
Lempel-Ziv Compressed Structures

for Document RetrievalI

Héctor Ferrada

Universidad Austral de Chile, Chile

Gonzalo Navarro

CeBiB — Center for Biotechnology and Bioengineering,
Department of Computer Science, University of Chile, Chile

Abstract

Document retrieval structures index a collection of string documents, to
quickly retrieve those that satisfy a given condition for a pattern string p.
For document listing, we must list all the documents where p appears. For
top-k retrieval, we must list the k most relevant documents for p, for some
relevance criterion (such as the frequency of p in the documents). There exist
optimal-time and linear-space solutions for both problems, but they use too
much space in practice. Most current research uses compressed suffix arrays,
but fast indices still use 17–21 bpc (bits per character), whereas small indices
take several milliseconds to return each answer.

This work presents the first document retrieval structures based on Lempel-
Ziv compression. We build on the LZ78 parsing of the collection, which yields
structures using 7–10 bpc that dominate an important area in the current
space/time tradeoff map. In addition, the structures allow for much more
efficient partial or approximate answers, which are acceptable in many ap-
plications: the structure for document listing outputs the first 75%–80% of
the answers at a rate of one answer per microsecond, and the top-k retrieval

IEarly parts of this work appeared in Proc. SPIRE 2013 [9] and Proc. SPIRE 2014
[10]. Supported by Fondecyt Grant 1-170048, Chile; Basal Funds FB0001, Conicyt, Chile;
and a CONICYT-Chile Doctoral Scolarship.

Email addresses: hferrada@inf.uach.cl (Héctor Ferrada),
gnavarro@dcc.uchile.cl (Gonzalo Navarro)

Preprint submitted to Theoretical Computer Science December 29, 2018

structure returns a result of 90% quality at the same rate and using just 4–6
bpc. Current indices using such a little space are orders of magnitude slower,
whereas indices achieving those speeds are 2–4 times larger.

Key words: Document retrieval, document listing, top-k queries, string
databases, compressed data structures.

1. Introduction

Web searching is the best-known example of a document retrieval prob-
lem. A data structure (called an index) is built on a set of documents so
that, later, given a query, some documents that best fit the query are re-
turned. This is only an example of a wider set of similar problems, which
arise when managing software repositories, genome and protein collections,
music sequences, time series, log files, file systems, and so on. In its more
general form, documents are simply sequences of symbols (that is, strings)
and queries are also strings (called patterns). While different applications
require different types of searches, the basic search for simple string patterns
underlies most document retrieval solutions.

There are several kinds of document retrieval problems. The most basic
one, document listing, aims to retrieve all the documents where the pattern
appears. For example, one might want to retrieve all the genes containing
some biological marker, all the MIDI files containing a short theme, or all
the source files calling a function. A more sophisticated problem is top-k
retrieval, where a given score function defines how relevant is a document
to a pattern, and one retrieves the k documents most relevant to the given
pattern. For example, one might want to retrieve the genomes where a given
DNA motif appears most frequently, the security log files where a suspicious
sequence of accesses to the system occurs most often, the days where a word
was tweeted most frequently, and so on. While the mere frequency of the
pattern in the document is a typical score function, more sophisticated ones
are common in Web searching and information retrieval on natural language.

While inverted indices are by far the most popular structures for docu-
ment retrieval problems on natural language text collections [3], document
retrieval on more general sequence collections requires other data structures.
Suffix trees [47] and suffix arrays [27] are appropriate data structures to in-
dex general sequences, and optimal-time indices for document listing [31]
and top-k retrieval [21, 36] have been built on them. These take O(1) time

2

per retrieved document and require linear space. However, this is in practice
many times the size of the collection itself, which renders those indices hard
to apply in real scenarios.

Much research has been done on reducing the space of document retrieval
indices [34]. In practice, the fastest ones [8, 24, 17] still require 17–21 bpc (bits
per character), that is, 2–3 times the collection size if symbols are represented
as bytes. More succinct representations [43, 21, 38, 4] may use as little as
7 bpc, but at the cost of slowing down query times by several orders of
magnitude (they take at best O(lg1+ε n) time per retrieved document, where
n is the collection size measured in symbols and ε > 0 is a small constant).1

All the current reduced-space solutions build on compressed suffix arrays
[35], which offer suffix array functionality within the space of the compressed
text collection. This functionality includes counting and locating the posi-
tions where the pattern occurs in the text collection, and the compression is
statistical [28]. An alternative to compressed suffix arrays are the LZ-indices
[12, 32, 33, 41, 2], which build on the Lempel-Ziv 1978 (LZ78) compression
method [48]. These are faster than compressed suffix arrays to locate the
pattern occurrences, yet they cannot count them without locating them all.

In this article we show that LZ-indices offer a novel and attractive ap-
proach to document retrieval on general sequences. LZ78 parses the text
into n′ so-called phrases, which are at most n/ lgσ n (where σ is the alphabet
size) and in practice 1/20 – 1/6 of n. We manage to use the fast and large
document retrieval structures on the sequence of n′ phrases, not of n sym-
bols, which reduces their size by an order of magnitude, while still taking
advantage of their speed.

We obtain indices that are competitive with the best succinct solutions.
Our indices use (3–5)nHl + O(n) bits, where Hl is the l-th order entropy
of the collection, for any l = o(lgσ n). This is in practice 7–10 bpc in most
texts. In a (very pessimistic) worst-case each retrieved answer may take up
to O(m lg2 n) time for document listing (where m is the pattern length), and
O(lg3 n) for top-k retrieval, but this is as low as O(1) for the majority of the
answers. In practice, each answer is returned in 10–100 microseconds (µs)
on our machine2, which places these indices in a dominating position on a

1We use lg instead of log to indicate that the logarithm is in base 2, where it matters.
2An Intel Xeon with 8 processors of 2.4GHz and 12MB cache running Linux, see Sec-

tion 4.3.

3

large portion of the space/time tradeoff map.
Furthermore, both indices allow for much faster and/or smaller variants

that yield partial or approximate answers. The document listing index re-
trieves in O(1) time (1 µs in practice) the first 75%–80% of the answers. This
is useful in scenarios where only some documents must be shown, or they are
shown progressively to the user. The top-k retrieval index may return ap-
proximate answers within 1–5 µs per answer, while using just 2nHl + O(n)
bits (4–6 bpc). This is tolerable in many scenarios where score functions
are already an approximation. For example, in Information Retrieval it is
customary to take the top-k documents for a large k and then use a more
sophisticated scoring function to choose the best among those k [6, 46]. We
prove that the index becomes more accurate asymptotically (as the collection
size grows) and show experimentally that, in most collections, the retrieved
documents add up to 90% of the occurrences of the actual top-k documents
for pattern lengths ≤ 8, even for small collections.

Existing (exact) indices using the space of our approximate solutions are
several orders of magnitude slower, and those reaching their speeds are 2–4
times larger. This opens the door to a deeper study of these possibilities in
existing indices as well.

This article wraps up the results in our previous conference publications
[9, 10], including better implementations and more extensive experimental
results. The implementations of both document listing and top-k retrieval
now offer space/time tradeoffs based on tuning parameters; we also include
tips and advices for practical implementations. The experiments include new
data sets, new baselines to compare with, and new tests and measurements.
Section 2 gives the theoretical background and Section 3 describes the original
LZ78-based pattern-matching index. Section 4 discusses the current results,
putting our contribution in context at the end. Section 5 describes our solu-
tion for document listing, and Section 6 details our proposal for approximate
top-k document retrieval. We conclude in Section 7 with final remarks and
future work directions.

2. Preliminaries

2.1. Document Retrieval

We are given a collection ∇ of D documents d1, d2, ..., dD of total length
n =

∑D
i=1 |di| characters. We preprocess ∇ to build an index, such that later

4

we can efficiently support queries on it for pattern strings p1..m. We define
the following Document Retrieval (DR) problems:

Document Listing (DL): List all the distinct documents of ∇ that contain
p as a substring.

Top-k Retrieval (top-k). Given also a number k with the query, list k
documents of ∇ that contain p. These must be the ones maximizing a
given score function w(p, d) that measures the relevance of document d
for pattern p. A simple and popular score function is the term frequency
tf (p, d), which is the number of times p occurs as a substring of d.

2.2. Bitvectors

The bitvector is a fundamental data structure in compressed text index-
ing. It represents a sequence B1..n of n bits, supporting access to any position
as well as two important queries on prefixes of B, called rank and select:

• access(B, i) returns the bit at position i, for any 1 ≤ i ≤ n.

• rankb(B, i) returns the number of occurrences of bit b ∈ {0, 1} until
and including position i, for any 1 ≤ i ≤ n.

• selectb(B, i) returns the position of the ith bit b ∈ {0, 1}, for any
1 ≤ i ≤ rankb(B, n).

There are solutions using o(n) bits on top of B that answer these queries
in O(1) time [22, 7]. It is also possible to retain those times while compressing
B [40] to nH0(B)+o(n) bits, where H0(B) is the zero-order empirical entropy
[28] ofB. IfB hasm 1s, thenH0(B) = (m/n) lg(n/m)+((n−m)/n) lg(n/(n−
m)) = (m/n) lg(n/m)+O(m/n), using lg(n/(n−m)) = lg(1+m/(n−m)) ≤

1
ln 2

m/(n−m).

2.3. Trees

A general ordinal tree allows any number of children per node, and distin-
guishes their order. Such a tree with n nodes can be represented using just
2n+o(n) bits so that a large number of tree navigation and query operations
can be carried out in constant time [22, 30, 5, 39].

The most recent representation [39] has been shown to be the most effi-
cient one supporting full navigation functionality [1]. It represents the tree

5

using 2n parentheses (seen as bits). In particular, if we deploy the paren-
theses in DFUDS format (Depth-First Unary Degree Sequence [5]), then all
the children of a node have contiguous indices in the representation, which
is useful to implement tries (see next).

2.4. Tries

The trie, or digital tree [15, 23], is a structure that organizes a set of
strings as a tree, so that the search for a string p1..m can be performed in
O(m) time. Each trie node represents a different prefix of the string set,
and each edge is labeled by an alphabet symbol. The root node represents
the empty string, and each other node represents the concatenation of the
edge labels in the path from the root to the node. Tries are built in time
proportional to the total length of the strings stored. To search for p, we
traverse the trie downwards from the root, following the symbols of p and
selecting the matching edge labels. With a similar method it is also possible
to find the strings prefixed by p or, if p is not in the set, the longest prefix
of p that coincides with the prefix of some string in the set.

If a trie has n nodes, we can store its topology using 2n + o(n) bits
using the DFUDS representation (Section 2.3). This representation can be
extended to assign increasing labels from [1..σ] to the children of a node, so
that one can navigate towards the desired child in O(1) time [5]. This scheme
requires n lg σ + 2n+ o(n) bits and searches for p1..m in time O(m).

