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ABSTRACT

GraCT and ContaCT were the first compressed data structures to represent
object trajectories, demonstrating that it was possible to use orders of magnitude less
space than classical indexes while staying competitive in query times. In this paper
we considerably enhance their space, query capabilities, and time performance with
three contributions. (1) We design and evaluate algorithms for more sophisticated
nearest neighbour queries, finding the trajectories closest to a given trajectory or to
a given point during a time interval. (2) We modify the data structure used to sample
the spatial positions of the objects along time. This improves the performance on the
classic spatio-temporal and the nearest neighbour queries, by orders of magnitude
in some cases. (3) We introduce RelaCT, a tradeoff between the faster and larger
ContaCT and the smaller and slower GraCT, offering a new relevant space-time
tradeoff for large repetitive datasets of trajectories.

KEYWORDS
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1. Introduction

During the last decade, the number of GPS devices has sharply increased due to their
popularization on different objects: cars, ships, smartphones, smartwatches, etc. Con-
sequently, a large amount of data about the route followed by objects along time
(trajectory) are collected. That information is very useful in applications like traffic
management, analysis of human movement, tracking animal behaviour, security and
surveillance, military logistics and combat, and emergency-response planning (Gud-
mundsson, Laube, and Wolle 2008). However, storing and processing that enormous
amount of data is a challenge that requires the development of new time- and space-
efficient data structures and indexes (Zheng and Zhou 2011).

Various proposals to represent trajectories exist, but all of them can be roughly
classified into two groups depending on the type of movements that the objects can
perform. In the first group, the movements of the objects are constrained by a network.
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The second group, instead, allows objects move freely in a space with no restrictions.
This paper belongs to the second group.

The most basic query supported by applications dealing with moving objects is
to retrieve the trajectory of an object during a period of time or at a specific time
instant. However, most of those applications need more sophisticated queries, like
spatio-temporal queries, which identify the objects that are within a spatial region
during a period of time, nearest neighbour queries, which return the objects that are
closest to a given point or trajectory during a time interval, and even more sophis-
ticated queries related to mining and clustering trajectories (Gudmundsson, Kreveld,
and Speckmann 2004; Alamri, Taniar, and Safar 2013; Lee, Han, and Whang 2007;
Cao, Mamoulis, and Cheung 2005).

Various disk-based data structures were proposed to store and index trajectories
since the 1990s. In recent years, the sizes of the main memories have increased, and
the gaps in time performance along the memory hierarchy have widened. As a con-
sequence, in-memory indexes have become more popular in several areas, both for
centralized and distributed deployments. In particular, different in-memory indexes
for representing trajectories were proposed (Cudre-Mauroux, Wu, and Madden 2010;
Zheng et al. 2018). In parallel, the field of compact data structures (Navarro 2016) has
emerged as a technique to operate larger datasets in main memory, or to use fewer
nodes in distributed in-memory deployments. Compact data structures compress the
data in such a way that queries can be run directly on the compressed data. This type
of compression not only saves space, but it also expands the scenarios where a fast
in-memory solution is affordable.

GraCT and ContaCT (Brisaboa et al. 2019; Brisaboa et al. 2021) are two recent in-
memory indexes for moving object trajectories that build on compact data structures.
They were shown to require orders of magnitude less space than classic solutions while
offering competitive time performance. On large datasets they were still able to run in
main memory, whereas other indexes needed to run on disk, where they were orders
of magnitude slower.

Both GraCT and ContaCT have two components: spatial indexes called snapshots
locating the objects at regular time intervals, and logs encoding the movements of
the objects between snapshots. The structures use different techniques to compress
the logs. GraCT uses grammar compression, which represents the trajectories with a
context-free grammar that exploits their similarities. Therefore, GraCT obtains better
compression when there are many similar trajectories. ContaCT, instead, is based on
delta compression, which encodes shorter movements with fewer bits. The specific
encoding used can compute in constant time the position of an object at any desired
time instant. Therefore, ContaCT tends to obtain better performance than GraCT in
several queries, at the price of worse compression.

GraCT and ContaCT support extracting trajectories, spatio-temporal queries, and
a restricted form of nearest neighbour queries: they report the objects that are closest
to a spatial point at a given instant of time.

1.1. Contributions

In this paper we present contributions along three lines.

