whose capacity is 45 surpassed by the data volume. The sheer volume of data is known to be one of the main characteristics of the spatial domain, and hence, CDSs have been also successfully applied in this domain [13, 14, 15, 16]. With this approach we expect not only to handle large volume of spatial data, but also to support spatial algorithms on small devices such as sensors, wearables or smartphones.

In this regard, the work by [17] showed how to implement the topological spatial data model using a planar-graph compact structure, which is based on Turán's representation 18. We extended their work by adding extensions to answer the topological relations of disjointness, inclusion, and adjacency at different levels of detail, which are useful in the context of spatial partitions such as administrative subdivision of the space. Note that this approach restricts our results to the two-dimensional space. Recently, the work by [1] introduced a compact data structure to support the same relations. Our work includes the following contributions: i) we propose two new approaches that offer good ${ }_{60}$ space-time trade-offs, ii) we show how to generalize our approaches to the case where the maps are composed by more than one connected component, and iii)
we perform a comprehensive experimental evaluation of the three approaches.

Our three approaches use planar graphs to represent partitions of the space, strategies then complement classical spatial indexing methods.

The organization of the paper is as follows. Section 2 describes related work and preliminaries including syntax notation used along the paper. Sections 3,4 ${ }_{75}$ and 5 introduce the three proposed data structures. Then, Section 6 generalizes those data structures to domains composed by more than one connected component. Section 7 experimentally evaluates our structures. Final conclusions and research directions are in Section 8 ,

2. Related work and preliminaries

 spatio-temporal granule a sequence of spatial granules, one per temporal granule.There exist several relations between granularities. Among them, a granular${ }^{\circ}$ o ity P is said to be a partition of a granularity Q, if for each granule $g \in Q$, there
exists a set S of granules in P whose geometric union makes up q [21, 8, 22, 24. This definition of spatial partition is a natural realization of a granularity, but the notion of granularity is more general because the set of granules that form the granularity may not cover the whole spatial domain.

Partitions have been an important notion to model the spatial domain [6] [25, 26. Concepts of maps, resolution, spatial objects and topological reasoning build on partitions and their properties. [27] proposed a formalization based on the theory of rough sets [28] to deal with resolution and multi-resolutions in geographic spaces and vague spatial objects. In this work, a resolution is a finite partition of a set S of locations on a plane. Partitions can be organized in terms of a partial order relation; in this sense, the notion of resolution is equivalent to the notion of granularity.
[29] propose a taxonomy of granular partitions. This taxonomy classifies partitions in terms of: i) degree of structural fit, which refers to the concept of mereological structure; ii) degree of completeness and exhaustiveness of projection, where projection refers to the notion that objects are located at particular cells or granules of a partition; iii) degree of redundancy, in which cells may belong to different partitions.

As seen, multi-granular topological hierarchies, or restricted versions thereof such as spatial partitions, have been studied in the past from different communities, which emphasizes the importance of this model and its implementation.

2.2. Multi-granular spatial hierarchy

Given a geographic connected region R गthe formalization of a multi-granular spatial hierarchy is as follows. A partition $L=\left\{r_{1}, \ldots r_{n}\right\}$ is a granularity com-

[^1]posed of regions r_{i} (called granules), such that (i) $\forall r_{i}, r_{j} \in L, r_{i} \cap r_{j}=\emptyset$ (i.e., regions are disjoint or touch each other, but they do not internally intersect) and (ii) $R=\bigcup_{1}^{n} r_{i}$ (i.e., the geometric union of regions makes the whole R). We will say that regions in L are neighbors if they share common boundaries. A partition can be seen as a planar graph, where nodes represent regions and an edge between two nodes indicates that the corresponding regions are neighbors.

Partitions can be organized into hierarchical structures by inclusion relations. Let $L_{1}=\left\{r_{1,1}, \ldots r_{1, n_{1}}\right\}$ and $L_{2}=\left\{r_{2,1}, \ldots r_{2, n_{2}}\right\}$ be two partitions, with $n_{1} \leq n_{2}$ being the number of regions per partition. Let contains $\left(r, r^{\prime}\right)$ be a function that returns true if region r contains region r^{\prime}. Then, L_{1} is a coarser level of granularity than L_{2}, denoted by $L_{1} \prec L_{2}$, if (i) $\forall r_{2, i} \in L_{2}, \exists r_{1, j} \in L_{1}$ such that contains $\left(r_{1, j}, r_{2, i}\right)$ holds (i.e., every region in L_{2} is within a region in L_{1}) and (ii) $\forall r_{1, i} \in L_{1}, \exists S \subseteq L_{2} r_{1, i}=\bigcup_{r_{2, j} \in S} r_{2, j}$ (i.e., each $r_{1, i}$ is made of the union of regions in L_{2}). We can generalize to several partitions (granularities) $L_{1} \prec L_{2} \prec \cdots \prec L_{h}$, with L_{1} being the coarsest or lowest granularity and L_{h} the finest or highest level of granularity. Figure 1 shows a spatial hierarchy composed of three granularity levels: L_{1} is the region level (Figure 1 (c)), L_{2} is the state level (Figure 1(b)), and L_{3} is the county level (Figure 1(a)), so $L_{1} \prec L_{2} \prec L_{3}$.

Based on this definition of a partition and of the multi-granular hierarchy, the following properties hold.

- Let $L_{i} \prec L_{j}$, with $i<j$, then for each $r^{\prime} \in L_{j}$, there is only one $r \in L_{i}$ such that contains $\left(r, r^{\prime}\right)$. Conversely, for each $r \in L_{i}$, there must be at least one $r^{\prime} \in L_{j}$ such that contains $\left(r, r^{\prime}\right)$.
- Because a partition L_{i} can be represented as a planar graph, with $n_{i}=\left|L_{i}\right|$ nodes and m_{i} edges (the number of pairs of neighboring regions in L_{i}), it holds $n_{i}<m_{i} \leq 3 n_{i}-6$.

Figure 1: Example of a geographic division with aggregation levels Region, State, and County.

- Let $r_{j}, r_{j}^{\prime} \in L_{j}$ be regions of a partition, if there is an L_{i} such that $L_{i} \prec L_{j}$, then there exist $r_{i}, r_{i}^{\prime} \in L_{i}$, not necessarily different, such that contains $\left(r_{i}, r_{j}\right)$ and contains $\left(r_{i}^{\prime}, r_{j}^{\prime}\right)$. Further, if r_{j} and r_{j}^{\prime} are neighbors (i.e., they share a boundary) and $r_{i} \neq r_{i}^{\prime}$, then r_{i} and r_{i}^{\prime} must be neighbors. Further, when r_{j} and r_{j}^{\prime} are neighbors, contains $\left(r_{i}, r_{j}\right)$ holds and contains $\left(r_{i}, r_{j}^{\prime}\right)$ does not hold, we say that r_{i} and r_{j}^{\prime} are neighbors as well.

2.3. Topological queries

As in the work of [17], we restrict our scope to pure topological queries and to the static version of the model. We then leave out the queries that use geometric information such as, given the coordinates of a point, find the granule it belongs to. A simple information-theoretic argument shows that basic queries that refer

Operation	Complexity
Do regions r_{1} and r_{2} share a boundary?	any in $\omega(1)$
Is boundary e on the border of region $r_{1} ?$	$O(1)$
Regions separated by boundary edge e	$O(1)$
Boundary edges of region r_{1}	$O(1)$ per boundary edge
Regions adjacent to region r_{1}	$O(1)$ per region
Number of regions adjacent to region r_{1}	any in $\omega(1)$

Table 1: Topological operations considered in 17, 30. Let r_{1} and r_{2} be two regions and e be a boundary edge.
to geometry cannot be answered without using a linear number of integers per granule. Several well-known spatial data structures fitting in this space, like Rtrees [9] and Quadtrees [10], can efficiently answer geometry queries like spatial range, spatial join, and nearest neighbor queries. These indexes were especially designed to answer spatial point or range queries, but they are inefficient to solve pure topological queries such as overlapping, touching, and inclusion. If we restrict the queries to the topological domain, instead, it is possible to represent the data within a linear number of bits, and furthermore, efficiently solve many queries; see Table 1 Those queries, however, do not consider multi-granular models, just a single space partition.

In this work we explore the space and time complexities that can be achieved on pure topological queries over multi-granular models. The set of queries we consider is based on the international standard ISO/IEC 13249-3:2016 [31. Most of those operations are also implemented in flagship spatial databases, such as PostgreSQL ${ }^{2}$ In addition to those already considered in Table 1 . we handle operations that relate regions (i.e., granules) of different level of granularity. In particular, contains $\left(r_{1}, r_{2}\right)$ (i.e., do region r_{1} contains region r_{2} ?), touches (r_{1}, r_{2}) (i.e., do regions r_{1} and r_{2} share a common boundary?),