2.5. Suffix Trees

The suffix tree (ST) [47] of a string T1..n is essentially a compacted trie
of all the suffixes of T , that is, of the n strings Ti..n. Compacted means that,
in the suffix tree, paths formed by unary nodes (i.e., with a single child) are
replaced by a single edge labeled with the concatenation of the edge labels
in the path. The children of a node are ordered lexicographically from left
to right. Each leaf represents a suffix Ti..n and stores the position i. Internal
nodes represent substrings of T that appear more than once.

Since every occurrence of p1..m in T is a prefix of some suffix, the suffix
tree can be used for pattern matching, that is, finding the occurrences of p
in T . We just traverse the tree as for trie search. If at some point we have
no edge to follow, then p does not occur in T . If we use all the symbols of
p, then the current node is called the locus of p in the suffix tree. Suffix tree
edges may have several symbols, and thus p may be consumed in the middle
of an edge. In this case the locus is the child node of the edge. Every leaf

6

descending from the locus and storing a position i represents an occurrence
of p at Ti..i+m−1. If we store the number of leaves descending from each suffix
tree node, we can count the number of occurrences of p.

If we can find each child in constant time, then the suffix tree counts the
number of occurrences of p in time O(m), and locates the occ occurrences in
T in time O(m + occ). The suffix tree uses O(n lg n) bits of space and can
be built in O(n) time. In practice, it uses 10–20 times the size of T .

A Generalized Suffix Tree (GST) on ∇ is a suffix tree built on the con-
catenation of all the documents in ∇, T1..n = d1d2...dD. Each document di
is assumed to be terminated with a special symbol $i that does not appear
elsewhere. We can perform pattern searches on the GST just as on a suffix
tree, finding all the occurrences of p in ∇. This is not, however, an efficient
way to perform DL, because we extract all the individual occurrences of p in
each document we report.

2.6. Suffix Arrays

The suffix array (SA) [27] is a structure that reduces the size of the
suffix tree to about 4 times the text size (but still O(n lg n)) in exchange for
supporting fewer functionalities. It still supports pattern matching, however.
The SA is an array of n integers with the positions i associated with the suffix
tree leaves, in left-to-right order. It can also be seen as the set of (indices of)
suffixes T1..n in lexicographic order. Since all the suffixes starting with p are
contiguous in the SA, it can be binary searched for p to delimit the segment
of all the suffixes starting with p, in time O(m lg n).

Like the GST, when the text is a concatenation of the documents of a
collection ∇, we speak of the generalized suffix array (GSA) of ∇.

Figure 1 shows an example of suffix trees and arrays.

2.7. Wavelet Trees

The wavelet tree (WT) [18] for a symbol sequence S1..n over an alphabet Σ
of size σ is a balanced binary tree, which can compute access(S, i), rankc(S, i)
and selectc(S, i), for any c ∈ Σ, in time O(lg σ). These are the natural
extensions of the bitvector operations to general alphabets.

The wavelet tree uses n lg σ+ o(n lg σ) bits, and can be built in O(n lg σ)
time. Each node handles a subset of Σ: the root handles the whole Σ and
each leaf a singleton {c}. The alphabet is split into two contiguous halves3

3If the alphabet size is odd, one half will have one more element than the other.

7

1 2 3 4 5 6 7 8 9 10 11 12 13

GSA =

c

Trie

10 3 15 6 12 7 13 2 11 8 14 5 1

she$ sees$ cheese$ Text =
1 2 3 5 6 7 8 10 11 12 13 14 15

h e e s e $

s

h
e $

e
e s $ e

$

3

c

10

$

15

es

e
$

6 12

s

e$

7 13

he

e
$

2 11

s

$

8

e

e$

14 5

h

1

GST

1

2

3

1 2 3

1
3

2 2

1 2

3

Figure 1: A trie on the words she$1, sees$2 and cheese$3, and also the GST and GSA
for the text she$1sees$2cheese$3. For simplicity, in GST and GSA the suffixes starting
at symbols $i have been omitted. The edges leading to leaves only show their first symbol.

at each node. Each node v represents the subsequence Sv of S formed by
the characters it handles. Instead of the subsequence Sv, the node stores a
bitvector Bv, so that Bv[i] = 0 iff the symbol Sv[i] is handled by the left child,
and Bv[i] = 1 otherwise. The bitvectors support rank and select operations,
and this is sufficient for the wavelet tree to offer the given functionality.

To compute access(S, i), we move down in the tree from the root towards
the leaf that handles S[i], and then report the symbol of the leaf. At each
node v, if Bv[i] = 0, we track the symbol towards the left child, and otherwise
towards the right child. In the first case we recompute the position with i =
rank0(Bv, i), and in the second with i = rank1(Bv, i). Operations rankc(S, i)
and selectc(S, i) are handled similarly.

Wavelet trees can also represent an n × n grid with n points, one per
column: (1, y1), (2, y2), . . . , (n, yn), by regarding the points as a sequence
S1..n = y1y2 . . . yn on the alphabet [1..n]. The wavelet tree takes n lg n +
o(n lg n) bits to represent the points, and can retrieve the t points in any
rectangle [xm, xM] × [ym, yM] in time O((t + 1) lg n), as follows. We start
at the root bitvector Bv with the range [xm, xM]. Then we go to the left
child with the new range [rank0(Bv, xm − 1) + 1, rank0(Bv, xM)], and to the
right child with the range [rank1(Bv, xm − 1) + 1, rank1(Bv, xM)]. We stop
the recursion at any node v where either the range is empty or there is no
intersection between the sub-alphabet of [1..n] handled by v and the range

8

Figure 2: A wavelet tree where we shadowed the O(lg n) nodes that cover the leaves range
[ym, yM]. The range is covered with at most two maximal nodes per level. It is sufficient
to map an original range [xm, xM] from the root to those O(lg n) nodes to find all the
points in [xm, xM] × [ym, yM]. Then those points can be reported one by one, or their
total amount can be counted in time O(lg n).

[ym, yM]. When we reach a leaf, we report its corresponding y value (we can
report the x value as well, by going upwards as for select). Since the range
[ym, yM] is covered by O(lg n) wavelet tree nodes, it is possible to count the
number t of points in a rectangle in O(lg n) time, by adding up xM − xm + 1
on those nodes that cover [ym, yM]. Figure 2 exemplifies.

2.8. Compressed Suffix Arrays

A compressed suffix array (CSA) is a succinct representation of a suffix
array [18, 19, 42, 12, 13, 35]. We denote |CSA| its space, which is always
O(n lg σ) bits for a text T1..n over an alphabet of size σ. Depending on the
index, the space can be close to the zero-order entropy of T , nH0(T)+o(n lg σ)
bits, and even less, the lth order entropy [28] for any l < α lgσ n and constant
0 < α < 1, nHl(T) + o(n lg σ) bits.

A CSA can retrieve any suffix array entry SA[i] in time lookup(n), which
is typically of the form O(lg1+ε n) for some constant ε > 0. Within the same

9

time it also recovers any cell of the inverse permutation, SA−1[j], which is
the position of the suffix Tj..n in SA. It can also determine the range SA[l, r]
of the suffixes starting with p1..m in time O(search(m)), which is typically
O(m lg n) or O(m lg σ). Therefore, the CSA locates all the occ occurrences
of p in time O(search(m) + occ lookup(n)).

Finally, a CSA can retrieve any text substring Tx..y, and thus it acts as a
replacement of the text.

2.9. Range Minimum Queries

Given an array A[1, n], a range minimum query (RMQ) is of the form
RMQA(i, j) = argmini≤k≤jA[k], that is, the position of the minimum in
A[i..j]. The optimal-size solution [14] requires just 2n + o(n) bits and com-
putes any RMQA(i, j) in constant time, without accessing the original array
A at query time.

2.10. LZ78 Compression

The LZ78 compression algorithm [48] parses the text T1..n to be com-
pressed into a sequence of phrases. Each phrase is formed by appending a
new character to the longest possible previous phrase, and is represented
with the index of the phrase used and the new character appended. The
result is a collection of n′ phrases, where n′ ≤ n/ lgσ n, and thus the out-
put of the compressor has at most n′(lg n′ + lg σ) ≤ n lg σ + o(n lg σ) bits if
lg σ = o(lg n). On compressible texts, however, the space decreases. Actu-
ally, the number of bits output by the LZ78 compressor can be bounded as
|LZ78| = n′(lg n+ lg σ) ≤ nHl(T) + o(n lg σ) for any l = o(lgσ n) [25].

Figure 3 shows an example of LZ78 parsing. The output of the LZ78 com-
pressor are the pairs (0, a)(0, b)(1, a)(2, b)(1, b)(0, c)(6, a)(4, $1)(2, b)(3, a)(4, c)
(5, a)(6, $2)(9, a)(4, b)(12, b)(12, $3). Phrase number 0 corresponds to the
empty string, and otherwise phrase number i refers to the ith phrase formed
during the parsing. The figure also shows a trie with all the phrases, where
the node numbers are the phrase indices. Note that the set is prefix-closed,
that is, the prefix of a phrase is also a phrase, and thus every trie node
corresponds to a distinct phrase.

This trie is used for efficient parsing in O(n) time. It is built as we parse:
we traverse the trie with the text to be parsed, and every time we fall off
the trie we add a new child with the symbol that was not found among the
children, thus creating the new phrase. Then we return to the root and
resume the parsing.

10

Figure 3: The resulting phrases when applying the LZ78 parsing of a collection with 3
texts, T = abaabaabccaba$1bbaaabacabac$2bbabababababa$3. The result is a dictionary
of n′ = 17 phrases, which are enumerated and separated by points in the figure. We also
show how the phrases are organized in a trie.

3. The LZ-Index

In this section we describe the basic components of the LZ-Index [32],
which also offers pattern matching capabilities, and on which we build our
document retrieval solutions.

The LZ-Index builds on the LZ78 parsing of the text T1..n to index. Its
first two components are two tries, which store the set of phrases obtained
for T using LZ78 (called LZTrie, the same shown in Figure 3), and the trie
of the reversed phrases (called RevTrie), that is, the phrases read backwards.
Note that LZTrie can be used to find the phrases that start with p, and
RevTrie to find those that end with p (by looking for the reverse of p). Note
that the set of reversed phrases is not prefix-closed, therefore RevTrie may
contain nodes that do not correspond to any phrase.

These two tries are represented in compact form (Section 2.4), so that
they support the efficient navigation described in Section 2.3. Apart from
basic navigation toward children and parents, we can find in constant time
the preorder index (or just preorder, for short) of a node v, the node with a
given preorder, and the range of preorders for the subtree rooted at v. We
also store an array that associates the phrase number with each node. The
space per trie is n′ lg n′ +O(n′ lg σ) bits [32, 2].