More sophisticated queries. We design and evaluate new algorithms for GraCT
and ContaCT to solve more complex queries related to data mining. Those queries
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require obtaining the objects that are closest to a spatial point during a period of
time (KNN during an interval) (Gao et al. 2007; Frentzos et al. 2007) or searching
for the trajectories that are closest to a given trajectory (KNN of trajectories) (Tang
et al. 2011). KNN queries have attracted considerable attention from the research
community. They can be classified into three main types (Güting, Behr, and Xu 2010):
i) the query and the data objects are static points, ii) the query is a trajectory and
the data objects are static points or the query is a static point and the data objects
are trajectories, and iii) the query and the data objects are trajectories. The original
GraCT and ContaCT only handled a KNN query of the first type, restricting the
query to a single time instant.

The second and third types open the possibility of new queries like (type ii) find the
two closest trajectories of animals to a given static point (e.g., a food source) in the
time interval [tb, te] (Gao et al. 2007), or observe the closest ambulances to the site of
an accident (Güting, Behr, and Xu 2010) and (type iii) find the two animal trajectories
nearest to a predefined one during the time period [tb, te] (Gao et al. 2007), or which
vehicles accompanied president Obama on his trip through Berlin (Güting, Behr, and
Xu 2010). These new KNN queries are also the basis to solve data-mining queries
like moving patterns together (Gudmundsson, Kreveld, and Speckmann 2004; Alamri,
Taniar, and Safar 2013) and trajectory clustering (Lee, Han, and Whang 2007).

In this paper we extend GraCT and ContaCT to handle KNN queries of type ii
and iii. Though both queries are an order of magnitude slower than the basic nearest
neighbour query, which is not surprising, they still run in a few milliseconds. The ability
of ContaCT to compute minimum bounding rectangles of trajectories in constant time
makes it 2–4 times faster than GraCT on these complex queries.

Better data representations. The original GraCT and ContaCT variants com-
bined an existing geometric representation for the snapshots with a representation for
the logs. The snapshot representation, based on quadtrees, was not the ideal one to
support the types of queries we needed to handle. In this paper we design a snap-
shot representation that is not only more space-efficient, but also better suited to the
queries we need to run on GraCT and ContaCT.

Concretely, we introduce a new snapshot representation based on R-trees, which
speeds up those queries by orders of magnitude in some cases. That improvement is
most noticeable in spatio-temporal queries, which become up to 200 times faster, and
in nearest neighbour queries, which improve by a factor of 2–10. As a consequence,
the new snapshots make GraCT and ContaCT faster than the MVR-tree (Tao and
Papadias 2001), a classical spatio-temporal index, both on spatio-temporal and nearest
neighbour queries.

New space/time tradeoffs. We propose a new data structure, called RelaCT, that
combines the strong points of ContaCT and GraCT on highly repetitive sets of tra-
jectories.

GraCT compresses more because it is based on Re-Pair, a grammar compressor
(Kieffer and Yang 2000) that exploits both repetitions in the sequence and high-
order frequency bias in the symbols. ContaCT, instead, is based on simple delta-
compression that takes advantage only of the differences between one object position
and the next one. The other side of the coin is that GraCT usually has to run a
sequential decompression involving several symbols to obtain the position of an object
at a given time instant, whereas ContaCT is able to obtain that position in constant
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time.
RelaCT is based on Relative Lempel-Ziv (Kuruppu, Puglisi, and Zobel 2010), a

technique designed to compress highly repetitive collections, such as the genome of
several individuals of the same species, while retaining nearly constant-time access.
As a result, RelaCT brings a new tradeoff, exploiting repetitiveness in the sequences
while staying close to ContaCT in speed.

More in detail, the new structure chooses some reference trajectories and encodes
those using ContaCT, while the others are encoded relatively to the references, that is,
indicating what to change in a reference to obtain each other trajectory. The structure,
called RelaCT for Relative Compression of T rajectories, exploits the similarity of tra-
jectories to obtain compression, while keeping the ability of ContaCT to efficiently
access the trajectories, faster than GraCT. RelaCT obtains relevant space-time trade-
offs. For example, in one of our datasets, KNN of trajectories using RelaCT is twice as
fast as GraCT, wasting just 5% more space, and it is 1.5 times slower than ContaCT,
which uses twice the space.