[^2]```
R Partition into top-level regions
h Number of levels in the hierarchy, 1 to h
L
ni Number of regions at level i, ni}=|\mp@subsup{L}{i}{}
mi Number of pairs of neighboring regions of level i, mi}=\Theta(\mp@subsup{n}{i}{}
d
n Total regions of all levels, n= \sum hi=1}\mp@subsup{n}{i}{
m Total neighboring pairs at all levels, m= \sum hi=1}\mp@subsup{m}{i}{}=\Theta(n
Si Representation of the planar embedding of level i
```

Table 2: Notations.
and contained $\left(L_{j}, r\right)$ (i.e., list all regions at granularity level $L_{j}$ that are con- tained in region $r$ ). As example, consider again Figure 1 . Then, relation contains (state $H$, county $n$ ) is true, whereas relation contains (state $C$, county o) is false. Further, contained $\left(L_{3}\right.$, region $\left.\alpha\right)$ returns the counties $\{m, n, r, q, u, t, s, p, l\}$.

Using the notation summarized in Table 2, Table 3 lists the operations we consider and the complexities we obtain. We analyze the space in general and also under the realistic exponential growing assumption, that there is a constant $c>1$ such that $n_{i} \geq c \cdot n_{i-1}$ for all $i$. This assumption implies that the number of regions grows exponentially with the level and thus $h=O\left(\lg n_{h}\right)$. The assumption holds, for example, if every region is split into at least two regions in the next level (thus $c=2$ ).

### 2.4. Compact data structures

With the main purpose of manipulating huge amounts of data, compact data structures [12] aim to represent data in space close to its information-theoretic lower bound. Unlike compression techniques, where decompression is needed to support operations, compact data structures allow us to implement operations directly over the compact representation. Through this work we use compact data structures for sequences and ordinal trees.

| Operation |  | Complexities |  |
| :--- | :---: | :---: | :---: |
| Approach 1 | Approach 2 | Approach 3 |  |
| contains $\left(r_{1}, r_{2}\right)$ | $O(1)$ | $O(\lg n \lg h)$ | $O(1)$ |
| touches $\left(r_{1}, r_{2}\right)$ | $O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right)\right)$ | $O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right) \lg n \lg h\right)$ | $O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right)\right)$ |
| contained $\left(L_{j}, r_{1}\right)$ | $O(1)$ | $O(\lg n \lg h)$ | $O(1)$ |
| Space in bits | $O(n \lg h)+o\left(h n_{h}\right)$ | $O(n \lg h)$ | $O(n \lg n)$ |
| Space w/exponential growing | $O(n)$ | $O(n)$ | $O(n \lg n)$ |

Table 3: Multi-granular operations considered in this article, where $r_{1}$ and $r_{2}$ are regions at levels $i \leq j$, respectively, and $d_{r_{1}}$ and $d_{r_{2}}$ are their respective number of neighboring regions. The complexity of the contained query is per returned element. We present three solutions (one per column) with different complexities.

Bitmaps. A bitmap $B[1 . . n]$ is an array of bits supporting three operations: $\operatorname{access}(B, i)$ (the bit in $B$ at position $i$, $\operatorname{rank}_{b}(B, i)$ (the number of occurrences of bit $b \in\{0,1\}$ in $B$ up to position $i$ ), and $\operatorname{select}_{b}(B, i)$ (the position of the $i$-th appearance of bit $b$ in $B$ ). One can support all those operations in $O(1)$ time using $n+o(n)$ bits [32]. When $B$ has $m \ll n 1 \mathrm{~s}$, it can be represented within $m \lg \frac{n}{m}+O\left(m+n / \lg ^{c} n\right)$ bits, for any constant $c$, still solving the operations $O(c)$ time 33.

Compact sequences. Compact sequences are well-known compact data structures with a myriad of applications, ranging from text indexing to planar maps. Given a sequence $A[1 . . n]$, where $A[i] \in \Sigma$, interesting operations are the same $\operatorname{access}(A, i), \operatorname{rank}_{a}(A, i)$, and select ${ }_{a}(A, i)$, which extend those of bitmaps for any $a \in \Sigma$. The sequence can be represented in $n H_{0}+o(n \lg \sigma \lg \lg n / \lg n)$ bits, supporting the operations in time $O(\lg \sigma / \lg \lg n)$ [34]. Here, $H_{0}$ is the zero-order empirical entropy of $A, H_{0}=\sum_{a \in \Sigma} \frac{n_{a}}{n} \lg \frac{n}{n_{a}}$, where $a$ appears $n_{a}$ times in $A$. Note the time is constant if $\sigma \in O(\operatorname{polylog} n)$. Using the basic operations, more complex ones can be implemented, such as rightmost ${ }_{a}(A, i)=$ $\operatorname{select}_{a}\left(A, \operatorname{rank}_{a}(A, i)\right)$, the position of the rightmost symbol $a$ up to position
$i$, and leftmost $(A, i)=\operatorname{select}_{a}\left(A, \operatorname{rank}_{a}(A, i)+1\right)$, the position of the leftmost symbol $a$ after position $i$.

Generalizations of rank and select, rank $_{\leq a}(A, i)$ (the number of occurrences of symbols less than or equal to $a$ in $A$ up to position $i$ ), select $\leq a(A, i)$ (the position of the $i$-th symbol less than or equal to $a$ in $A$ ), and leftmost $\leq a(A, i)$ (the position of the leftmost symbol less than or equal to $a$ after position $i$ ), can be supported in time $O(\lg \sigma), O(\lg n \lg \sigma)$ and $O(\lg \sigma)$, respectively, using wavelet trees (35].

Compact trees. The topology of a tree with $n$ nodes can be represented by a balanced parenthesis sequence of length $2 n$. The sequence is obtained by performing a DFS traversal of the tree, writing an open parenthesis every time an edge is visited for the first time, and a close parenthesis when an edge is visited for the second time. Given a balanced parentheses sequence $B[1 . .2 n]$, the operation find_close $(B, i)$ returns the position of the matching closing parenthesis of the opening parenthesis $B[i]$, and find_open $(B, i)$ returns the position of the matching opening parenthesis of $B[i]$. Operation enclose $(B, i)$ returns the position of the opening parenthesis that, together with its matching closing parenthesis, most tightly contains $i$. Those operations are supported in constant time using $2 n+o(n)$ bits 36.

The most practical compact representation for ordinal trees is the range min-max tree (Rмmт) [36]. The Rmmt is a complete binary tree that stores some statistics about the number of opening and closing parentheses of the balanced parenthesis sequence $B$. The compact tree is built upon a basic operation called excess, defined as excess $(i)=\operatorname{excess}(i-1)+1$ if $B[i]=$ '(', or $\operatorname{excess}(i)=\operatorname{excess}(i-1)-1$ if $B[i]=')$ '. The sequence $B$ is virtually divided into blocks of length $l$, where each block is represented by a leaf of the rmmt. For the leaf $v$ associated with a block $B[s . . e]$, the whole excess, defined as
$v . e=\operatorname{excess}(e)-\operatorname{excess}(s-1)$, and the minimum excess value of the leaf, defined as $v . \min =\min _{i \in[s, e]}\{\operatorname{excess}(i)-\operatorname{excess}(s-1)\}$, are stored. For an internal node $u$ with left child $u_{l}$ and right child $u_{r}$, the whole and minimum excess values are also stored, defined as $u . e=u_{l} \cdot e+u_{r} . e$ and $u \cdot \min =\min \left\{u_{l} \cdot \min , u_{l} \cdot e+u_{r} \cdot m i n\right\}$, respectively. Once those values are stored in the RmmT, the operations find_open, find_close and enclose are reduced to the primitive operations fwd_search $(B, i, d)$ (the leftmost position $j>i$ in $B$, such that excess $(i)+d=\operatorname{excess}(j)$, with $d<0$ ) and bwd_search $(B, i, d)$ (the rigthmost position $j<i$ in $B$, such that excess $(i)+d=\operatorname{excess}(j)$, with $d<0)$. Both primitive operations scan sequentially a constant number of blocks of $B$ and move up and down in the rmmt looking for the answer, spending $O\left(l+\lg \frac{n}{l}\right)$ time. We assume $l=\Theta(\lg n)$ in this paper, so the time is $O(\lg n)$ and the space is $O(n)$ bits. These complexities can be reduced to $O(1)$ and $o(n)$ by means of more complex data structures [36].

Within the same time and space complexities, the rmmt can also support $\operatorname{rank}_{( }(B, i)$ and select $(B, i)$ by storing a new field $n^{\prime}$ on each node of the RMmт. For each leaf $v$ of the RMmT, $v \cdot n^{\prime}$ stores the number of opening parentheses in the block $B[s . . e]$ associated with $v$, and for each internal node $u$ with left and right children $u_{l}$ and $u_{r}$, we store $u \cdot n^{\prime}=u_{l} \cdot n^{\prime}+u_{r} \cdot n^{\prime}$.

All previous operations can be applied to a sequence $S[1 . . n]$ composed by two intertwined balanced parenthesis sequences, $B$ and $B^{*}$. For convenience, $B$ is represented with parentheses, $B^{*}$ with brackets (for the remainder of the paper, parentheses refers to round brackets (), while brackets refers to square brackets []), and the intertwine is represented with a bitmap $A[1 . . n]$, such that $A[i]=1$ iff $S[i]=$ '(' or $\left.S[i]={ }^{\prime}\right)$ ', and $A[i]=0$, otherwise. Thus, the operation $\operatorname{rank}_{()}(S, i)$ (the number of opening or closing parentheses in $S$ up to position $i$ ) is supported in constant time by $\operatorname{rank}_{1}(A, i)$. Similarly, $\operatorname{select}_{()}(S, i)$ (the position of the $i$-th opening or closing parenthesis in $S$ ) is supported in constant time by select ${ }_{1}(A, i)$. In the same way, for $\left.S[i]={ }^{\prime}\right)^{\prime}$, find_open $(S, i)$ is mapped to $\operatorname{select}_{1}\left(A\right.$, find_open $\left.\left(B, \operatorname{rank}_{1}(A, i)\right)\right)$. Operations find_close and enclose are sup-


Figure 2: Planar graph representations of the aggregation levels of Figure 1 Spanning trees are represented with thick edges.
ported similarly.