During the search process, it is necessary to travel from a node in RevTrie

11

Figure 4: The three types of occurrences according to how many phrases they span.

to the node in LZTrie that represents the same phrase. For this task, the
index includes an array called Node, which does the mapping between phrase
identifiers and preorders in LZTrie. This array uses other n′ lg n′ bits.

The last basic member of the LZ-Index, Range, is a data structure used to
find the occurrences that begin inside a phrase and end in the next one. This
is a two-dimensional n′ × n′ grid where we store n′ points. If the (k + 1)th
text phrase is represented by the node with preorder i in LZTrie and the kth
phrase is represented by the node with preorder j in RevTrie (counting only
nodes that represent phrases), then a point at row i and column j is placed
in the grid. Note that with the LZTrie preorder (i.e., the row) we obtain
the phrase identifier of a point. The grid is implemented with a wavelet
tree (Section 2.7) using n′ lg n′(1 + o(1)) bits, so that all the t points in a
rectangular query range are retrieved in time O((t+ 1) lg n′).

With these components, the occurrences of a pattern p1..m in T1..n are
found as follows, according to the three possible ways p can occur across the
phrases of T (see Figure 4).

1. Find the occurrences completely contained in a single phrase (occt1 oc-
currences of type 1): Search for pr (the reversed pattern) in RevTrie,
arriving at node vr. Every node ur in the subtree of vr corresponds to
an occurrence of p at the end of a phrase. Any other phrase formed from
that of ur also contains p, and those form all the occurrences of type 1.
Thus, any occurrence of type 1 is at an LZTrie node that descends from
u, where u is the LZTrie node that corresponds to ur. Therefore, for
each node ur, we travel from RevTrie to LZTrie using Node, and report
every phrase in the corresponding subtree of LZTrie. The search time
for pr in RevTrie is O(m), and then each occurrence of type 1 is reported

12

Figure 5: The structures to report occurrences of type 1. The arrays Doc and LDoc are
used for document listing.

in O(1) time, for a total time of O(m + occt1). See Figure 5 (disregard
the arrays of the bottom for now).

2. Find the occurrences that span two consecutive phrases (occt2 occur-
rences of type 2). The pattern is split in every possible way into p =
pstart · pend. For each such split, we search for prstart in RevTrie (find-
ing locus vr) and for pend in LZTrie (finding locus u). Both searches
take O(m) time (for each division of p), and obtain the preorder ranges
[lv, rv] and [lu, ru] of occurrences for all prefixes and suffixes. Now we
query Range for [lv, rv]× [lu, ru], retrieving all the phrase numbers k that
end with pstart such that k + 1 starts with pend. Since this is done for
every split, the cost is O(m2 +m lg n+ occt2 lg n). See Figure 6.

3. Find the occurrences that span more than two consecutive phrases (occt3
occurrences of type 3). Since p must contain a whole phrase in each such
occurrence, and every phrase is distinct in the LZ78 parsing, there are
only O(m2) possible occurrences of this type. These are found with a
more laborious process [32] that takes time O(m3).

The total space of the LZ-Index is 4n′ lg n′ + O(n′ lg σ) bits, which is
at most 4nHl + o(n lg σ) for any l = o(lgσ n). The time for locating occ
occurrences is O(m3+m lg n+occ lg n). Later improvements on this structure
[2] reduce the time to O(m2 +m lg n+ occ lg n) by handling in a better way

13

search for prefix of p

search for
suffix of p

RevTrie

v

[l ,r]v v

LZTrie

u [l ,r]u u

r

r

Range data structure

Figure 6: The scheme to report the occurrences of type 2.

the occurrences of type 3. A practical advantage of the LZ-Index compared
to CSAs is that it is faster when many occurrences must be reported [33].
Note that, in this case, the pattern p is usually short and then most of the
occurrences are of type 1, which are reported in O(1) time. We exploit this
property in our DR indices.

4. Related Work and our Contribution in Context

In this section we describe the current solutions for document listing and
top-k retrieval [34], and then put our contribution in context. We will reuse
some of the ideas in our new indices; these are described in more detail.

4.1. Document Listing

We begin by introducing the method of Muthukrisman [31], which is the
first optimal-time solution for document listing in linear space. He builds his
structure on the GST (Section 2.5) of T1..n = d1d2 . . . dD. He also introduces
a useful array in the DR field, called document array E[1..n]: E[i] stores
the identifier j of the document dj where the suffix SA[i] begins. A third
structure is the array C[1..n], where C[j] = i iff i is the largest index with

14

i < j and E[i] = E[j]. If i does not exist, then C[j] = 0. To complete the
framework, he builds an RMQ structure (Section 2.9) on the array C.

To answer a DL query for a pattern p1..m, the first task is to search for
p in the GST, reaching the node v = locus(p). The leaves of v then form
the lexicographic range of the suffixes SA[l..r] that start with p. Thus the
answer to the query are the distinct values in E[l..r]. To find them in optimal
time, the key property is that there is exactly one value C[i] < l for each
distinct document E[i]. Thus a recursive process determines in each step
i = RMQC(l, r) and, if C[i] < l, it reports document E[i] and continues
recursively with the ranges [l, i − 1] and [i + 1, r]. Each recursive branch
stops when C[i] ≥ l. Then the ndoc distinct answers are found in optimal
time O(m+ ndoc).

The disadvantage of Muthukrishnan’s solution is that it uses too much
space. Even if it is O(n lg n) bits (i.e., linear), the constant factor of the space
is high. Sadakane [43] introduced a succinct variant of this proposal, reducing
the space to |CSA|+O(n) bits, replacing the GST by a CSA (Section 2.8),
simulating array E with a bitvector and the CSA, and getting rid of array C.
Note that C is not accessed in modern RMQ structures (Section 2.9), but we
still need to ask whether C[i] < l. Sadakane finds an equivalent condition: he
replaces the test by marking the documents already reported in a bitvector
V1..D and stopping when a marked document is found again. The query time
is now O(search(m) + ndoc · lookup(n)).

The time can be improved by building a wavelet tree (Section 2.7) rep-
resentation of array E [45]. Then array C can be simulated with C[i] =
selectE[i](E, rankE[i](E, i − 1)), and the original algorithm of Muthukrish-
nan can be applied. Using a compressed suffix array, this requires |CSA| +
n lgD(1 + o(1)) bits and reports the ndoc documents in time O(search(m) +
ndoc · lgD). Later [16] it was shown that the wavelet tree can report the
distinct values in E[l..r] with a simpler and faster procedure, leading to DL
time O(search(m) + ndoc · lg(D/ndoc)).

While the wavelet-tree based solutions are faster than Sadakane’s, their
space includes a significant component of n lgD bits, which is not far from
n lg n. Navarro et al. [38] achieved nearly 50% reduction of the wavelet tree
space in practice, at the price of nearly doubling the query time.

Hon et al. [20] went in the other direction, reducing Sadakane’s space
to just |CSA| + D lg(n/D) + o(n) bits, and answering DL queries in time
search(m) + ndoc lg1+ε n lookup(n) time, for any constant ε > 0. This is
obtained by grouping consecutive entries of C and running the algorithm on

15

the minima of the groups, then scanning the selected groups by brute force.

Our contribution. In Section 5 we describe an extension of the LZ-Index that
uses 4n′ lg n′ + n′ lgD + 2n′ lg σ + o(n′ lg n′) + 3n + o(n) ≤ 5nHl(T) + 3n +
o(n lg σ) bits. It solves DL queries in time O(m2 lg n+ ndocm lg2 n). As the
complexities hint, this is significantly smaller and slower than the solutions
that build a wavelet tree on E [45, 16], and generally faster and larger than
Sadakane’s initial solution [43] and the compressed wavelet trees [38].

An interesting aspect in our solution is that most of the documents
(ndoc1) are obtained from occurrences of type 1 (Section 3), and those are
obtained in optimal time, O(m + ndoc1), at a speed comparable to the fast
wavelet-tree based solutions. We prove that most of the answers are of this
type, ndoc1 = ndoc − o(ndoc), thus those taking more time are asymptoti-
cally vanishing, o(ndoc). A variant of our index that finds only those ndoc1

answers is close to the smallest solutions in space, and to the fastest solutions
in time. In various applications, finding a good fraction of the answers, or
finding them progressively, is of interest, and in this case our index excels.

4.2. Top-k Retrieval

It took longer to obtain a time-optimal and linear-space solution for the
more sophisticated problem. Hon et al. [20] obtained O(m + k lg k) time
and O(n lg n) bits, and their framework was later exploited by Navarro and
Nekrich [36] to reduce the time to the optimal O(m + k). Both solutions,
however, use too much space if implemented directly.

Hon et al. [20] also gave the first succinct solution for term-frequency
scores: a structure that uses 2|CSA|+o(n)+D lg n

D
+O(D) bits and answers

in time O(search(m) + k lg3+ε n · lookup(n)), again for any constant ε > 0.
The method takes a fixed κ value and chooses every gth left-to-right leaf in
the GST, for g = κ lg2+ε n. Then it samples all the lowest common ancestors
of successive chosen leaves. The sampled GST nodes are O(n/g), and are
represented in a reduced tree τκ. For each such node, the top-κ answer is
stored explicitly, with the score of each document.

Now, given the locus node v = locus(p), it can be shown that there are
only O(g) leaves between its subtree and the subtree covered by the highest
marked node u below v. Then those O(g) leaves are traversed in order to
“correct” the precomputed top-κ answer stored at u. The second |CSA|-bit
space is used to compute the frequencies of p in the documents found along
this traversal, to see if they make it to the top-κ list.

16

The final structure stores a tree τκ for every κ = 2t, 0 ≤ t ≤ lgD,
therefore O(lgD) trees at different resolutions are stored. For the queries
one uses the tree τκ built for κ = dlg ke.

Navarro et al. [38] implemented this index, replacing the |CSA| bits used
to compute frequencies by the (compressed) wavelet tree of E, which in
practice works better. It is faster to obtain the document identifiers, and
also enables smarter strategies to obtain all the distinct documents in the
range of O(g) leaves that must be collected. They also showed that it was
better to store a unique tree τ that merges the nodes of all the τκ, so that each
node stores the top-κ answers for the largest κ where this node belongs to τκ.
Their structure reaches as little as 7 bpc, depending on the compressibility
of the collection, and retrieval times are 1–10 milliseconds (ms).

An alternative proposal [4] replaces E by monotone minimum perfect hash
functions, which use O(n lg lg lgD) bits instead of the n lgD of the wavelet
tree. The top-k retrieval time becomesO(search(m)+k lg k lg1+ε n lookup(n)).
In practice it is significantly slower than the previous implementation [38],
and it uses less space only when the collection is incompressible. There are
several other theoretical proposals [34] that promise to use much less space
than current implementations, but they will most likely be even slower.