1.2. Outline of the paper

Section 2 presents the state of the art in representing, compressing, and indexing
trajectories. Section 3 introduces several background knowledge that will be used later,
including several data structures, as well as GraCT and ContaCT. Section 4 shows the
queries supported by GraCT and ContaCT before this work. Section 5 presents the
new KNN queries for GraCT and ContaCT, including an experimental study of their
performance. Section 6 introduces the second contribution of this work, the snapshots
based on the R-tree, also including an experimental study. Section 7 presents RelaCT,
the third contribution of this work, again with its experimental study. Finally, Section
8 shows our conclusions and future work.

2. State of the art

Different structures for representing moving objects and their trajectories were de-
signed in the last decades. In this section, we present the most relevant strategies for
modelling, compressing, and indexing free trajectories.

2.1. Modelling trajectories

Trajectories can be modelled as continuous space-time functions. Since objects emit
their location at discrete time instants, trajectories are digitized as a list of times-
tamped positions. As the frequency of the timestamps increases, the accuracy of the
trajectory improves, but more space is required to represent it, which impacts on
the costs of transmission, storage, and processing. Various trajectory simplification
techniques (Douglas and Peuker 1973; Meratnia and By 2004; Trajcevski et al. 2006;
Potamias, Patroumpas, and Sellis 2006; Muckell et al. 2011; Lin et al. 2017; Liu et
al. 2015) aim to discard less relevant timestamped positions in order to reduce those
costs. In this paper we stick to the simplest method (Potamias, Patroumpas, and Sellis
2006), which collects the positions at regular time intervals.
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2.2. Compressing trajectories

The best-known method to reduce the amount of space needed to store trajectories,
simplified or not, is delta compression. This method stores the first position of the tra-
jectory and then stores the difference between each new position and the previous one.
That is, it stores the first position and a sequence of movements. Delta compression
exploits the fact that (i) consecutive positions are generally close to each other, and
(ii) smaller numbers can be stored using fewer bits. A complete trajectory is efficiently
extracted by adding each new difference to the previous (already computed) position.
Instead, obtaining the position of an object at a specific time instant t requires com-
puting all the positions preceding t. Some methods sample the positions at regular
timestamps, introducing a space-time trade-off to compute the position at any time t.

Several systems use delta compression, including TrajStore (Cudre-Mauroux, Wu,
and Madden 2010) and SharkDB (Zheng et al. 2018). Trajic (Nibali and He 2015) uses
delta compression but encodes each point as the difference between a predicted point
and the real one. A different technique is used in REST (Zhao et al. 2018).

2.3. Indexing trajectories

The traditional spatio-temporal indexes for trajectories are based on the R-tree
(Guttman 1984). The 3DR-tree (Vazirgiannis, Theodoridis, and Sellis 1998) replaces
the MBRs (Minimum Bounding Rectangles) of the R-tree with MBBs (Minimum
Bounding Boxes), where the third dimension represents the time. Since the MBB
can cover a long period of time, the MBB can be too large and this may spoil the
search performance. An attempt to avoid this problem (Pfoser, Jensen, and Theodor-
idis 2000) introduces two new indexes: STR-tree, which modifies the procedure that
builds the MBBs, and TB-tree, which splits the trajectories into portions to produce
smaller MBBs. Other indexes, like the HR-tree (Nascimento and Silva 1998) and MVR-
tree (Tao and Papadias 2001), conceptually store an R-tree for each timestamp. Those
R-trees are called versions and, to save space, several versions can share nodes.

Grid-based indexes split the space into cells and build a temporal index for each cell.
SETI (Chakka, Everspaugh, and Patel 2003), for example, indexes the trajectories of
each cell by time with an R*-tree.

A different approach is followed by the SEST-Index (Gutiérrez et al. 2005; Worboys
2005), which uses two components: snapshots and logs. The snapshots are spatial in-
dexes that record the positions of the objects at regular timestamps. The log stores
“changes” (e.g., objects that appear or disappear at some position) between consecu-
tive pairs of snapshots.

2.4. Combining compression and indexing

A few methods combine compression and indexing in a single structure. TrajS-
tore (Cudre-Mauroux, Wu, and Madden 2010) divides each trajectory into subtra-
jectories, each of which is stored in a cell whose size depends on the data distribution.
Each cell contains a temporal and a spatial index (a quadtree) with all the subtrajecto-
ries falling in the cell. TrajStore is a lossy method, however, because each cell clusters
its subtrajectories by similarity and only stores a representative of each cluster.

SharkDB (Zheng et al. 2018) combines delta compression and indexing. The time
dimension is split into fixed-length intervals. SharkDB stores one point for each trajec-
tory and interval of time. Those points that belong to the same interval are stored as
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a column of a column-oriented database. The columns of SharkDB are encoded with
delta compression.