### 2.5. Compact representation of topology data

We focus on the planar graph embedding representation of a geographic area divided into regions whose interiors do not overlap. The embedding is composed by nodes representing the geographic regions and edges connecting two regions that share a geographic boundary. Figure 2 shows the induced planar embedding of the geographic area of Figure 1 .

Although there exist various compact representations of planar graph embeddings [37, 12], the representation of [18] is one of the simplest. It consists of a sequence $S$ of length $2 m$, where $m$ is the number of edges of the planar embedding. For its construction, Turán's representation performs a depth-first
search (DFS) traversal over an arbitrary spanning of the planar embedding, appending to $S$ a '(' or a ')' depending on whether it is the first or second time that an edge of the spanning tree is visited. For edges that do not belong to the spanning tree, a '[' or a ']' is appended following the same conditions. By using two bits per symbol of $S$, the representation uses $4 m$ bits of space. For example, the embedding of Figure 2(a) can be represented by sequence $S_{3}$ in Figure 3

Although Turan's representation does not provide primitives to navigate the graph, 38 augmented it using compact representations of trees and bitmaps that add up $o(m)$ extra bits, and enable navigation operations. The extended representation lists the incident edges of a vertex and the edges bounding a face both in $O(1)$ time per edge, computes the vertex degree in any time in $\omega(1)$, and checks whether two vertices are neighbors in any time in $\omega(\lg m)$. Later, [17, 30] improved the time bounds and extended the representation to support the topological model (without multi-granularity) using $4 m+o(m)$ bits and offering relevant time guarantees; recall Table 1. Hereinafter, we refer to their work as PEMB.

In this work, we generalize PEMB in order to support multi-granular hierarchies of spatial objects. A map with several levels of granularity can be seen as a set of planar embeddings, one per level, plus the information about containment relationships among levels. The embedding of level $i$ has $n_{i}$ nodes and $m_{i}$ edges. A straightforward representation consists of using PEMB to represent each planar embedding of the collection (using $4 m_{i}+o\left(m_{i}\right)$ bits per level $i$ ), plus $h-1$ integer vectors to store the region of the preceding level that contains each region. This arrangement, for example, supports the query contains in $O(h)$ time. Its main drawback is the space consumption of the vectors, $\left\lceil n_{i} \lg n_{i-1}\right\rceil$ bits at each level $i>1$. In what follows, we introduce three approaches to represent a multi-granular map in less space while efficiently supporting the queries.

## 3. Approach 1: Mapping via bitmaps

This section summarizes the results of [1] which we complement with a new proof of correctness of the construction method, and a tighter time/space complexity analysis for the construction algorithm and for the contained operation (see Table 3). Instead of building PEMB independently for each planar embedding of the collection, they proposed an approach to synchronize the construction of the compact representation of the embeddings, which allows to implicitly encode the mapping among consecutive granularity levels in less space. The synchronization is made by the spanning trees of the different aggregation levels. In Section 3.2 we present an algorithm to compute a spanning tree at level $h$, from which we can induce valid spanning trees for the other aggregation levels as follows (we prove later than this construction is correct).

Definition 1. Given a spanning tree $T$ of the planar embedding of $L_{h}$, we induce spanning trees for the planar embeddings of $L_{1}, L_{2}, \ldots, L_{h-1}$ using the following rules:

- Let $(u, v)$ be an edge of $T$, and let $u^{i}$ and $v^{i}$ be the regions containing regions $u$ and $v$ at level $L_{i}$, respectively. Then, the edge $\left(u^{i}, v^{i}\right)$ belongs to the spanning tree of level $L_{i}$.
- Multiple edges and self-loops are deleted.

Figure 2 shows an example of spanning trees following Definition 1. From the spanning tree of Figure 2(a) we can induce the spanning trees of Figures 2(b) and 2(c)

### 3.1. Structure

Each granularity level $L_{i}$ is stored in two components (see Figure 3): 1) The planar graph embedding is stored using PEMB, generating a sequence $S_{i}$ of parentheses and brackets, where parentheses represent the spanning tree of the planar embedding and brackets represent the edges not in the spanning tree. In


Figure 3: Compact representation of the geographic division of Figure 2

Section 3.2. we show how to construct the sequence $S_{i}$. The space consumption for the $h$ granularity levels is $4 \sum_{i=1}^{h} m_{i}+o\left(\sum_{i=1}^{h} m_{i}\right)=4 m+o(m)$ bits; 2) The and closing parentheses of the edge in $L_{h}$ that induced $e$. Notice that for level $h$ we do not need to store a bitmap $B_{h}$. Since $B_{i}$ has only $2 n_{i} 1 \mathrm{~s}$, its compressed representation requires $2 n_{i} \lg \frac{n_{h}}{n_{i}}+O\left(n_{i}\right)+o\left(n_{h}\right)$ bits; recall Section 2.4

Overall, the space of this representation is $4 m+o(m)+2 \sum_{i} n_{i} \lg \frac{n_{h}}{n_{i}}+$ $O(n)+o\left(h n_{h}\right)=2 \sum_{i} n_{i} \lg \frac{n_{h}}{n_{i}}+O(n)+o\left(h n_{h}\right)$ bits. Since $\lg \frac{n_{h}}{n_{i}} \leq \lg \frac{n}{n_{i}}$ and, by Jensen's inequality, $\sum_{i} n_{i} \lg \frac{n}{n_{i}} \leq n \lg h$, the total space is in $O(n \lg h)+o\left(h n_{h}\right)$ bits. Further, the space is $O(n)$ under the exponential growing assumption: since $n_{i} \leq n_{h} / c^{h-i}, \sum_{i} n_{i} \lg \frac{n_{h}}{n_{i}} \leq \sum_{i} n_{h}(h-i) / c^{h-i} \cdot \lg c=O\left(n_{h}\right)$. In turn, the $o\left(h n_{h}\right)$ term can be $O\left(h n_{h} / \lg n_{h}\right)=O\left(n_{h}\right)$ [33].

### 3.2. Construction

The compact representation is built by performing a DFS traversal on the planar graph of the highest granularity level, $h$. During the traversal, when we mark a vertex as visited, we also mark as visited the $h-1$ regions that contain it in coarser granularity levels. Thus, an edge $(u, v)$ is traversed when the target vertex $v$ has not been visited before and one of the following conditions holds: a) $u$ and $v$ are contained by the same region at level $h-1$; b) at least one of the regions containing vertex $v$ has not been visited before.

In the traversal, each edge of the planar embedding of $L_{h}$ is processed twic $\$^{3}$ and only the edges of the spanning tree are traversed. Let us focus on the generation of $S_{i}$ and $B_{i}$, where, by default, all values of $B_{i}$ are 0s. Assume that we are processing the $j$-th edge $e=\left(r_{1}, r_{2}\right)$ of $L_{h}$, where regions $r_{1}^{\prime} \neq r_{2}^{\prime}$ contain regions $r_{1}$ and $r_{2}$ at level $i$, respectively. The following conditions are checked:

1. If it is the first time that $e$ is processed and the edge $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ belongs to the spanning tree of level $i$, then $B_{i}[j]=1$ and a symbol '(' is appended to $S_{i}$.
2. If it is the first time that $e$ is processed and the edge $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ does not belong to the spanning tree of level $i$, then a symbol '[' is appended to $S_{i}$.
3. If it is the second time that $e$ is processed and the edge $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ belongs to the spanning tree of level $i$, then $B_{i}[j]=1$ and a symbol ')' is appended to $S_{i}$.
4. Finally, if it is the second time that $e$ is processed and the edge $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$

[^3]does not belong to the spanning tree of level $i$, then a symbol ']' is appended to $S_{i}$.

Observe that $B_{i}[j]=1$ indicates that we are entering to or exiting from a region at granularity level $i$, depending on whether it is the first or second time that such edge has been processed. In particular, exiting from a region means that all its regions contained at finer granularity levels have been processed.

By using an auxiliary bitmap to mark the processed edges at each $i<h$, all sequences $S_{i}$ and bitmaps $B_{i}$ can be computed at the same time during the traversal, obtaining a final time complexity of $O\left(n_{h}+h m_{h}\right) \subseteq O(h n)$, dominated by the at most $h$ comparisons per edge. We now prove the correctness of the construction algorithm.

Lemma 1. The algorithm described above computes a valid spanning tree.

Proof. We show by contradiction that there are no cycles and that all regions of $L_{h}$ belong to the produced subgraph. On the one hand, a cycle means that during the construction an edge $(u, v)$, where both $u$ and $v$ and/or their containing regions are marked as visited, was added to the set. However, that contradicts the rule that only edges leading to a non-visited target regions are added at any level $i$. Therefore, the produced subgraph is acyclic.

Note that, when we leave a region by an edge to another, we do not reenter the region, to avoid cycles. We resume the traversal of the region only once we return from the outgoing edge. This makes the traversal of a region reach all of its nodes, exactly as if the outgoing edges were ignored. This is the key to show that all the regions are reached by the tree, which makes it a spanning tree. Assume the opposite, and let $r$ be a region that is not reached and that touches a reached region $r^{\prime}$. Such a region must exist because there is a path