Faster indices, yet using more space, are built as space-reduced versions of
the optimal-time index [36]. Konow and Navarro [24] gave an implementation
that uses over 28 bpc on our datasets4 and answers top-k queries in time
O(m+ (k+ lg lg n) lg lg n) with high probability. In practice, this is k–4k µs.
A more recent version [17] reduces the space to 17–21 bpc in our datasets,
and maintains the same query time performance.

Our contribution. In Section 6 we describe an extension of the LZ-Index that
uses 2n′ lg n′+n′ lgD+2n′ lg σ+o(n′ lg n′)+O(n) ≤ 3nHl(T)+O(n)+o(n lg σ)
bits. It solves top-k queries using term frequencies as the relevance measure,
in time O(m2 lg n+ k lg3 n), where m is the pattern length, under a wide set
of statistical text models with finite memory. This turns out to dominate an
important area of the space/time tradeoff map, between the extremes of the
smallest and slowest indices [38] and the fastest and largest ones [24, 17].

Moreover, within just n′ lg n′ + n′ lgD + 2n′ lg σ + o(n′ lg n′) + O(n) ≤
2nHl(T)+O(n)+o(n lg σ) bits, the index gives an approximate top-k answer
in time O(m + k lg2 n), k–5k µs in practice. The index is as small as the

4The space results they report [24] were somewhat underestimated [17].

17

smallest indices [38] but 3–6 orders of magnitude faster, and as fast as the
fastest ones [24, 17] but 2–4 times smaller.

The approximation is obtained by considering only the occurrences of
type 1. As expected from the results of listing, where as said we lose only
o(ndoc) occurrences by disregarding the others, we prove that the result
becomes asymptotically more accurate as the text collection grows. We also
show experimentally that the accumulated term frequencies of the chosen
documents becomes in most cases 90% of that of the correct top-k documents
for m ≤ 8, even for relatively small collections. That is, we preserve 90% of
the “quality”, in a sense.

4.3. Experiments

We run our experiments on several text collections that were already
considered in previous work [38, 24], as well as other larger ones.

• ClueWiki: A sample of ClueWeb09. These are Web pages from the
English Wikipedia (boston.lti.cs.cmu.edu/Data/clueweb09/).

• Wiki: A collection of more and shorter documents than ClueWiki.

• KGS: A collection of sgf-formatted Go game records from year 2009
(www.u-go.net/gamerecords).

• Proteins: A collection of sequences of human and mouse proteins
(www.ebi.ac.uk/swissprot).

• DNA: A synthetic collection, slightly repetitive with 5% mutations among
documents.

• Influenza: A repetitive collection of the genomes of influenza viruses.
We take the first 70MB.

• TodoCL: A collection formed by snapshots of the Chilean Web. This
includes real queries, which we use to measure quality. We take the
first 100MB for most experiments, and up to 2.05GB for experiments
on collection growth.

• TREC: The TREC Corpus FT91 to 94 (http://trec.nist.gov). We
take the first 3.5GB and use it for experiments on collection growth.

18

http://trec.nist.gov

Collection n D n/n′ compress
(MB) (bpc)

ClueWiki 131 3,334 17.24 2.78
Wiki 80 40,000 9.58 3.34
KGS 25 18,838 14.97 1.85
Proteins 56 143,244 6.38 4.61
DNA 95 10,000 11.50 2.68
Influenza 70 49,588 21.18 1.89
TodoCL 100 22,850 9.02 3.82
TREC 3500 846,869 19.42 3.74

Table 1: Main characteristics of the text collections.

Table 1 summarizes the main characteristics of these collections: size n,
number of documents D, average LZ78 phrase length n/n′ (the larger, the
more compressible for our index), and bpc obtained by the LZ78-based Unix
compress program (another measure of LZ78 compressibility).

The machine used for all experiments is an Intel Xeon with 8 processors of
2.4GHz and 12MB cache, with 96GB RAM. It runs on Linux 2.6.32-46-server,
and we use gcc with full optimization.

5. An LZ-based Index for Document Listing

We adapt the LZ-Index described in Section 3 to carry out document
listing (DL). The resulting index is called LZ-DLIndex. We solve DL by
considering the same 3 types of occurrences of pattern matching. The key
idea is, instead of collecting each individual occurrence of p, to simulate
Muthukrishnan’s DL algorithm (Section 4.1) on ranges of occurrences, even
when the information is more fragmented than on a suffix array. We first
give a broad description of the ideas and then enter into details.

For the occurrences of type 1, the pattern matching algorithm finds the
locus vr of pr in RevTrie and traverses its whole subtree. It maps each node ur

in the subtree of vr to u in LZTrie, and then traverses the whole subtree of u.
Now we want to report all the distinct documents found across this process.
We will virtually5 expand each node ur in RevTrie with the subtree of u,
recording the document where each node belongs. The result will be an array
analogous to E1..n, where we can use Muthukrishnan’s DL algorithm on the

5In the sense that we will not actually represent it, as explained next.

19

range covered by vr. We do not store the array E itself, but we simulate access
to any position indirectly via the LZTrie, which will store the document
where each phrase belongs. We will store an RMQ structure on the (virtual)
array C corresponding to E. This structure uses 2n+ o(n) bits (Section 2.9)
and allows us to find each new document in O(1) time without accessing
C. The other accesses to C will be replaced with Sadakane’s workaround
(Section 4.1).

For the occurrences of type 2, we find the O(lg n′) nodes that cover the
y-interval [lu, ru] and project the x-interval [lv, rv] to each such node (Sec-
tion 2.7). Each point to report belongs to some document, and we want again
to report all the distinct documents. We can do it by brute force (report-
ing the document of every individual point, avoiding repetitions), or apply
Muthukrishnan’s algorithm on each of the O(lg n′) ranges [xm, xM] in the
wavelet tree nodes that cover the y-coordinate interval. Access to the corre-
sponding arrays E is done via mapping the points to the LZTrie. In addition,
we store in each wavelet tree node the RMQ structures on the correspond-
ing C arrays. Therefore, to each bitvector Bv we add an RMQ structure
using 2|Bv|+ o(|Bv|) bits, reusing a technique for RMQs on two-dimensional
point sets [37]. Again, other accesses to C are avoided in the same way as
Sadakane.

Finally, occurrences of type 3 are O(m2) in total and are dealt with one by
one. We will show that the whole process takes timeO(m2 lg n+ndocm lg2 n).
However, the ndoc1 documents found with occurrences of type 1 are listed in
time O(m+ ndoc1). Now we describe the techniques in further detail.

5.1. Structure

Tries. We store the topologies of both tries plus the labels of RevTrie as
in previous work [32, 2]. These require 2n′ lg σ + O(n′) bits and support
constant-time traversals. Note that LZTrie has n′ nodes, and thus its topol-
ogy is represented with 2n′ + o(n′) bits (Section 2.4). However, RevTrie
may have up to n nodes, because not every node corresponds to a phrase.
From those nodes, some are unary, that is, have just one child, and some are
empty, that is, do not represent any phrase. Since RevTrie has at most n′

leaves and exactly n′ nonempty nodes, it has at most 2n′ non-unary nodes.
Thus we can represent only the (at most) 3n′ nodes that are non-unary or
nonempty, and collapse the remaining unary paths. Only the symbols that
are not in those paths are stored. This leads to a representation that uses
2n′ lg σ + O(n′) bits. The symbols from unary paths are extracted via the

20

connection with the LZTrie [32, 2]. We also mark in a bitvector Q1..3n′ which
nodes (in preorder) are nonempty, so that we can compute the preorder of a
node v among the nonempty nodes as rank1(Q, preorder(v)).

Documents. Instead of storing the phrase identifiers for the n′ nodes of
LZTrie, we store the identifiers of the document where they occur. We also
store the RMQ structure associated with the virtual array E1..n we have de-
scribed. In total we store n′ lgD+ 3n+ o(n) bits, in the following structures
(see the arrays on the bottom of Figure 5).

Doclz: The array of n′ document identifiers of the LZTrie phrases in preorder,
stored explicitly in n′ lgD bits. This is equivalent to the document
array of Muthukrishnan (Section 4.1), but restricted to phrases.

Docrev: A sequence of n document identifiers built as follows. We traverse
RevTrie in preorder, and for each nonempty node vr, let v be the
corresponding LZTrie node. Let Doclz[lv, rv] be the range of all the
descendants of v (included). We then append Doclz[lv, rv] to Docrev.
The total length of Docrev is n because n is the internal path length
(sum of all node depths) in LZTrie, and each LZTrie node is appended
to Docrev once per ancestor it has in LZTrie.

We do not store Docrev, but only the 2n-bit RMQ structure on its
corresponding C array (Section 4.1); recall that the RMQ structure
does not need to access C (Section 2.9). This will be sufficient to run
Muthukrishnan’s DL algorithm (Section 4.1) on top of Docrev. When it
needs to access Docrev, we will take the corresponding cell from Doclz.

LDocrev: A bitvector of n bits that marks the Docrev positions where the
intervals Doclz[lv, rv] start. Since it has only n′ bits set, it is represented
in compressed form (Section 2.2), so it can use less than n bits.

Node. A mapping from RevTrie to LZTrie. If the node vr in RevTrie with
nonempty preorder i corresponds to the node v in LZTrie with preorder j,
then Node[i] = j. Array Node uses n′ lg n′ bits.

Range. An enhanced binary wavelet tree. Each wavelet tree node implicitly
represents a sequence of points (i.e., pairs of phrases (k, k+1)). Now consider
the array of their corresponding documents (we are not interested in pairs of
phrases that span two documents, as no matches occur there). In addition

21

to the bitvector Bv of node v, we store the RMQ structure corresponding to
the C array of its (virtual) array of documents (Section 4.1). The total space
of Range is then 3n′ lg n′ + o(n′ lg n′) bits.

Space. Overall, the LZ-DLIndex requires 4n′ lg n′+n′ lgD+2n′ lg σ+o(n′ lg n′)+
3n + o(n) ≤ 5nHl(T) + 3n + o(n lg σ) bits. This is close to the original LZ-
Index size [32].

5.2. Queries

We solve DL incrementally, considering the three types of occurrences.

5.2.1. Occurrences of type 1

We search for pr in RevTrie, arriving at node vr. Let [iv, jv] be the range
of preorders of nonempty nodes descending from vr. We find the interval
I = Docrev[sv, ev] of all the documents that contain occurrences of type 1,
where sv = select1(LDocrev, iv) and ev = select1(LDocrev, iv + 1)− 1. Next,
we report all the distinct documents in I with Muthukrishnan’s algorithm
using RMQs. For each new position pos of a document Docrev[pos] reported
by an RMQ, we need to report the document identifier. We determine the
nonempty preorder j = rank1(LDocrev, pos) of the RevTrie node holding
that position, and then the preorder of this node in LZTrie, i = Node[j].
The difference d = pos− select1(LDocrev, j) provides the offset of this posi-
tion within the leaf interval of the LZTrie node with preorder i. Thus, the
document is Doclz[i+ d]. The overall time of this step is thus O(m+ ndoc1).