of regions between every non-reached region and the region where we start the traversal, which is reached by definition. When the algorithm traversed $r^{\prime}$, it reached all of its nodes, in particular the one with an edge towards $r$, which exists because $r$ and $r^{\prime}$ are neighbors. At that point, $r$ was not reached and the traversal should have entered it; a contradiction.

### 3.3. Operations

In order to support the operations of Table 3, we provide the following primitive operations to navigate the compact representation, based on the operations described in Section 2,

Basic primitives. Hereinafter, we consider that each region, represented by a vertex in the planar embedding of $L_{i}$, is identified by its pre-order rank in the traversal of the spanning tree of level $i$.

- go_up_ $\mathrm{L}_{\mathrm{h}}(x, i)$ : This operation allows us to map the $x$-th region of granularity level $i$ to a region at level $h$. To do that, we must find the position of the $x$-th region in $S_{i}$ with $z=\operatorname{select}_{( }\left(S_{i}, x\right)$, to then map such position into the bitmap $B_{i}$, with $y=\operatorname{select}_{1}\left(B_{i}, \operatorname{rank}_{( }\left(S_{i}, z\right)\right)$. Finally, the position of the output region corresponds to the position of the $y$-th open parenthesis in $S_{h}$, which can be obtained with select $\left({ }_{( }\left(S_{h}, y\right)\right.$. The time complexity is $O(1)$, since it depends on constant time operations rank and select.
- go_down $\mathrm{L}_{\mathrm{h}}(x, d)$ : This operation is complementary to go_up_ $\mathrm{L}_{\mathrm{h}}$, mapping the $x$-th region of $L_{h}$ into a region at level $h-d$. We start as for go_up_L $L_{h}$, finding the position of the $x$-th region in $S_{h}$ with $z=\operatorname{select}_{( }\left(S_{h}, x\right)$, to then map it to the bitmap $B_{h-d}$ with $p=\operatorname{rank}_{()}\left(S_{h}, z\right)$. The final answer corresponds to the position in $S_{h-d}$ of the nearest ancestor $y$ of $x$ in the spanning tree of level $L_{h-d}$ that is marked in $B_{h-d}$. To do that, we compute $q=\operatorname{select}_{()}\left(S_{h-d}, \operatorname{rank}_{1}\left(B_{h-d}, p\right)\right)$. If $S_{h-d}[q]=$ '(', then $q$
is the answer, otherwise it is $q^{\prime}=\operatorname{enclose}\left(S_{h-d}\right.$, find_open $\left.\left(S_{h-d}, q\right)\right)$. This operation takes constant time.
- region_id $\left(S_{i}, x\right)$ : This operation returns the id of the region represented by the open parenthesis $S_{i}[x]=$ '('. It can be solved in constant time with $\operatorname{rank}_{( }\left(S_{i}, x\right)$.
- go_level $(x, i, j)$ : This operation is a generalization of operations go_up_ $\mathrm{L}_{\mathrm{h}}$ and go_down $L_{h}$, mapping the $x$-th region of $L_{i}$ into a region at level $j$. It can be solved in $O(1)$ time by mapping the $x$-th region of $L_{i}$ into a region of $L_{h}$, to then map such region of $L_{h}$ into a region of $L_{j}$, as go_down_L $\mathrm{L}_{\mathrm{h}}\left(\right.$ go_up_L $\left.\mathrm{L}_{\mathrm{h}}(x, i), h-j\right)$. Notice that when $j<i$, we are going down in the hierarchy, whereas when $j>i$ we are going up.

Main operations.. We now focus on the operations of Table 3. Let $r_{1} \in L_{i}$ and $r_{2} \in L_{j}$ be two regions such that $i \leq j$ :

- contains $\left(r_{1}, r_{2}\right)$ : Does region $r_{1}$ contain region $r_{2}$ ? First, if $r_{1}$ and $r_{2}$ belong to the same level (i.e., $i=j$ ), we just return whether $r_{1}=$ $r_{2}$. Otherwise, we compute the region $r_{2}^{\prime} \in L_{i}$ that contains $r_{2}, r_{2}^{\prime}=$ region_id $\left(S_{i}\right.$, go_level $\left.\left(r_{2}, j, i\right)\right)$, and return whether $r_{1}=r_{2}^{\prime}$. The time complexity of this query is $O(1)$.
- touches $\left(r_{1}, r_{2}\right)$ : Does region $r_{1}$ share a boundary with region $r_{2}$ ? We distinguish two cases: 1) If $r_{2}$ is not contained in $r_{1}$ (contains $\left(r_{1}, r_{2}\right)=$ false), we must find a neighbor of $r_{2}$ that is contained in region $r_{1}$; and 2) if $r_{2}$ is contained in $r_{1}$ (contains $\left(r_{1}, r_{2}\right)=$ true), then we must find a neighbor of $r_{2}$ that is not contained in $r_{1}$. For each neighbor $w$ of $r_{2}$, we compute its containing region at level $i$ as $z=\operatorname{region\_ id}\left(S_{i}, \operatorname{go\_ level}(w, j, i)\right)$. For the first case, if we cannot find a neighbor of $r_{2}$ such that $r_{1}=z$, then we return false; otherwise we return true. Similarly, for the second case, if we
cannot find a neighbor of $r_{2}$ such that $r_{1} \neq z$, then we return false; otherwise we return true. The time complexity is $O\left(d_{r_{2}}\right)$, depending directly on the number of neighbors of $r_{2}$.
- contained $\left(L_{j}, r_{1}\right)$ : List all regions at level $j$ contained in region $r_{1}$. To support this operation, we report all regions in the range $S_{j}[a . . b]$ that are contained by the region $r_{1}$, where $a=$ go_level $\left(r_{1}, i, j\right)$ and $b=$ find_close $\left(S_{j}, a\right)$. To report the regions, we traverse the range left-to-right reporting every region region_id $\left(S_{j}, a^{\prime}\right)$, where initially $a^{\prime}=a$ and then it is redefined as the position of the next open parenthesis, $a^{\prime}=\operatorname{leftmost}_{( }\left(S_{j}, a^{\prime}\right)$, until $a^{\prime}>b$. It is possible, however, that each such position $a^{\prime}$ is marked as the beginning of a new region, in which case we have to skip the subtree with $a^{\prime}=$ leftmost $\left(S_{j}\right.$, find_close $\left.\left(S_{j}, a^{\prime}\right)\right)$. An opening parenthesis at position $p$ is marked if $B_{i}[c]=1$, where $c=\operatorname{select}_{1}\left(B_{j}, \operatorname{rank}_{()}\left(S_{j}, p\right)\right)$. Thus, this operation can be answered in $O\left(n_{j}\right)$ time. Despite its high worst-case complexity, we implement this solution with competitive practical results, see Section 7. We can, however, improve the theoretical result so as to spend $O(1)$ time per output region, by limiting the number of skipped subtrees between consecutive output regions. This can be done by adding dummy vertices that work as the root of consecutive subtrees that must be skipped. By marking the dummy vertices in the bitmap $B$, we can skip them during the left-to-right traversal. Thus, skipping a dummy vertex is equivalent to skip its descendant subtrees. The dummy vertices skipped then amortize to the number of the vertices that belong to the output, because there is at least one useful node between every two dummy nodes. The extra space is $O\left(n_{j}\right)$ bits in the level $j$, since we can add up to one dummy vertex per edge of the planar embedding. Additionally, to distinguish the dummy vertices, we can mark them in a bitmap of $O\left(n_{j}\right)$ bits.

Theorem 2 summarizes the results of this first approach:

Theorem 2. A geographic connected region organized as a multi-granular hierarchy with $n$ regions in total and $h$ granularity levels can be represented in $O(n \lg h)+o\left(h n_{h}\right)$ bits, where $n_{h}$ is the number of regions at granularity level $L_{h}$. The same representation supports operations contains $\left(r_{1}, r_{2}\right)$ in constant time, touches $\left(r_{1}, r_{2}\right)$ in $O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right)\right)$ time, and contained $\left(L_{j}, r_{1}\right)$ in constant time per returned element, where $r_{1}$ and $r_{2}$ represent a region at granularity levels $L_{i}$ and $L_{j}$, respectively, and $d_{r_{1}}$ and $d_{r_{2}}$ are their respective number of neighboring regions. Under the exponential growing assumption, the space consumption is $O(n)$ bits.

Sections 4 and 5 introduce two new approaches that provide trade-offs for the work of [1]. In particular, the approach of Section 4 improves the space consumption, both in practice (as we show in Section 7) and in theory by a sublinear term, at the cost of increasing the running time by a factor of $O(\lg n \lg h)$, meanwhile the approach of Section 5 reduces in practice the running time of the operations at the cost of increasing space consumption.

## 4. Approach 2: Mapping sequence

The data structures of the first approach have two sources of redundancy:

- If $B_{i}[k]=1$, then $B_{j}[k]=1$ for all $j \geq i$, that is, the mapping bitmaps are contained in the next ones.
- Following Definition 1, from $S_{h}$ we can derive the sequences $S_{i}, i<$ $h$. In particular, the $k$-th parenthesis of sequence $S_{i}$ corresponds to $S_{h}\left[\operatorname{select}_{()}\left(S_{h}, \operatorname{select}_{1}\left(B_{i}, k\right)\right)\right]$.

Our second approach removes both sources of redundancy, in exchange for higher time complexities.

$$
\begin{aligned}
& \left.\left.\mathrm{S}_{3}{ }^{()}=(((((((()((((1)))))))((())))((1)))))()\right)\right) \\
& \left.\left.\mathrm{S}_{3}{ }^{[ }=[[[[[][[[[][]]]]]][[[[]]]]][[[][[][]]]][]]\right]\right] \\
& \mathrm{B}_{()}=132323123223233332322323333331233232323331 \\
& \mathrm{~B}_{\mathrm{f}}=1222332323333332322233333322233332333323333221
\end{aligned}
$$

Figure 4: Sequences $S_{3}^{()}, S_{3}^{[]}, B_{()}$and $B_{[]}$for the sequence $S_{3}$ of Figure 3

The first source of redundancy implies that the mapping bitmaps $B_{i}$ can be replaced by a single sequence that tells the lowest level $j$ a position of $S_{h}$ belongs to. In turn, the bitmap $B_{i}$ defines the sequence $S_{i}$, so in principle storing the sequence of lowest levels plus $S_{h}$ should be sufficient. We need, however, to navigate the sequence of parentheses and brackets of $S_{i}$. Although we do not represent $S_{i}$ explicitly, we will represent the needed Rmmis.

### 4.1. Structure

Let $S_{h}^{()}$be the sequence composed of only the parentheses of $S_{h}$. We define the sequence $B_{()}\left[1 . .2 n_{h}\right]$, which stores the lowest level each parenthesis of $S_{h}^{()}$ belongs to. Formally, $B_{()}[k]=j$ iff the $k$-th parenthesis of $S_{h}^{()}$is present at the sequence $S_{j}$ but not at $S_{j-1}$. Thus, the $i$-th parenthesis of $S_{h}^{()}$is present at $S_{j}$ iff $B_{()}[i] \leq j$, and the position in $S_{h}^{()}$of the $i$-th parenthesis of $S_{j}$ can be computed as select $\leq j\left(B_{()}, i\right)$. Analogously, we define the sequences $S_{h}^{\square]}$ and $B_{[ }\left[1 . .2\left(m_{h}-n_{h}+2\right)\right]$, associated with the dual graph of the planar embedding of level $h$. Figure 4 shows the sequences $S_{3}^{()}, S_{3}^{[]}, B_{()}$, and $B_{[]}$corresponding to the sequence $S_{3}$ of Figure 3

The representation is then composed by:

- The planar graph embedding of $L_{h}$, represented with PEMB. It uses $4 m_{h}+o\left(m_{h}\right)$ bits.
- The RMMTs of the balanced parenthesis sequences $S_{1}^{()}, S_{2}^{()}, \ldots, S_{h}^{()}$, and


Figure 5: RmmTs of balanced parenthesis sequences $S_{1}^{()}, S_{2}^{()}$and $S_{3}^{()}$. A node of the Rmmт covering the block $S_{i}^{()}[i . . j]$ stores: the last excess value of the block $\left(e_{i}\right)$, the minimum excess value of block $\left(m_{i}\right)$, and the number of opening parentheses in the block $\left(n_{i}^{\prime}\right)$. The values and parentheses in gray are not explicitly stored.
$S_{1}^{[]}, S_{2}^{[]}, \ldots, S_{h}^{[]}$. Summing up the $2 h$ RMmTs, the space usage is $O(m)$ bits.
See Figure 5 for an example of the Rmmts of Figure 3.

- The sequences $B_{()}$and $B_{[]}$with support for rank $\leq$and select $\leq$operations, using $2\left(m_{h}+2\right)\lceil\lg h\rceil+o\left(m_{h} \lg h\right)=2 m_{h} \lg h+o(n \lg h)$ bits.

Since $m_{h}=O(m)$ and $m=\Theta(n)$, the total space is $O(n \lg h)$ bits. In fact, the sequences $B_{()}$and $B_{[]}$can be represented to within their zero-order entropy. The sequence $B_{()}$has $n_{i}-n_{i-1}-\ldots-n_{1} \leq n_{i}$ occurrences of the symbol $i$, and therefore its entropy $H_{0}\left(B_{()}\right)$is at most $\sum_{i \in[1 . . h]} \frac{n_{i}}{n} \lg \frac{n}{n_{i}}$. Similarly, the entropy $H_{0}\left(B_{\square}\right)$ of $B_{[]}$is at most $\sum_{i \in[1 . . h]} \frac{m_{i}}{m} \lg \frac{m}{m_{i}}$. Under the exponential growing assumption, $n_{i} \leq n_{h} / c^{h-i}$ and, since $m_{i}=\Theta\left(n_{i}\right)$, there exists a constant $d$ such that $m_{i} \leq m_{h} / d^{h-i}$. As shown in the end of Section 3.1, both entropies are $O(1)$. Both $B_{()}$and $B_{[]}$can then be stored in space $O\left(m\left(H_{0}\left(B_{()}\right)+H_{0}\left(B_{[]}\right)\right)+o\left(n_{h} \lg h\right)+O(h \lg n)=O(n)+o(n \lg h)\right.$ bits 39], and the space $o(n \lg h)$ can be $O(n \lg h / \lg n)=O(n)$ [33]. Thus, the total space
is $O(n)$ bits.

We can traverse the implicit sequences $S_{1}^{()}, \ldots, S_{h-1}^{()}$by performing select ${ }_{\leq j}$ and rank ${ }_{\leq j}$ operations over the sequence $B_{()}$. The $i$-th parenthesis of $S_{j}$ is obtained in $O\left(\lg n_{h} \lg h\right)$ time as select ${ }_{\leq j}\left(B_{()}, i\right)$, and the number of parentheses of $S_{j}$ in the range $S_{h}^{()}[1 . . i]$ is obtained in $O(\lg h)$ time as $\operatorname{rank}_{\leq j}\left(B_{()}, i\right)$. Similarly, operations find_open $\left(S_{j}^{()}, i\right)$, find_close $\left(S_{j}^{()}, i\right)$ and enclose $\left(S_{j}^{()}, i\right)$ are supported in $O\left(\lg n_{h} \lg h+\lg n_{h}\right)=O\left(\lg n_{h} \lg h\right)$ time, where the term $\lg n_{h} \lg h$ corresponds to the traversal of a block in the RMMT of $S_{j}^{()}$, performing an operation leftmost $\leq j\left(S_{h}^{()}, i\right)$ for each parenthesis of the block, and the term $\lg n_{h}$ comes from the up/down traversal of the RMMT.

### 4.2. Operations

As before, we introduce the implementation of basic primitives upon which the main operations are constructed. The time complexities of all the operations become $O\left(\lg n_{h} \lg h\right)$.

- go_up_L $\mathrm{L}_{\mathrm{h}}(x, i)$ : To support this operation we use the RMMT of the sequence $S_{i}^{()}$to find the $x$-th open parenthesis, $z=\operatorname{select}\left(\left(S_{i}^{()}, x\right)\right.$. Then, we map the position of the parenthesis to the sequence $B_{()}$by computing $y=$ select $_{\leq i}\left(B_{()}, z\right)$. Finally, the position of the sought region in $S_{h}$ is select $_{()}\left(S_{h}, y\right)$.
- go_down_L $\mathrm{L}_{\mathrm{h}}(x, d)$ : The answer is the parenthesis position $q$ in $S_{h}$ so that $\left(q\right.$, find_close $\left.\left(S_{h}^{()}, q\right)\right)$ most tightly encloses the $x$-th parenthesis of $S_{h}$ and $B_{()}[q] \leq h-d$. We find the position of the opening parenthesis representing the $x$-th region of $L_{h}$ with $p=\operatorname{select}_{( }\left(S_{h}^{()}, x\right)$. Then, $q=\operatorname{rank}_{\leq h-d}\left(B_{()}, p\right)$ is the number of parentheses in $S_{h}^{()}[1 . . p]$ that belong to $S_{h-d}^{()}$. If the $q$-th parenthesis is opening (i.e., $S_{h}^{()}\left[\operatorname{select}_{\leq h-d}\left(B_{()}, q\right)\right]=$ '('), the answer is $q$. Otherwise, the answer is its closest ancestor, at position $q=\operatorname{enclose}\left(S_{h-d}^{()}\right.$, find_open $\left.\left(S_{h-d}^{()}, q\right)\right)$.
- region_id $\left(S_{i}, x\right)$ : We map the position of $x$ to $S_{h}^{()}$with $p=\operatorname{select}_{\leq i}\left(B_{()}, x\right)$, and then count the number of opening parentheses up to position $p$ that belong to $S_{i}$ using its RMMT, $\operatorname{rank}_{( }\left(S_{i}^{()}, p\right)$.

The operation go_level is implemented just as in Section 3, go_level $(x, i, j)=$ go_down_L $\mathbf{L}_{\mathrm{h}}\left(\right.$ go_up_L $\left.\mathrm{L}_{\mathrm{h}}(x, i), h-j\right)$, with time complexity $O\left(\lg n_{h} \lg h\right)$.

The implementation of the main operations contains, touches, and contained follows the same steps of their counterparts in Section 3. reaching complexities $O\left(\lg n_{h} \lg h\right), O\left(d_{r_{2}} \lg n_{h} \lg h\right)$, and $O\left(\lg n_{h} \lg h\right)$ per element, respectively. In particular, for the operation touches, the traversal of the neighbors of a region is performed using the RMMT primitives fwd_search and bwd_search.

The following theorem summarizes the results of this approach:
Theorem 3. A geographic connected region organized as a multi-granular hierarchy with $n$ regions in total and $h$ granularity levels can be represented in $O(n \lg h)$ bits. The same representation supports operations contains $\left(r_{1}, r_{2}\right)$ in $O(\lg n \lg h)$ time, touches $\left(r_{1}, r_{2}\right)$ in $O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right) \lg n \lg h\right)$ time, and contained $\left(L_{j}, r_{1}\right)$ in $O(\lg n \lg h)$ time per returned element, where $r_{1}$ and $r_{2}$ represent a region at granularity levels $L_{i}$ and $L_{j}$, respectively, and $d_{r_{1}}$ and $d_{r_{2}}$ are their respective number of neighboring regions. Under the exponential growing assumption, the space consumption is $O(n)$ bits.

Note that our asymptotic space complexity does not change if we represent the sequences $S_{i}$ in explicit form. In this case we can operate them directly and, although the complexities do not change, we expect them to be much faster in practice (the structure, in turn, becomes larger in practice). This approach is much more direct, as we only have to change the operations on bitmaps $B_{i}$ by operations on the sequences $B_{()}$and $B_{[]}$.

(a) Hierarchy tree $H$ representing the topological hierarchy of Figure 2 The root of the tree is a dummy node.

$$
\begin{aligned}
& \mathrm{O}=
\end{aligned}
$$

(b) Balanced parenthesis sequence $T^{H}$, sequence $M$ and offsets $O$ of the tree $H$ of Figure 6(a)

Figure 6: Components to store the topological hierarchy in the third representation.

## 5. Approach 3: Hierarchy tree

Our third approach aims to offer better running times in practice, though using more space, compared to the representation of Section 3. As in our first representation, the planar embeddings representing the topology of each aggregation level are stored independently using PEMB. However, the topological hierarchy is stored in a different manner. Instead of using the $h$ bitmaps $B_{i}$, we represent a tree $H$ associated with the relation contains, called the hierarchy tree. For every pair of regions $r_{1}$ and $r_{2}$ such that $r_{1} \in L_{i}$ and $r_{2} \in L_{i+1}$, and contains $\left(r_{1}, r_{2}\right)$ is true, region $r_{2}$ is added to the tree $H$ as a child of region $r_{1}$. Additionally, a dummy root is added connecting the nodes that represent regions of $L_{1}$. Thus, all nodes at depth $i$ in $H$ represent regions at aggregation level $i$. Figure 6(a) shows the tree $H$ for the topological hierarchy of Figure 2 .

Once the tree $H$ is computed, we store its topology as a balanced parenthesis sequence $T^{H}$. During the traversal, we additionally store in a permutation $M$ the pre-order rank in $T^{H}$ of the opening parenthesis representing each node of $H$. The values stored in $M$ are laid level by level ( 1 to $h$ ), in the order the PEMB representation of each $L_{i}$ represents the corresponding nodes. Notice that such an indexing allows us to map the regions between the topological hierarchy and the planar embeddings, and vice-versa. Further, the position of the leftmost value of each level $i$ in $M$ is stored in an array of offsets $O[1 . . h]$. For instance, if the region $r \in L_{i}$ is the $j$-th visited region of that level during DFS traversal of $L_{i}$, and is also the $k$-th region visited in the traversal of $T^{H}$, then, $M[O[i]+j-1]=k$. Figure $6(\mathrm{~b})$ shows an example of $T^{H}, M$ and $O$.