5.2.2. Occurrences of type 2

We proceed as in the original LZIndex for reporting occurrences from
Range, but now we use the RMQ structures in the wavelet tree of Range to
report documents. We consider all the m− 1 partitions p = pstart · pend and
search for these prefixes and suffixes in the tries. Each such partition then
becomes a range search for [lv, rv]× [lu, ru] in Range, and is decomposed into
O(lg n′) intervals [xm, xM] in different wavelet tree nodes v. Each point in
those intervals represents a position in a document. The distinct documents
in each interval [xm, xM] are obtained using Muthukrishnan’s algorithm on
the RMQs built for the node. To obtain the document identifier for each
reported position pos ∈ [xm, xM], we track the position down in the wavelet
tree until reaching the leaf, which indicates the row of Range. Since the rows
of Range correspond to LZTrie preorders, we simply access Doclz at the leaf
index.

22

Although unlikely, in the worst case we can output the same document
in each of the O(lg n′) intervals for each of the m − 1 partitions, and each
requires O(lg n′) time for tracking the point down to the leaves. This gives
O(m2) time for the RevTrie searches plus a (very pessimistic) worst-case
bound of O(ndoc2m lg2 n) time for the ndoc2 occurrences of type 2.

5.2.3. Occurrences of type 3

Occurrences of type 3 are extracted one by one as in previous work [2],
using Doclz to give document numbers for the matches found. The only
difference is that this algorithm needs to find the LZTrie node of phrase
k + 1 given the RevTrie node of phrase k. This is easy because their Node
structure maps from phrase numbers to LZTrie nodes, but ours maps RevTrie
preorders to LZTrie preorders.

Instead, we use Range to find the phrase k+1 given a phrase number k in
RevTrie: If the phrase k corresponds to preorder iv in RevTrie, then tracking
down the ivth position from the root to the leaf of Range ends up precisely
in the preorder of phrase k + 1. In terms of the wavelet tree functionality,
the answer is simply access(iv). This increases the complexity to find these
occurrences to O(m2 lg n).

5.2.4. Time

The total query time is O(m2 lg n+ ndocm lg2 n), where we remind that
this is a very pessimistic upper bound. We also note that the occurrences of
type 1 are reported very early, in time O(m+ndoc1). If the text is generated
by an ergodic source, the occurrences of any pattern p appear regularly,
every d positions on average (e.g., d = σm if the symbols are generated
uniformly and independently). On the other hand, since n′ ≤ n/ lgσ n, only
O((n/d)m/ lgσ n) of those occurrences hit a phrase boundary on average.
This means that that a fraction of 1−O(m/ lgσ n) of the occurrences are of
type 1, and also ndoc2 = O(ndocm/ lgσ n) = o(ndoc) if m = o(lgσ n). Thus
we report almost all of the occurrences in O(1) time each. If we just lose
those o(ndoc) occurrences not of type 1, our time is the optimal O(m+ndoc).

We show in the experiments that, indeed, our index is particularly com-
petitive to show the first occurrences (those of type 1), which are the most
for short patterns.

5.3. Implementation
To obtain a practical implementation of the scheme, we make some changes

that, although they do not preserve the theoretical space and time guaran-

23

tees, perform much better in practice. These refer largely to the implemen-
tation of the tries.

The mechanism to avoid storing symbols of unary paths in RevTrie and
instead extract them from LZTrie is slow in practice. Instead, we store them
in RevTrie. Moreover, we perform all the searches in RevTrie, and do not
represent LZTrie at all. RevTrie then has trev nodes, which can be as large
as n, but in practice it is much less.

We represent RevTrie in DFUDS form (Section 2.3), using 2trev + o(trev)
bits, plus a bitvector that marks the nonempty nodes in DFUDS order, so
as to compute the nonempty preorders that are used in searches. We also
store a string with the 2trev symbols that label the edges, in the same order
they are stored in DFUDS. This allows (1) performing binary searches on
the labels toward the children of a node, to efficiently find the one to follow,
(2) having in consecutive positions the symbols that label unary paths, so as
to compare them efficiently with p. The constant-time method to find the
label given in DFUDS [5] is theoretical, and is better replaced with searches
on this string.

RevTrie is used directly to find the occurrences of type 1, and also to
search for prstart when looking for occurrences of type 2. To find pend, since
we cannot search in LZTrie, we look for prend in RevTrie. If it does not
exist, or it leads to an empty node, then pend is not a phrase and there
are no phrases starting with pend (as LZTrie is prefix-closed). If instead we
reach a node ur, with nonempty preorder t, then i = Node[t] is the LZTrie
preorder of the corresponding node u, which represents pend. It is also the
left end lu = i of the preorder interval of the descendants of u. To find the
right end, ru, we compute the size ` of its interval in Doclz using LDocrev:
` = select1(LDocrev, t + 1) − select1(LDocrev, t), and then ru = lu + ` − 1.
Now we have the row interval to search Range.

Finally, we can reduce the space of the RMQs in Range by storing them
only for the highest levels of the wavelet tree. The lowest ones have shorter
bitvectors, and then traversing them sequentially is not much different from
applying Sadakane’s algorithm to find the different documents (moreover, as
they are closer to the leaves, obtaining their document identifiers is cheaper).
This gives a space/time tradeoff.

24

5.4. Experimental Results

A 64-bit implementation of our index, LZ-DLIndex, is left public6. We
also use an RMQ implementation of our own7 [11], which requires around 2.2n
bits. The bitvector implementations are obtained from the SDSL library8.

We also implement the classical DL solution of Sadakane [43], which we
also leave public9. As the CSA, we use the FM-Index implemented in the
SDSL library, and use different suffix array samplings to obtain space/time
tradeoffs.

5.4.1. Space study

Table 2 gives the space obtained by our LZ-DLIndex structure on the
collections described in Table 1. The total bpc for each main component
is shown in bold, and between parentheses its percentage of the total size
of the structure. Influenza, ClueWiki and KGS are the most compressible
ones, reaching 6.3–8.2 bpc, whereas DNA, Wiki, TodoCL and Proteins are
the least compressible ones. All are, as roughly expected from the space
analysis, 3.7–5.2×|LZ78|, where |LZ78| = n′(dlg n′e + dlg σe)/n. We show
how |LZ78| relates to n/n′, and how it roughly coincides with the output size
of compress, a classical LZW Unix compressor (shown in Table 1).

The Doc component dominates the space, with 37%–53% of the total
index size. It includes the document identifiers with their boundary values
and the RMQC data structure on RevTrie. For Range we used the lowest
and smallest version of the index, where the wavelet tree of Range does not
include any RMQ structure (this corresponds to the highest point of the LZ-
DLIndex in Figures 7 and 8). Range and Node use 15%–25% of the index
size each. The distribution varies a bit on the less compressible collections,
where the fraction of Node and Range increases, reaching 25% each. Note
that component Range can be omitted if we only want to list the occurrences
of type 1, in which case the index size is reduced by 15%–25%.

Table 3 shows the number of documents listed by the queries, averaging
over 3,000 patterns randomly extracted from the collections. Many of the
listed documents are obtained as type-1 occurrences (70%–96% for m = 6,
and 50%–92% for m = 10 if we exclude DNA). This shows that we could

6At https://github.com/hferrada/LZ-DLIndex.git.
7Available at https://github.com/hferrada/rmq.git.
8From https://github.com/simongog/sdsl-lite.git.
9At https://github.com/hferrada/Sada-DLIndex.git.

25

https://github.com/hferrada/LZ-DLIndex.git
https://github.com/hferrada/rmq.git
https://github.com/simongog/sdsl-lite.git
https://github.com/hferrada/Sada-DLIndex.git

Collection RevTrie Doc Node Range Total (/|LZ78|) |LZ78| (n/n′)
ClueWiki 1.69(23%) 3.30(45%) 1.33(18%) 1.04(14%) 7.39 (4.31×) 1.71 (17.24)

0.18(topology) 0.70(Doclz)
1.39(labels) 2.34(RMQC)
0.12(empty) 0.26(LDocrev)

Wiki 1.93(18%) 4.38(40%) 2.51(23%) 2.07(19%) 10.89 (3.68×) 2.96 (9.58)
0.18(topology) 1.67(Doclz)
1.39(labels) 2.34(RMQC)
0.12(empty) 0.37(LDocrev)

KGS 2.03(25%) 3.65(44%) 1.40(17%) 1.13(14%) 8.21 (4.56×) 1.80 (14.97)
0.23(topology) 1.00(Doclz)
1.61(labels) 2.36(RMQC)
0.19(empty) 0.29(LDocrev)

DNA 1.10(12%) 3.87(42%) 2.09(23%) 2.08(23%) 9.14 (3.89×) 2.35 (11.50)
0.24(topology) 1.22(Doclz)
0.80(labels) 2.32(RMQC)
0.06(empty) 0.33(LDocrev)

Proteins 2.06(11%) 5.63(37%) 3.76(25%) 3.76(25%) 15.21 (4.33×) 3.51 (6.38)
0.44(topology) 2.82(Doclz)
1.51(labels) 2.34(RMQC)
0.11(empty) 0.47(LDocrev)

Influenza 0.95(15%) 3.36(53%) 1.04(17%) 0.95(15%) 6.30 (5.21×) 1.21 (21.18)
0.14(topology) 0.75(Doclz)
0.75(labels) 2.34(RMQC)
0.06(empty) 0.27(LDocrev)

TodoCL 2.05(18%) 4.40(39%) 2.66(23%) 2.21(20%) 11.32 (3.24×) 3.40 (9.02)
0.35(topology) 1.66(Doclz)
1.51(labels) 2.35(RMQC)
0.19(empty) 0.39(LDocrev)

Table 2: Space breakdown of the main components in our LZ-DLIndex structure, with
values in bpc. For RevTrie and Doc columns, the space is the sum of the components
detailed below them (bpc values in italics). The Range column does not include the RMQ
structures to speed up the index. The percentages refer to the total size of the index. The
column (/|LZ78|) indicates the ratio of the total size over |LZ78|, and the last column, in
turn, gives also (n/n′).

obtain a significant part of the result using just the fastest listing and without
representing Range.