This representation uses $4 m+o(m)$ bits for the $h$ planar embeddings. The balanced parenthesis sequence $T^{H}$, supporting navigational operations, uses $2 n+o(n)$ bits. The permutation $M$ uses $(1+\epsilon) n \lg n+O(n)$ bits, with a representation that also computes $M^{-1}(j)$, that is, where in $M$ is the value $j$, in time $O(1 / \epsilon)$ 40]. The total space is then $O(n \lg n)$ bits.

### 5.1. Operations

We now describe how the operations are computed with this representation.

- contains $\left(r_{1}, r_{2}\right)$ : We map both regions to $T^{H}$ and check if $r_{1} \in L_{i}$ is an ancestor of $r_{2} \in L_{j}$. Let $r_{1}^{\prime}=M\left[O[i]+r_{1}-1\right]$ and $r_{2}^{\prime}=M\left[O[j]+r_{2}-1\right]$ be the mappings in $T^{H}$ of $r_{1}$ and $r_{2}$. Then the answer is true iff $r_{1}^{\prime} \leq r_{2}^{\prime} \leq$ find_close $\left(r_{1}^{\prime}\right)$. The operation contains then takes $O(1)$ time.
- touches $\left(r_{1}, r_{2}\right)$ : This is built on top of operation contains as in Section 3 The time complexity is then $O\left(d_{r_{2}}\right)$.
- contained $\left(L_{j}, r_{1}\right)$ : The regions to report correspond to all the descendants of $r_{1} \in L_{i}$ at depth $j>i$ in $T^{H}$. The node representing $r_{1}$ in $T^{H}$ is $r_{1}^{\prime}=$
$M\left[O[i]+r_{1}-1\right]$. Let $p=\operatorname{select}_{( }\left(T^{H}, r_{1}^{\prime}\right)$ and $q=$ find_close $\left(T^{H}, p\right)$ be the positions of the opening and closing parentheses of $r_{1}^{\prime}$ in $T^{H}$. We then report the regions of all the opening parentheses at depth $j-i$ from $p$ up to $q$. To do that, we go down in $O(1)$ time from $r_{1}^{\prime}$ up to its leftmost descendant $u$ at depth $j-i$, reporting the position $p^{\prime}=\operatorname{fwd}_{-} \operatorname{search}\left(T^{H}, p, j-i\right)$. Then, we keep reporting the region to the right of $p^{\prime}$ with its same depth, up to $p^{\prime}>q$, by computing $p^{\prime}=$ level_next $\left(p^{\prime}\right)=\mathrm{fwd} \operatorname{search}\left(T^{H}, \operatorname{close}\left(p^{\prime}\right), 1\right)$ [12, p. 270]. For every position $p^{\prime}$ to report, we return its region id with $M^{-1}\left(\operatorname{rank}_{( }\left(T^{H}, p^{\prime}\right)\right)-O[j]$. The time complexity of operation contained is then $O(1 / \epsilon)$ (i.e., any desired constant) per element reported.

The following theorem summarizes the results of this section:

Theorem 4. A geographic connected region organized as a multi-granular hierarchy with $n$ regions in total and $h$ granularity levels can be represented in $O(n \lg h)$ bits. The same representation supports operations contains $\left(r_{1}, r_{2}\right)$ in $O(1)$ time, touches $\left(r_{1}, r_{2}\right)$ in $O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right)\right.$ time, and contained $\left(L_{j}, r_{1}\right)$ in $O(1)$ time per returned element, where $r_{1}$ and $r_{2}$ represent a region at granularity levels $L_{i}$ and $L_{j}$, respectively, and $d_{r_{1}}$ and $d_{r_{2}}$ are their respective number of neighboring regions.

## 6. Storing multiple connected components

The approaches proposed above support only hierarchies and maps that form a single connected component. However, in some scenarios, maps can be composed by more than one connected component. An example of this would be partitions that include islands. In this section, we present a strategy to support multiple connected components. The strategy is independent of the approaches proposed above and can be implemented as an extension of any of them.

Given a region $r$ at level $L_{i}$, composed by $c>1$ connected components, we treat the connected components as independent regions $r_{1}, r_{2}, \ldots, r_{c}$, increasing

Before partitioning region A and C


After partitioning region $A$ and $C$


Figure 7: Example partitioning a region
the total number of regions at level $L_{i}$. To store the information that regions $r_{1}, r_{2}, \ldots, r_{c}$ actually conform only one region $r$, we store two bitmaps, $D_{i}$ and $M D_{i}$, and an integer array $C_{i}$. The entry $D_{i}[r]=1$ indicates that region $r$ is conformed by multiple connected components; otherwise, $D_{i}[r]=0$. The bitmap $M D_{i}$ stores in unary the number of connected components of region $r$ and the array $C_{i}$ stores the regions $r_{1}, r_{2}, \ldots, r_{c}$, when $c>1$. The construction of the representation is performed as follows:

1. We perform a traversal of the planar embedding of level $L_{i}$ detecting the set $R$ of regions composed by multiple connected components with respect to the level $L_{i+1}$.
2. For each region $r \in R, r$ is partitioned into its $c>1$ connected components $r_{1}, r_{2}, \ldots, r_{c}$. The entry $D_{i}[r]$ is set to 1 , the sequence $0^{c-2} 1$ is appended to the bitmap $M D_{i}$, and the regions $r_{1}, r_{2}, \ldots, r_{c}$ are appended to the array $C_{i}$.
3. The embedding of level $L_{i}$ is updated with the new regions $r_{1}, r_{2}, \ldots, r_{c}$.
4. We repeat steps 133 for level $L_{i-1}$.

Figure 7 shows an example of how regions are partitioned.

Under this setting, operation contains $\left(r^{\prime}, r\right)$, with $r^{\prime} \in L_{i}, r \in L_{j}$ and $L_{i} \prec L_{j}$, refers to whether every connected component of $r$ is contained in some connected component of $r^{\prime}$. To support it, we first recover all the connected components of $r^{\prime}$ and mark them in a bitmap $B$. Then we check if $D_{j}[r]=1$, to determine if the region $r$ is partitioned. If needed, we obtain its connected components by traversing the range $C_{j}[p, q]$, where $p=$ $\operatorname{select}_{1}\left(M D_{j}, \operatorname{rank}_{1}\left(D_{j}, r\right)-1\right)+1$ and $q=\operatorname{select}_{1}\left(M D_{j}, \operatorname{rank}_{1}\left(D_{j}, r\right)\right)$. We map each connected component $r_{k}$ of $r$ to its containing region $r_{k}^{\prime}$ at level $i$, an check if $r_{k}^{\prime}$ is marked in $B$. We return whether every component $r_{k}^{\prime}$ was marked in $B$. The time complexity is $O\left(w_{i j} c+c^{\prime}\right)$, where $c^{\prime}$ and $c$ are the number of connected components of $r^{\prime}$ and $r$, respectively, and $w_{i j}$ is the cost of mapping regions from level $j$ to level $i$, which can be done with any of the solutions discussed in Sections 35

Similarly, operation touches $\left(r^{\prime}, r\right)$ checks whether some connected component of $r^{\prime}$ shares a boundary with some connected component of $r$. To solve it, for each connected component of $r$ we map its neighbors, at level $j$, to their containing regions at level $i$, marking them in a bitmap $B$. Finally, we compare the connected components of $r^{\prime}$ with the marked regions in $B$, and return whether a coincidence is found. The time complexity is $O\left(\hat{d}_{r} w_{i j}+c^{\prime}\right)$, where $\hat{d}_{r}$ is the number of neighbors of $r$ at level $j$, computed as the sum of the neighbors of each connected component that conforms $r$.

Operation contained $\left(L_{j}, r\right)$, with $r \in L_{i}$ and $L_{i} \prec L_{j}$, lists all the regions at granularity level $L_{j}$ that are contained in some connected component of $r$. To implement it, we recover all $c$ connected components at level $i$ of $r$, and map each of them to its descendants at level $j$. Notice that the resulting regions at level $j$ may be grouped into $c^{\prime} \geq 1$ connected components, which must be recovered as for the basic case. Thus, the time complexity is $O\left(w_{i j} c+t_{c^{\prime}} c^{\prime}\right)$, where $t_{c^{\prime}}$ is the cost of traversing the regions contained in the $c^{\prime}$ connected components at level $j$.

The additional space consumption for arrays $C_{i}, M D_{i}$, and $D_{i}$, is $O(n+c \lg c)$ bits, where $c$ is the number of components across all levels. Note that the connected regions involve only 1 bit of extra space, used in $D_{i}$ to indicate they have only one connected component. In practical datasets, $c$ is much smaller than $n$ (see the next section, for example).

## 7. Experimental evaluation

### 7.1. Experimental setup

All the experiments were carried out on a computer equipped with an Intel Core i7 (3820) processor, clocked at 3.6 GHz ; 32 GB DDR3 RAM memory, clocked at $1,334 \mathrm{MHz} ; 4$ physical cores each one with L1i, L1d and L2 caches of size $32 \mathrm{~KB}, 32 \mathrm{~KB}$ and 256 KB , respectively; and a shared L3 cache of size 10 MB . The computer runs Linux 3.13.0-86-generic, in 64 -bit mode. All our algorithms and the baseline were implemented in $\mathrm{C}++$, using the library SDSL [41, and compiled with GCC version 4.8.4 and -O3 optimization flag. For the compact planar embeddings, we directly use the code of 38. We measured running times using the clock_gettime function.

### 7.1.1. Datasets

The datasets used to evaluate our approaches are based on the TIGER dataset ${ }_{4}^{4}$ provided by the U.S. Census Bureau, which corresponds to geographic and cartographic data of the administrative divisions in the United States. The dataset is organized as a hierarchy of granularities with levels $L_{1}$ to $L_{6}$ being State, County, Census tract, Census block group, Census block, and Face, respectively (see Table 4). With this base information, we generated four datasets, tiger_8s, tiger_usa, whole_usa, and tiger_usa ${ }^{+}$.

[^4]The first dataset, tiger_8s, contains the information of eight neighboring states (Nevada, Utah, Arizona, Colorado, New Mexico, Kansas, Oklahoma and Texas), while tiger_usa includes the information of the whole continental part of the country. During the construction of both datasets, we found cases where a region was composed of disconnected subregions (e.g., Santa Catalina Island is a disconnected region of the State of California). In such cases, we only considered the largest subregion. Additionally, both datasets are conformed by one connected component.

On the other hand, the dataset whole_usa corresponds to the tiger_usa dataset, but including the disconnected subregions, and Alaska, Hawaii and overseas U.S. islands, being conformed by 98 connected components. Finally, we generated the synthetic dataset tiger_usa ${ }^{+}$, which corresponds to the dataset tiger_usa with a different (fictitious) grouping of regions. By choosing random starting regions at level $L_{6}$, a BFS traversal was performed to group from 1 up to 10 contiguous regions into one. The BFS traversals were performed until all regions of level $L_{6}$ were grouped. The procedure was repeated for all levels $L_{5}$ up to $L_{2}$. We use this dataset to evaluate situations where the ratio of grouping is smaller than in the original dataset.

### 7.2. Evaluated implementations

Based on the approaches described in Sections 3 to 5 for the representation of the multi-granular maps, we developed the following implementations:

Approach 1 (T). Implementation based on the approach described in Section 3. which uses compact planar embeddings to represent each level of granularity, ${ }_{800}$ as well as $h-1$ bitmaps, where we use a plain bitmap for level $h$ and bitmaps of type $T$ for the rest of levels, to store hierarchy-related information, where $T$ can be: i) Plain (a plain bitvector), ii) SD (the sparse bitmap SD-array [42]), iii) RRR (an $H_{0}$-compressed bitvector [39]).

| Dataset | Level | Vertices ( $n$ ) | Edges (m) | Dataset | Level | Vertices ( $n$ ) | Edges (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1 comp.) | $L_{1}$ | 9 | 20 |  | $L_{1}$ | 50 | 140 |
|  | $L_{2}$ | 595 | 1,730 |  | $L_{2}$ | 3,110 | 9,095 |
|  | $L_{3}$ | 11,626 | 31,412 | tiger_usa | $L_{3}$ | 72,512 | 201,631 |
|  | $L_{4}$ | 33,804 | 91,891 | (1 comp.) | $L_{4}$ | 216,243 | 597,784 |
|  | $L_{5}$ | 2,233,031 | 5,429,483 |  | $L_{5}$ | 11,004,160 | 26,732,935 |
|  | $L_{6}$ | 4,761,354 | 10,326,904 |  | $L_{6}$ | 19,735,874 | 43,837,150 |
| whole_usa <br> (98 comp.) | $L_{1}$ | 57 | 140 |  | $L_{1}$ | 3,852,017 | 6,392,483 |
|  | $L_{2}$ | 3,235 | 9,102 |  | $L_{2}$ | 4,518,394 | 8,364,881 |
|  | $L_{3}$ | 74,135 | 201,824 | tiger_usa ${ }^{+}$ | $L_{3}$ | 5,686,152 | 11,767,903 |
|  | $L_{4}$ | 220,743 | 598,245 | (1 comp.) | $L_{4}$ | 7,821,874 | 17,711,491 |
|  | $L_{5}$ | 11,166,337 | 26,746,322 |  | $L_{5}$ | 11,846,172 | 27,868,766 |
|  | $L_{6}$ | 20,037,199 | 44,503,624 |  | $L_{6}$ | 19,735,874 | 43,837,150 |

Table 4: Datasets used in our experiments. Each level includes one node representing the external face of the embedding.

Approach 2 (RMMT). Implementation based on the approach described in Section 4. which uses a compact planar embedding for the highest level of detail, and range min-max trees (RMMT) for the sequences $B_{[]}$and $B_{()}$, to represent the mapping among aggregation levels.

Approach 2 (Plain-S). A variant of the previous one that uses compact planar embeddings to represent each level of granularity, and range min-max trees over integer vectors (stored as a plain vector) to store the hierarchical information represented in the sequence $B_{()}$. Although storing the hierarchical information implies an increase in the space usage compared to what was proposed in Section 4 it drastically improves the query time of the proposed operations. For the scanning of the RMMT blocks, two strategies $S$ are evaluated: linear search (L) and binary search (BS), where binary search can be done by computing rank $_{\leq i}$ on each comparison. time to the elements in $B_{()}$. Again, for the scanning of the rmmt blocks, two strategies S are evaluated: linear search (L) and binary search (BS).

Approach 3. Implementation based on the approach described in Section 5 which uses compact planar embeddings to represent each level of granularity in combination with a balanced parenthesis sequence representing the hierarchy tree and a compact permutation data structure representing $M$, for the mapping between planar embeddings and the hierarchy tree.

835 Baseline. As a baseline, we developed a data structure that also uses the compact planar embeddings of [38] to represent each level, but the hierarchy is stored in non-compact form. Specifically, each level $i \in\{0 . . h-1\}$ of the hierarchy is stored in a vector in which position $j$, representing a region $r^{\prime}$, stores the index of the region $r$ at level $i-1$ that contains $r^{\prime}$. In addition, for a region $r$ at level ${ }_{840} i$, the data structure stores pointers to all the regions at level $i+1$ contained in $r$. In this data structure, the operation $\operatorname{go}$ _level $(x, i, j)$ is supported in $O(h)$ time, because all the levels of the hierarchy are traversed in the worst case. All the main operations were implemented in a similar fashion to our approaches, hence providing running times of $O(h), O\left(\min \left(d_{r_{1}}, d_{r_{2}}\right) h\right)$ and $O\left(\sum_{k=i}^{j} n_{k}\right)$, for contains $\left(r_{1}, r_{2}\right)$, touches $\left(r_{1}, r_{2}\right)$, and contained $\left(L_{j}, r_{1}\right)$, respectively, where $r_{1}$ is a region at level $L_{i}$ and $r_{2}$ a region at level $L_{j}$.

### 7.3. Performance on connected regions

We first consider the basic case of connected regions. The performance of Approach 2 variants is mainly dependent on the use of the Rmmt, and this in turn depends on the length $l$ of the RMMT blocks. We considered values $l \in\left[2^{4} . .2^{15}\right]$.

Regarding the evaluation of operations contains and touches, we executed 200 random operations for each pair of aggregation levels 5 As for operation contained, we executed the queries between all possible pairs of aggregation levels. For contains and contained, there are 15 valid pairs $\left(\left(L_{i}, L_{j}\right), i \in[1,5], j \in\right.$ $[i+1,6])$, whereas for touches there are 21 valid pairs $\left(\left(L_{i}, L_{j}\right), i \in[1,6], j \in\right.$ $[i, 6])$. This gives a total of 3,000 operations of the first type, 4,200 operations of the second type, and $11,666,872$ operations of third type. In the results, for each experiment we show the average time of 30 repetitions.

Figure 8 shows the space-time tradeoffs obtained on the datasets tiger_usa and tiger_usa+ (we omit dataset tiger_8s because it performed similarly to tiger_usa), with the three operations.

The first observation is that, as expected, Approach 2 (RMmT) uses by far the least amount of space, using as little as $8-12$ bits per region. In exchange, however, it is one and even two orders of magnitude slower than other approaches, because of the need to navigate over simulated parenthesis sequences.

The second observation is that Approach 1 (SD) essentially dominates all the other approaches in the space-time tradeoff map of tiger_usa, using 15-16 bits per region and taking $0.4-10$ nanoseconds per operation. The only exception is the baseline, which sometimes outperforms Approach 1 (SD) in time,

[^5]yet at the cost of using $80-135$ bits per region, that is, about $5-8$ times more space.

On the synthetic dataset tiger_usa ${ }^{+}$, we use Approach 1 (RRR) instead of Approach 1 (SD), because it saves more space. In this dataset, the leastspace variant of Approach 2 (WT-BS) is equally fast and uses slightly less space (indeed, the sweet points of several other variants are pretty close). In this dataset, Approach 3 offers considerably better times using about twice the space, around 34 bits per region.

The only considerably worse variant is Approach 2 (Plain-BS), followed by Approach 2 (Plain-L) in the dataset tiger_usa.

Figures 9 and 10 show the results grouped by distance level, where all valid pairs $\left(L_{i}, L_{j}\right), i \in[1,6-c], j=i+c$ are grouped into the distance level $c$. For Approach 2 we only maintain the variants Approach 2 (rmmt) with block length $l=2^{9}$ and Approach 2 (WT-BS) with $l=2^{15}$. For the contained operation, the running time was normalized by the number of regions returned.

In general, the distance $c$ does not significantly affect the time performance of the operations, except for the operation contained, where times tend to improve with larger distances. This is because more regions are reported as the distance grows, and this decreases the time per reported region due to cache effects. In general, the baseline is the fastest implementation on all the operations. It is, however, closely followed in almost all cases by some variant of Approach 1, which uses many times less space.

Similar results can be observed for the dataset tiger_usa ${ }^{+}$, except that Approach 3 becomes the second fastest on the operation contained. This owes to the way this dataset was constructed: its hierarchy tree is wider and has more nodes than the hierarchy tree of tiger_usa. Approach 3 is more cache-friendly


Figure 8: Running time in nanoseconds using the datasets tiger_usa and tiger_usa ${ }^{+}$.
when reporting many nearby regions.


Figure 9: Running time in nanoseconds using the dataset tiger_usa, where distance level corresponds to the distance between the levels of the queried granules.