5.4.2. Space/time tradeoffs

Figures 7 and 8 compare our LZ-DLIndex structures in three modes: (i)
the full mode where it returns all the documents for a DL-query (called LZ-
Index in the plots); (ii) a mode where it also can return all the documents but
we take the time needed to return only those that were found for occurrences
of type 1, and use the minimum space for Range (called “up to type 1”); and
(iii) a mode where it can only return the documents found by occurrences of
type 1 as it does not store Range at all (called “only type 1”). For the full

26

m = 6 m = 10
Collection Type 1 Type 2 Type 3 ndoc Type 1 Type 2 Type 3 ndoc D
ClueWiki 1860.51 69.37 0.24 1930.12 1437.01 119.79 2.05 1558.85 3,334

96.4% 3.6% 0.0% 57.89% 92.2% 7.7% 0.1% 46.76%
Wiki 921.66 290.04 0.16 1211.86 135.79 76.50 0.97 213.26 40,000

76.1% 24.0% 0.0% 3% 63.7% 35.9% 0.5% 0.5%
KGS 4702.26 1691.87 1.40 6395.53 2012.27 739.57 4.66 2756.49 18,839

73.5% 26.5% 0.0% 33.9% 73.0% 26.8% 0.2% 14.63%
DNA 7527.03 1630.21 0.01 9157.25 32.72 98.37 0.14 131.22 10,001

82.2% 17.8% 0.0% 91.56% 24.9% 75.0% 0.1% 1.31%
Proteins 52.01 21.53 0.07 73.61 25.57 16.59 3.50 45.66 143,244

70.7% 29.2% 0.0% 0.05% 56.0% 36.3% 7.7% 0.03%
Influenza 16901.13 3302.72 0.09 20203.94 995.46 452.63 1.18 1449.27 49,588

83.7% 16.3% 0.0% 57.89% 68.7% 31.2% 0.1% 2.92%
TodoCL 467.09 173.88 0.16 641.13 35.85 35.34 0.93 72.12 22,850

72.9% 27.1% 0.0% 2.81% 49.7% 49.0% 1.3% 0.03%

Table 3: Number of occurrences of each type, for pattern lengths m = 6 and m = 10.
Under each number, we give the percentages of the documents output. For the three types
of occurrences these refer to ndoc, and for column ndoc this refers to D.

mode, we obtain a space/time tradeoff by representing RMQs only for the
highest levels of Range, as explained.

We also compare Sadakane’s DL structure [43], showing seven points that
use suffix array sampling steps of 4, 8, 16, 32, 64, 128 and 256. We also com-
pare some variants of the proposal that stores a wavelet tree of the document
array [38]: (i) the variant using document arrays as plain wavelet trees [45]
(WT Plain), (ii) a representation with grammar-compressed wavelet trees
(WT RePair), and (iii) an intermediate one called WT Alpha10. In order to
compute the occurrences interval SA[l, r] in this index we incorporate a CSA
with no sampling in order to minimize space (the sampling is not needed
here). We use the same FM-Index used for Sadakane.

It can be seen that adding RMQs to Range, while theoretically appeal-
ing, increases the space without giving a significant speedup in practice. Our
LZ-DLIndex is between, on one extreme, Sadakane and WT RePair, which
use less space but may be orders of magnitude slower, and on the other ex-
treme, WT Plain, which is orders of magnitude faster but uses much more
space. In some collections, like ClueWiki, Wiki, DNA, and TodoCL, WT Re-

10We ran the 32-bit code given by the authors [38], which can build the variants (i) and
(ii) for any data collection. The “alpha” structure could be built only on the four data
collections used in their publication, which include ClueWiki, KGS, and Proteins.

27

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - ClueWiki (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
WT Alpha
Sadakane

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - Wiki (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - KGS (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
WT Alpha
Sadakane

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - DNA (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 5 10 15 20 25 30 35

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - Proteins (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
WT Alpha
Sadakane

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - Influenza (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - TodoCL (m=6)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

Figure 7: Space/time document listing comparison for pattern length m = 6. The x-axis
is the space in bpc.

28

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - ClueWiki (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
WT Alpha
Sadakane

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - Wiki (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - KGS (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
WT Alpha
Sadakane

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - DNA (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 5 10 15 20 25 30 35

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - Proteins (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
WT Alpha
Sadakane

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - Influenza (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

ti
m

e
 p

e
r

d
o

c
u

m
e

n
t

(m
ic

ro
s
e

c
)

Document listing - TodoCL (m=10)

LZ-DLIndex
up to type 1
only type 1

WT Plain
WT RePair
Sadakane

Figure 8: Space/time document listing comparison for pattern length m = 10. The x-axis
is the space in bpc.

29

Pair outperforms the LZ-DLIndex in both time and space, whereas in KGS,
Proteins, and Influenza, the LZ-DLIndex is much faster. The LZ-DLIndex
is comparable to WT Alpha in various cases, but it is much easier to tune.

The partial variants of the LZ-DLIndex reach much better time, similar
and even faster than those of WT Plain. They return about one result
per microsecond. Therefore, in scenarios where we return the occurrences
progressively, for example to be displayed in an interface, the “up to type 1”
structure is very efficient, as it retrieves the first occurrences very fast.

The variant that can only return the occurrences of type 1 is also signifi-
cantly smaller. Next we study the fraction of the total set that is found with
this type of occurrences.

5.4.3. Quality

Now we measure the quality of our small and fast approximation of the
LZ-DLIndex. As explained, it returns the documents where p is contained in
at least one full phrase. Our analysis showed that, as n grows, the fraction
of these documents should asymptotically approach the total answer set.

Figure 9 explores the behavior on a large collection, TodoCL, with a real
query log. We tested one-word and two-word queries. As expected, the ratio
of documents returned grows with n and decreases with the query length.
When we reach 2.2GB, the approximation returns about 80% of all the an-
swers. Note that this was already around 75% on just 200MB.

6. An LZ-based Index for Top-k Retrieval

Our structure for solving top-k retrieval, called LZ-TopkIndex, is inspired
by the succinct approach of Hon et al. [20, 38], which stores top-κ answers
for some chosen suffix tree nodes. Our idea is to solve the queries by brute
force in principle, that is, obtaining all the occurrences and selecting the
k most frequent documents. However, if this implies processing more than
g · k occurrences, and the pattern has occurrences of type 1, then the top-k
answers will be precomputed in the corresponding RevTrie node. Here g is
a space/time tradeoff parameter.

Parameter g then determines which RevTrie nodes will store a top-κ an-
swer, and for which κ. The (empty or nonempty) RevTrie nodes representing
a string with at least g occurrences are then marked in a bitvector. Yet, we
never mark empty unary nodes because their set of occurrences is the same
as for their child. Each marked node stores a number κ of documents where

30

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

fr
a
c
ti
o
n
 o

f
fr

e
q
u
e
n
c
y

GB

TodoCL - word queries

One word
Two words

Figure 9: Fraction of the real answers of our LZ-DLIndex found as type 1, for real queries,
as a function of the prefix size of TodoCL, for words and two-word phrases.

it appears most often: if the node has o occurrences, then it stores κ = bo/gc
precomputed answers. This guarantees that, if k > κ and we need to find all
the o occurrences by brute force, it is because p has less than gk occurrences,
and thus the effort to collect them individually is no more than O(g lg n′) per
result returned (dominated by the occurrences of type 2).

Inspired by the fact that it is so fast to retrieve the occurrences of type
1 and these form a large portion of the documents where p appears, we also
design an approximate variant of the index that only considers occurrences
of type 1, which we call LZ-TopkApp. Now the brute-force approach only
counts the occurrences of type 1, and the κ values are calculated according
to those numbers. Still, the top-κ precomputed lists store the correct top-κ
answers. The space and time of LZ-TopkApp are then close to those of the
LZ-DLIndex variant “only type 1”; in particular the cost per occurrence is
just O(g). According to the analysis in Section 5.2.4, LZ-TopkApp returns
the top-k answers considering a fraction of the occurrences of p that tends
to 1 as n increases, thus we expect the quality of the answer to increase with
n. We now give the details of the structures.

6.1. Structure

The structure of LZ-TopkApp includes the LZTrie, RevTrie, and Node
components of the LZ-DLIndex. We also include Doclz, but not Docrev nor

31

LDocrev. In addition, LZ-TopkIndex includes Range, to find the occurrences
of type 2, but not the RMQ structures the LZ-DLIndex associates with it.
In exchange, we include a new structure, Top, where the precomputed top-κ
answers are maintained. Apart from the bitvector Btop that tells which nodes
are marked, we store the top-κ answers for each marked node in an array
Ktop, and mark the beginning of each answer set in a bitvector LKtop. The
detail is as follows:

Btop: A bitvector marking which RevTrie nodes have top-κ answers precom-
puted, in preorder.

Ktop: The sequences of κ most frequent documents where each node marked
in Btop appears, concatenated in the same order of Btop. The identifiers
are stored using lgD bits, in decreasing frequency order.

LKtop: A bitvector marking the starting positions of the sequences in Ktop.

Atop: Since there may be less than κ distinct documents where the marked
node appears, this bitvector indicates whether a node marked in Btop

already lists all of the possible documents.

Space. The larger g, the fewer RevTrie nodes store their top-κ documents.
Consider a RevTrie node. If it has o occurrences, then it stores κ ≤ o/g pre-
computed answers (including zero, being not marked, if o < g). Adding over
all the RevTrie nodes representing strings of the same length, no more than
n/g precomputed results are stored, since the occurrences must be disjoint
and can only add up to n. Therefore, if h is the maximum length of a phrase
(or, equivalent, the height of LZTrie), we can have n/g results per length,
adding up to h(n/g) lgD bits in total. We then choose g = h lgD to ensure
this space is O(n) bits.

Therefore, the space of LZ-TopkIndex is 2n′ lg n′ + n′ lgD + 2n′ lg σ +
o(n′ lg n′)+O(n) ≤ 3nHl(T)+o(n lg σ)+O(n) bits, and that of LZ-TopkApp
is n′ lg n′ + n′ lgD + 2n′ lg σ +O(n) ≤ 2nHl(T) + o(n lg σ) +O(n) bits.

6.2. Queries

We search for the locus vr of p in RevTrie as before. Then we check
in Btop whether the node is marked. If it is, rank/select queries on LKtop

yield the range of top-κ document identifiers stored for vr. If k ≤ κ, or Atop

32

Figure 10: The main data structures of our approximate top-k index. The search for the
pattern qr reaches node wr in RevTrie, which is marked in Btop. The marks in LKtop

also indicate that there are κ ≥ k document identifiers stored. Therefore, the answer is
retrieved from Ktop using the marks in LKtop. The search for pr, instead, reaches node
vr in RevTrie. Since this node is not marked, the answer is computed by accumulating
frequencies from the document array of phases, Dlz. We use k∗ for κ in the drawing.

indicates that vr stores all the documents where it appears, we return the
top-min(k, κ) documents stored for vr and finish.

Otherwise, the stored answers are not sufficient (or do not exist) and we
have to proceed by brute force. Then, just as for the basic index, we collect
all the occurrences of type 1 by mapping every descendant ur of vr to node u
in LZTrie using Node, and traversing the range of Doclz covered by u. Along
this process, we accumulate the frequencies of the documents found in an
initializable array [29, Sec. III.8.1], and at the end collect the k documents
with the highest frequencies. In case of the LZ-TopkIndex, we also collect the
occurrences of type 2 and 3, to ensure that the answer is completely correct.