Figure 10: Running time in nanoseconds using the dataset tiger_usa ${ }^{+}$.

### 7.4. Performance with non-connected components

A final experimental evaluation was performed using the dataset whole_usa in order to measure the impact of the proposed strategy for dealing with more than one connected component. Since the number of connected components is low regarding to the total number of regions ( 98 connected components and around 20 million regions at level $L_{6}$ ), the expected overhead of the proposed strategy is very limited. Thus, to represent non-connected components, we extended the approach with the most interesting time-space trade-off, Approach 1 (SD).

Regarding space consumption, the baseline uses 325.2 MB , while Approach 1 (SD) uses 60.1 MB , where 0.5 MB correspond to space consumption of bitmaps $D, M D$ and $C$. The proposed strategy of Section 6 adds 43,009 new regions obtained from the partition of regions with more than one connected


Figure 11: Running time in nanoseconds using the dataset whole_usa.
component, which induces less than $1 \%$ of extra space.

Figure 11 shows the average running time for the three operations. From the

Our experimental results show that we can represent the partitioning and hierarchical information within as little as 8 bits per region in practice, which is about twice the space required to represent a partition without hierarchies.

Further, with about 16 bits per region (i.e., roughly 4 times the space without hierarchies) our data structures answer all queries within 10 nanoseconds per retrieved elements, and in some cases less than half a nanosecond.

A challenge for future work is to obtain better theoretical complexities for the operations. Despite the good times obtained in practice, operation (2) requires time proportional to the number of neighbors of one of the regions, for example. ${ }_{950}$ Another line of future work is to expand the set of operations. Postgresql, for example, implements eight named spatial relationship predicates defined in the standard OGC SFS, and three non-standard relationship predicates. Some of them do not apply in our domain given the restrictions of a spatial partition, in which the interior of the granules cannot intersect (see Section 2.2). This is the case of overlaps, for example. Some others, such as equals and disjoint can be easily implemented with the operations provided in our work. In some domains, the contains predicate has a variant named containsProperly or includes, which returns true when a region contains another and there is no intersection in the boundary of such regions.

## Data and codes availability statement

The data and codes that support the findings of this study are available at https://figshare.com/s/2d0d3f0825666c9c595c

## References

[1] J. Fuentes-Sepúlveda, D. Gatica, G. Navarro, M. A. Rodríguez, D. Seco, Compact representation of spatial hierarchies and topological relationships, in: 31st Data Compression Conference, DCC 2021, IEEE, 2021, pp. 113122.
[2] H. Couclelis, People manipulate objects (but cultivate fields): Beyond the raster-vecter debate in gis, in: Theories and Methods of Spatio-Temporal

Reasoning in Geographic Space. LNCS vol. 639, Springer-Verlag, 1992, pp. 65-77.
[3] S. Shekhar, M. Coyle, B. Goyal, D.-R. Liu, S. Sarkar, Data models in geographic information systems, Comm. ACM 40 (4) (1997) 103-111.
[4] B. Kuijpers, J. Paredaens, J. V. den Bussche, Lossless representation of topological spatial data, in: SSD, 1995, pp. 1-13.
[5] Y. Deng, P. Z. Revesz, Spatial and topological data models, in: Information Modeling in the New Millennium, Idea Group, 2001, pp. 345-359.
[6] M. Erwig, M. Schneider, Partition and conquer, in: COSIT, Vol. 1329, Springer, 1997, pp. 389-407.

0 [7] C. Bettini, X. Wang, S. Jajodia, A general framework for time granularity and its application to temporal reasoning, Ann. Math. Art. Intell. 22 (1998) 29-58.
[8] S. Wang, D. Liu, Spatio-temporal database with multi-granularities, in: WAIM, Vol. 3129, Springer, 2004, pp. 137-146.

85 [9] A. Guttman, R-trees: A dynamic index structure for spatial searching, SIGMOD Rec. 14 (2) (1984) 47-57.
[10] H. Samet, Bibliography on quadtrees and related hierarchical data structures, in: Data Structures for Raster Graphics, 1986, pp. 181-201.
[11] M. Hadjieleftheriou, E. Hoel, V. J. Tsotras, Sail: A spatial index library for efficient application integration, Geoinformatica 9 (4) (2005) 367-389.
[12] G. Navarro, Compact Data Structures - A Practical Approach, Camb. U. Press, 2016.
[13] N. R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, G. Navarro, O. Pedreira, Extending general compact querieable representations to GIS applications, Inf. Sci. 506 (2020) 196-216.
[14] N. R. Brisaboa, M. R. Luaces, G. Navarro, D. Seco, Space-efficient representations of rectangle datasets supporting orthogonal range querying, Inf. Syst. 38 (5) (2013) 635-655.
[15] N. R. Brisaboa, A. Gómez-Brandón, G. Navarro, J. R. Paramá, Gract: A grammar-based compressed index for trajectory data, Inf. Sci. 483 (2019) 106-135.
[16] N. R. Brisaboa, A. Fariña, D. Galaktionov, M. A. Rodríguez, A compact representation for trips over networks built on self-indexes, Inf. Syst. 78 (2018) 1-22.
[17] J. Fuentes-Sepúlveda, G. Navarro, D. Seco, Implementing the topological model succinctly, in: SPIRE, 2019, pp. 499-512.
[18] G. Turán, On the succinct representation of graphs, Discr. Appl. Math. 8 (3) (1984) $289-294$.
[19] Z. Chen, M. Grigni, C. H. Papadimitriou, Planar map graphs, in: STOC, 1998, pp. 514-523.
[20] M. J. Alam, M. Kaufmann, S. G. Kobourov, T. Mchedlidze, Fitting planar graphs on planar maps, J. Graph Algorithms Appl. 19 (1) (2015) 413-440.
[21] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, X. S. Wang, A glossary of time granularity concepts, in: Temporal Databases, Dagstuhl, 1997, pp. 406-413.
[22] E. Camossi, M. Bertolotto, E. Bertino, A multigranular object-oriented framework supporting spatio-temporal granularity conversions, Int. J. Geo. Inf. Sci. 20 (5) (2006) 511-534.
[23] A. Belussi, C. Combi, G. Pozzani, Formal and conceptual modeling of spatio-temporal granularities, in: IDEAS, 2009, pp. 275-283.
[24] M. A. Mach, M. L. Owoc, Knowledge granularity and representation of knowledge: Towards knowledge grid, in: IIP, Vol. 340, 2010, pp. 251-258.
[25] M. McKenney, M. Schneider, Spatial partition graphs: A graph theoretic model of maps, in: SSTD, Vol. 4605, Springer, 2007, pp. 167-184.
[26] M. P. Dube, M. J. Egenhofer, Partitions to improve spatial reasoning, in: SIGSPATIAL PhD, ACM, 2014, pp. 1:1-1:5.
[27] M. F. Worboys, Imprecision in finite resolution spatial data, GeoInformatica 2 (3) (1998) 257-279.
[28] Z. Pawlak, Rough sets, J. Parallel Program. 11 (5) (1982) 341-356.
[29] T. Bittner, B. Smith, A taxonomy of granular partitions, in: COSIT, Vol. 2205, Springer, 2001, pp. 28-43.
[30] J. Fuentes-Sepúlveda, G. Navarro, D. Seco, Implementing the topological model in near-optimal space and time, CoRR abs/1911.09498.
[31] ISO/IEC 13249-3:2016. Information technology - Database languages SQL multimedia and application packages - Part 3: Spatial, Tech. rep. (2016).
[32] J. I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), LNCS 1180, 1996, pp. 37-42.
[33] M. Pătraşcu, Succincter, in: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008, pp. 305-313.
[34] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representations of sequences and full-text indexes, ACM Transactions on Algorithms 3 (2) (2007) article 20.
[35] G. Navarro, Wavelet trees for all, Journal of Discrete Algorithms 25 (2014) 2-20.
[36] G. Navarro, K. Sadakane, Fully-functional static and dynamic succinct trees, ACM Transactions on Algorithms 10 (3) (2014) article 16.
[37] J. I. Munro, P. K. Nicholson, Compressed representations of graphs, in: Encyclopedia of Algorithms, Springer, 2016, pp. 382-386.
[38] L. Ferres, J. Fuentes-Sepúlveda, T. Gagie, M. He, G. Navarro, Fast and compact planar embeddings, Comput. Geom. 89 (2020) 101630.
[39] R. Raman, V. Raman, S. R. Satti, Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM Trans. Algorithms 3 (4) (2007) 43-es.
[40] J. I. Munro, R. Raman, V. Raman, S. R. S., Succinct representations of permutations and functions, Theoret. Comput. Sci. 438 (2012) 74-88.
[41] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: Plug and play with succinct data structures, in: SEA, 2014, pp. 326-337.
[42] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: ALENEX, SIAM, 2007.


[^0]:    *This work was funded by: ANID Millennium Science Initiative Program - Code ICN17_002; PAI grant 77190038 (1st author); PFCHA/Doctorado Nacional/2020-21201986 (2nd author); FONDECYT Grant 1-200038 (3rd author); CYTED grant 519RT0579 (4th and 5 th authors); GRC: ED431C 2021/53, partially funded by GAIN/Xunta de Galicia (5th author); TED2021-129245B-C21 (PLAGEMIS), PDC2021-120917-C21 (SIGTRANS), PID2020-114635RB-I00 (EXTRACompact) and PID2019-105221RB-C41 (MAGIST), partially funded by MCIN/AEI/10.13039/501100011033 and "NextGenerationEU" /PRTR (5th author). An early partial version of this paper appeared in Proc. DCC 2021 1].

[^1]:    ${ }^{1}$ In Section 6 we extend our proposal for regions that are not necessarily connected (e.g., islands).

[^2]:    2 http://postgis.net/docs/Topology.html

[^3]:    ${ }^{3}$ We assume that the input graph is undirected, and hence each edge is processed twice.

[^4]:    ${ }^{4}$ TIGER dataset, version 2019. https://www2.census.gov/geo/tiger/TIGER2019/

[^5]:    ${ }^{5}$ The outer face is omitted from the pool of candidates because of its very large number of neighbors, which may impact the results.