Figure 10 illustrates the main components of our index and how we re-
trieve top-k answers in both cases: when the locus of the pattern contains
the answer precomputed, or when the output is computed by brute force.

Time. The LZ-TopkIndex guarantees to spend O(g lg n′) time per occurrence
returned when p has occurrences of type 1. Otherwise, there is no guarantee.
However, let us follow the analysis of Section 5.2.4. On texts generated
by ergodic sources, the probability that p, appearing o times in T , has no

33

occurrences of type 1, is (1 − Θ(m/ lgσ n))o. Taking the worst value m = 2
and multiplying by the cost O(o lg n′) to find all such occurrences, this is
upper bounded by e−Θ(o/ lgσ n)o lg n, which is maximized for o = Θ(lgσ n).
Thus we absorb this case, on average, by adding O(lg2 n) time. Considering
the time for searching the tries and handling the occurrences of type 3, we
obtain O(m lg2 n+kg lg n) time. The LZ-TopkApp structure, instead, reports
nothing when p has no occurrences of type 1, and otherwise spends O(g) time
per occurrence returned. Thus its total time is always O(m+ kg).

If we assume that the text is generated by a memoryless source, then the
LZTrie can be thought of as the trie induced by n′ infinite and statistically
independent strings. Under a wide set of probabilistic models, the height of
such a trie is h = O(lg n′) [44]. The result still holds if T is generated by a
finite-memory source, where each symbol depends on O(1) previous symbols.
Therefore, we have that g = h lgD = O(lg2 n). Our previous calculations
then yield time O(m lg2 n+ k lg3 n) for LZ-TopkIndex and O(m+ k lg2 n) for
LZ-TopkApp.

6.3. Experimental Results

We leave public a 64-bit implementation of our indexes LZ-TopkIndex11

and LZ-TopkApp12. We compare our index with previous work [24, 38] in
terms of query time and space usage. We use the same document collections
described in Table 1.

6.3.1. Space study

Figure 11 gives the space breakdown for DL-TopkApp, for various values
of g. We group the data structures into four components: (1) LZTrie contains
the tree topology and the document identifiers Doclz; (2) RevTrie considers
the tree topology, the symbols of the edges, and the other bitvectors to
perform pattern searches; (3) Node is the array mapping RevTrie to LZrie;
and (4) Top counts the storage of the best documents for marked nodes and
the bitvectors to extract them. Only the size of Top varies with g. It can be
seen that reasonable values of g, depending on the collection, start at 32–256.
The impact of g is slightly smaller on DL-TopkIndex.

11At https://github.com/hferrada/LZ-TopK.git.
12At https://github.com/hferrada/LZ-AppTopK.git.

34

https://github.com/hferrada/LZ-TopK.git
https://github.com/hferrada/LZ-AppTopK.git

 0

 5

 10

 15

 20

g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

Cluewiki

Top
Node

RevTrie
LZTrie

 0

 5

 10

 15

 20

 25

g4 g8 g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

Wiki

Top
Node

RevTrie
LZTrie

 0

 5

 10

 15

 20

 25

g8 g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

KGS

Top
Node

RevTrie
LZTrie

 0

 2

 4

 6

 8

 10

 12

 14

 16

g4 g8 g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

DNA

Top
Node

RevTrie
LZTrie

 0

 5

 10

 15

 20

 25

g4 g8 g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

Proteins

Top
Node

RevTrie
LZTrie

 0

 5

 10

 15

 20

g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

Influenza 70MB

Top
Node

RevTrie
LZTrie

 0

 5

 10

 15

 20

g4 g8 g16 g32 g64 g128 g256

s
p

a
c
e

 (
b

p
c
)

TodoCL 100MB

Top
Node

RevTrie
LZTrie

Figure 11: Space breakdown of our LZ-TopkApp structures for different g values (g is the
x-axis).

35

6.3.2. Space/time tradeoffs

We compare our top-k indexes with the best previous solutions. We
denote IDX-KN [24] and IDX-GN [17] the implementations of a fast and large
structure [36]. We also include a choice of relevant space/time tradeoffs from
the small and slow structure based on Hon et al.’s sampling [20] combined
with wavelet trees [38], which we call HON-WT.

We consider search patterns of lengths m = 6 and m = 10 in Figures 12
and 13. We take strings from random positions in the collection, checking
that they appear in a least k documents. We test k = 10 and k = 100. For
our indexes we try the values g = 256, 128, 64 . . . until the size of component
Top exceeds 24 bpc. For LZ-TopkApp we also include the case g = +∞ (i.e.,
not precomputing any answer) to see if storing answers is worth the space.

Since n/n′ is the average node depth in LZTrie, we set g = (n/n′) lgD as
a natural value. According to Table 1, this yields values in the range 110–330
for g. In most texts LZ-TopkApp uses 4–7 bpc with those values of g (except
Proteins, where it uses 10 bpc), and solves top-k queries in around k–5k
µs. LZ-TopkIndex uses 5–8 bpc (12 bpc on Proteins) and solves queries in
10k–100k µs. Using a smaller g improves performance significantly in some
cases, while increasing the space still within competitive bounds. Instead,
not using top-κ answers at all significantly increases the times.

Our LZ-TopkIndex provides an interesting space/time tradeoff. Only
HON-WT is able to use less space in some cases, generally at the price of
being an order of magnitude slower. There is no other competing structure
until we reach the space of IDX-GN, which is up to 2 orders of magnitude
faster but almost always uses 17–21 bpc. IDX-KN is always slower and larger
than IDX-GN.

The structure HON-WT can also use similar or less space than LZ-
TopkApp, but at the cost of being 3–6 orders of magnitude slower. Even
if using much more space, HON-WT is at least 2 orders of magnitude slower
than LZ-TopkApp. On the side of the large and fast structures, IDX-GN
obtains time similar to LZ-TopkApp, but it uses 2–4 times more space.

6.3.3. Quality

Our LZ-TopkApp index offers an excellent space/time tradeoff. However,
it does not always ensure that the answer is completely accurate. In order
to estimate how good the approximation is, we computed two measures of
quality for the top-k approximation. The first one is the traditional recall,
measured in the following way: for each value k′ ∈ [1, k], we measure how

36

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 5 10 15 20 25 30 35 40

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Cluewiki (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 5 10 15 20 25 30 35 40

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Cluewiki (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 5 10 15 20 25 30 35

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Wiki (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 1x10
6

 0 5 10 15 20 25 30 35

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Wiki (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 5 10 15 20 25 30 35 40 45

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - KGS (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 5 10 15 20 25 30 35 40 45

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - KGS (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 1x10
6

 5 10 15 20 25 30 35 40 45 50 55

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Proteins (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 1x10
6

 5 10 15 20 25 30 35 40 45 50 55

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Proteins (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

Figure 12: Space/time top-k comparison for pattern length m = 6 (left) and m = 10
(right). Space (bpc) is the x-axis.

37

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 5 10 15 20 25 30 35 40 45

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - DNA (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - DNA (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 0 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Influenza (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 1x10
6

 0 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - Influenza (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - TodoCL (m=6)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

m
ic

ro
s
e

c
)

Top-k retrieval - TodoCL (m=10)

LZ-TopkApp k10
LZ-TopkIndex k10

IDX-KN k10
HON-WT k10

IDX-GN k10
LZ-TopkApp k100

LZ-TopkIndex k100
IDX-KN k100

HON-WT k100
IDX-GN k100

Figure 13: Space/time top-k comparison for pattern length m = 6 (left) and m = 10
(right). Space (bpc) is the x-axis.

38

many of the (correct) top-k′ documents are reported within the (approxi-
mate) top-k results. This is shown in Figure 14. In this experiment we have
selected the largest g value for each collection, which ensures that the total
size of the index is around 12–16 bpc.

The point at k′ = 1 (i.e., 0.1 in the x-axis for k = 10 and 0.01 for k = 100)
indicates how many times the most relevant document is contained in the
top-k approximate answer. The point at k′ = k (i.e., 1.0) gives traditional
recall: how many of the correct top-k documents are actually returned.

This indicator is useful for applications where the top-k answer is post-
processed with a more sophisticated relevance function in order to deliver a
final answer of k′ � k results. For example, except for m = 10 on Proteins

(where few occurrences of type 1 are found), we obtain a recall of 70%–100%
if we use this top-k approximation to later extract the best 30% of the results
(0.3 in the plots).

In most collections the recall is 60%–100% even for k′ = k (except on
Proteins and DNA, which do not compress well). There are no large differ-
ences between k = 10 and k = 100. When there are, the quality is much
better for k = 100.

If our index fails to return a top-k document, but returns another one with
the same frequency, we take it as a hit, as both are equally good. In this sense,
recall is too strict of a measure of relevance: if the system returns a document
with only slightly fewer occurrences than the correct one, it counts as zero.
As the frequency is only a rough measure of relevance, a fairer measure of
quality is the sum of the frequencies of the documents in the approximate
top-k answer as a fraction of the sum in the correct top-k answer. This is the
second indicator we compute. We omit the figures because the improvement
is not that large compared to recall: now we obtain 70%–100% of quality
for k′ = k (except for Proteins and DNA, which do not improve much), and
80%–100% for k′ = 30% of k (except for Proteins).

On the other hand, the fact that better quality is obtained for shorter
patterns coincides with our probabilistic analysis. Figure 15 illustrates this
effect more closely, for increasing pattern lengths (using our second measure
of quality from now on). For the moderate collection sizes of 25–130 MB
we considered, we obtain quality well above 80% for m = 2–8 in top-10
(Proteins, again, is the exception). In most of the collections, the quality
is over 90% for m ≤ 10. For top-100, we obtain quality well above 80% for
m ≤ 14 (except for DNA, where the results are good only up to m ≤ 12).

Our analysis also predicts that the quality improves as n grows. In the

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

ClueWiki

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

Wiki

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

KGS

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

Proteins

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

DNA

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

Influenza

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
c
a

ll

TodoCL

m = 6, k = 10
m = 6, k = 100
m = 10, k = 10

m = 10, k = 100

Figure 14: Recall of our approximate top-k solution, as a function of the fraction of the
answer (x-axis).

40

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16

fr
a

c
ti
o

n
 o

f
fr

e
q

u
e

n
c
y

k = 10

ClueWiki
Wiki
KGS

Proteins
DNA

Influenza
 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14 16

fr
a

c
ti
o

n
 o

f
fr

e
q

u
e

n
c
y

k = 100

ClueWiki
Wiki
KGS

Proteins
DNA

Influenza

Figure 15: Quality of our approximate top-k solution, as a function of the pattern length,
for top-10 (left) and top-100 (right). Each pattern appears at least in k documents.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

fr
a

c
ti
o

n
 o

f
fr

e
q

u
e

n
c
y

GB

TodoCL - 1-word queries

All k=10
All k=100
Eq. k=10

Eq. k=100

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

fr
a

c
ti
o

n
 o

f
fr

e
q

u
e

n
c
y

GB

TodoCL - 2-word queries

All k=10
All k=100
Eq. k=10

Eq. k=100

Figure 16: Fraction of the real answer found by LZ-TopkApp for real queries, as a function
of the prefix size of TodoCL for words (left) and phrases of two words (right). Solid lines
include new sets of queries for each prefix (labels “All k”). Dashed lines consider always
the same set of queries from the first 200MB of the collection (labels “Eq. k”).

next experiment we build the structure for increasing prefixes of TodoCL.
Figure 16 (solid lines) shows the quality obtained for real query words (of
length > 3 to exclude most stopwords), with average length 7.2, and 2-word
phrases, with average length 8.0. We convert TodoCL to lowercase (as the
distinction is generally not made in natural language queries). As predicted,
the quality improves with n, from 44%–52% on 200MB (n/n′ = 10.1) up to
56%–67% on 2.05GB (n/n′ = 12.7) for words; and for 2-word phrases from
34%–42% on 200MB up to 42%–52% on 2.05GB.

The percentages are much lower than before, because many queries may
appear just a few times in the collection. In those cases, a brute-force pattern
matching is a better approach. Our LZ-TopkApp index performs better
when the words appear many times, and thus a top-k query is more relevant.

41

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5 1 1.5 2 2.5 3 3.5

fr
a
c
ti
o
n
 o

f
fr

e
q
u
e
n
c
y

GB

TREC - queries

k=10,m=6
k=10,m=10
k=100,m=6

k=100,m=10

Figure 17: Fraction of the real answer found by LZ-TopkApp as a function of the prefix
size of TREC, for arbitrary patterns of lengths 6 and 10, in top-10 and top-100 queries.

Figure 16 (dashed lines) repeats the experiment, but now we only use patterns
that appear in the first 200MB, to query the structure for all the prefixes.
The results are much better because the queries appear more often.

In the last experiment, we measure the improvement with n without the
problem of real queries that may appear infrequently, and with another large
text collection, TREC. We extract patterns of lengths m = 6 and m = 10 from
random text positions, and that appear at least in k documents, for k = 10
and k = 100. The resulting quality is shown in Figure 17. Once again, our
index gives an answer of high quality on large text collections.

7. Conclusions

All the current indices for document retrieval on general sequence collec-
tions build on suffix trees and arrays. They either take a considerable amount
of space (17–21 bpc) or are considerably slow (milliseconds per query). In
this article we take a completely different approach to the problem, and build
instead on the LZ-Index family [32]. This is a pattern-matching index based
on the LZ78 compression of the text T1..n, which cuts it into n′ ≤ n/ lgσ n
phrases (σ is the alphabet size). We borrow some of the structures of the
existing indices, but manage to apply them on the n′ phrases instead of the

42

n text positions. Therefore, we can use fast structures that use much space
on a reduced set of positions, thereby obtaining low space and time.

Our indices extend the LZ-Index to carry out two typical document
retrieval tasks: document listing (LZ-DLIndex) and top-k retrieval (LZ-
TopkIndex). Both structures achieve competitive space/time tradeoffs com-
pared to existing solutions, dominating a significant part of the space/time
tradeoff map. In addition, they can be transformed into indices yielding
approximate solutions in strikingly low space and time. The LZ-DLIndex
typically uses 7 bpc and outputs most of the documents (75%–80%) very
fast, each in about 1 microsecond. An approximate variant of our top-k in-
dex (LZ-TopkApp) typically uses 4–7 bpc and returns each result in about
1–5 microseconds. Its results are approximate, but the quality of the re-
sult is over 90% in typical cases. In the many applications where a partial
or approximate answer is acceptable, these LZ-Index extensions perform as
fast as the fastest previous solutions while using 2–4 times less space, and
use as little space as the smallest previous solutions while being orders of
magnitude faster. We have left our implementations publicly accessible from
https://github.com/hferrada.

We believe this new approach to low-space indices for document retrieval
is promising, and that several more results can be obtained, in particular
exploiting other Lempel-Ziv pattern matching indices [41, 26]. Adapting
classical indices to retrieve approximate solutions can also prove to be a
productive avenue to improve current solutions by orders of magnitude while
still providing useful functionality.

References

[1] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees
in practice. In Proc. 12th Workshop on Algorithm Engineering and Ex-
periments (ALENEX), pages 84–97, 2010.

[2] D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger Lempel-Ziv based
compressed text indexing. Algorithmica, 62(1):54–101, 2012.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Pearson Education, 2nd edition, 2011.

[4] D. Belazzougui, G. Navarro, and D. Valenzuela. Improved compressed

43

https://github.com/hferrada

indexes for full-text document retrieval. Journal of Discrete Algorithms,
18:3–13, 2013.

[5] D. Benoit, E. Demaine, J. I. Munro, R. Raman, V. Raman, and S. Rao.
Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.

[6] S. Büttcher, C. Clarke, and G. Cormack. Information Retrieval: Imple-
menting and Evaluating Search Engines. MIT Press, 2010.

[7] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
Canada, 1998.

[8] J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin. Top-k ranked
document search in general text databases. In Proc. 18th Annual Eu-
ropean Symposium on Algorithms (ESA), part II, LNCS 6347, pages
194–205, 2010.

[9] H. Ferrada and G. Navarro. A Lempel-Ziv compressed structure for
document listing. In Proc. 20th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE), LNCS 8214, pages 116–128,
2013.

[10] H. Ferrada and G. Navarro. Efficient compressed indexing for approx-
imate top-k string retrieval. In Proc. 21st International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 8799,
pages 18–30, 2014.

[11] H. Ferrada and G. Navarro. Improved range minimum queries. Journal
of Discrete Algorithms, 43:72–80, 2017.

[12] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the
ACM, 52(4):552–581, 2005.

[13] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions
on Algorithms, 3(2), 2007.

[14] J. Fischer and V. Heun. Space-efficient preprocessing schemes for
range minimum queries on static arrays. SIAM Journal on Comput-
ing, 40(2):465–492, 2011.

44

[15] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499,
1960.

[16] T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet
trees and applications to information retrieval. Theoretical Computer
Science, 426-427:25–41, 2012.

[17] S. Gog and G. Navarro. Improved single-term top-k document retrieval.
In Proc. 17th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 24–32, 2015.

[18] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. In Proc. 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 841–850, 2003.

[19] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM Journal
on Computing, 35(2):378–407, 2005.

[20] W. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k
string retrieval problems. Proc. IEEE Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 713–722, 2009.

[21] W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Space-efficient
frameworks for top-k string retrieval. Journal of the ACM, 61(2):article
9, 2014.

[22] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th
Annual Symposium on Foundations of Computer Science (FOCS), pages
549–554, 1989.

[23] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting
and Searching. Addison-Wesley, 2nd edition, 1998.

[24] R. Konow and G. Navarro. Faster compact top-k document retrieval. In
Proc. 23rd Data Compression Conference (DCC), pages 351–360, 2013.

[25] S. Kosaraju and G. Manzini. Compression of low entropy strings with
Lempel-Ziv algorithms. SIAM Journal on Computing, 29(3):893–911,
2000.

45

[26] S. Kreft and G. Navarro. On compressing and indexing repetitive se-
quences. Theoretical Computer Science, 483:115–133, 2013.

[27] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[28] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of
the ACM, 48(3):407–430, 2001.

[29] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1984.

[30] J. I. Munro and V. Raman. Succinct representation of balanced paren-
theses and static trees. SIAM Journal on Computing, 31(3):762–776,
2002.

[31] S. Muthukrishnan. Efficient algorithms for document retrieval problems.
In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 657–666, 2002.

[32] G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete
Algorithms, 2(1):87–114, 2004.

[33] G. Navarro. Implementing the LZ-index: Theory versus practice. ACM
Journal of Experimental Algorithmics, 13:article 2, 2009.

[34] G. Navarro. Spaces, trees and colors: The algorithmic landscape of
document retrieval on sequences. ACM Computing Surveys, 46(4):article
52, 2014. 47 pages.

[35] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Com-
puting Surveys, 39(1):article 2, 2007.

[36] G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time
and linear space. In Proc. 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1066–1078, 2012.

[37] G. Navarro, Y. Nekrich, and L. Russo. Space-efficient data-analysis
queries on grids. Theoretical Computer Science, 482:60–72, 2013.

46

[38] G. Navarro, S. J. Puglisi, and D. Valenzuela. General document re-
trieval in compact space. ACM Journal of Experimental Algorithmics,
19(2):article 3, 2014.

[39] G. Navarro and K. Sadakane. Fully-functional static and dynamic suc-
cinct trees. ACM Transactions on Algorithms, 10(3):article 16, 2014.

[40] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets.
ACM Transactions on Algorithms, 3(4):article 43, 2007.

[41] L. M. S. Russo and A. L. Oliveira. A compressed self-index using a
Ziv-Lempel dictionary. Information Retrieval, 11(4):359–388, 2008.

[42] K. Sadakane. New text indexing functionalities of the compressed suffix
arrays. Journal of Algorithms, 48(2):294–313, 2003.

[43] K. Sadakane. Succinct data structures for flexible text retrieval systems.
Journal of Discrete Algorithms, 5(1):12–22, 2007.

[44] W. Szpankowski. On the height of digital trees and related problems.
Algorithmica, 6(2):256–277, 1991.

[45] N. Välimäki and V. Mäkinen. Space-efficient algorithms for document
retrieval. In Proc. 18th Annual Symposium on Combinatorial Pattern
Matching (CPM), pages 205–215, 2007.

[46] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient
ranked retrieval. In Proc. the 34th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 105–114,
2011.

[47] P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE
Annual Symposium on Switching and Automata Theory, pages 1–11,
1973.

[48] J. Ziv and A. Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530–536,
1978.

47

	Introduction
	Preliminaries
	Document Retrieval
	Bitvectors
	Trees
	Tries
	Suffix Trees
	Suffix Arrays
	Wavelet Trees
	Compressed Suffix Arrays
	Range Minimum Queries
	LZ78 Compression

	The LZ-Index
	Related Work and our Contribution in Context
	Document Listing
	Top-k Retrieval
	Experiments

	An LZ-based Index for Document Listing
	Structure
	Queries
	Occurrences of type 1
	Occurrences of type 2
	Occurrences of type 3
	Time

	Implementation
	Experimental Results
	Space study
	Space/time tradeoffs
	Quality

	An LZ-based Index for Top-k Retrieval
	Structure
	Queries
	Experimental Results
	Space study
	Space/time tradeoffs
	Quality

	Conclusions