GraCT (Brisaboa et al. 2019) and ContaCT (Brisaboa et al. 2021) use the same
architecture of the SEST-Index (Gutiérrez et al. 2005; Worboys 2005), logs and snap-
shots, but they compress the trajectories and support a larger variety of queries. GraCT
and ContaCT represent the space as a tessellation of equal-sized squares (cells), and
assume that every object emits its position at regular time instants. The snapshots
are compact spatial indexes (k2-trees (Brisaboa, Ladra, and Navarro 2014), a quadtree
variant) that store the location of all objects at regular timestamps. The logs store
the movements of objects between snapshots. The main difference between GraCT
and ContaCT is the method to compress those logs. GraCT compresses them with
grammar compression (Kieffer and Yang 2000), whereas delta compression is applied
in ContaCT. Instead of storing the consecutive movements, however, ContaCT repre-
sents those differences using bitmaps and other compact data structures. This enables
ContaCT to compute several kinds of queries in constant time, outperforming GraCT.
The grammar compression of GraCT, on the other hand, exploits the repetitiveness
of movements of objects (e.g., ships tend to follow similar paths), whereas the delta
compression of ContaCT only exploits spatial locality. On repetitive trajectories, then,
GraCT obtains better compression than ContaCT.

3. Background

This section presents different general concepts that are needed to understand our
contributions, and how different compact data structures are combined for compressing
and indexing spatial information.

3.1. Operations over bitmaps

A bitmap or bitvector is an array whose elements are valued 0 or 1. There are two
widely used operation over bitmaps: rankb(B, p) computes the number of times bit
b appears in bitmap B until position p, and selectb(B, i) returns the position of the
i-th bit b in bitmap B. Those operations can be computed in O(1) time by adding
an additional structure of o(n) bits to the n bits used by the bitmap B[1..n] (Munro
1996). A related operation, select nextb(B, p), returns the position of the next bit b
after position p in B. Although it can be solved in O(1) time using select nextb(B, p) =
selectb(B, rankb(B, p) + 1), a direct implementation of select next is as fast as rank
in practice (Navarro 2016).

When B is sparse, that is, when the number of 1-bits m is much smaller than the
total number of bits of the bitmap, an alternative representation based on Elias-Fano
encoding (Okanohara and Sadakane 2007) uses only m log(n/m) + 2m bits in total,
and answers rank queries in time O(log(n/m)) and select in O(1) time.

3.2. Relative Lempel-Ziv

Relative Lempel-Ziv (Kuruppu, Puglisi, and Zobel 2010) (RLZ) is a dictionary-based
technique from the Lempel-Ziv family (Ziv and Lempel 1977, 1978), which compresses
one sequence with respect to another sequence called the reference. Let R be the
reference and S be an input sequence. RLZ compresses S by using a Lempel-Ziv parse,
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where R plays the role of the dictionary. That is, S is represented as a sequence of z
phrases S = w1w2 . . . wz, where every wi is the longest substring of R that is a prefix
of wi . . . wz. Each phrase wi is encoded with a pair of values: a position in R where it
occurs, and its length |wi|. For example, with S = abracadabra and R = dabrac, S is
represented with three phrases, S = w1w2w3, where w1 = abrac (occuring at R[2..6]),
w2 = a (at, say, R[2..2]), and w3 = dabra (at R[1..5]). The RLZ representation of S
with reference R is then (2, 5), (2, 1), (1, 5).

An issue for RLZ is how to choose a reference from a set of potentially similar
sequences to compress. One choice is to choose one such sequence as the reference,
in which case it is called a real reference. Instead, artificial references can be built
by combining sequences from the set or even generating new ones. One of the most
powerful methods for building artificial references concatenates uniform samples of the
subsequences (Liao et al. 2016).

To succeed in generating the phrases, R must contain every distinct symbol in S.
Alternatively, it might be possible to specify a phrase formed by an explicit symbol,
or a short substring, without referencing R.

3.3. Range minimum/maximum queries

Given an array of integers A[1, n], the range minimum query rmq(A, i, j) returns the
position of the leftmost minimum in A[i..j]. Analogously, the range maximum query
rMq(A, i, j) computes the position of the leftmost maximum in A[i..j]. Interestingly,
each of these queries can be answered in O(1) time with a structure that uses only
2n + o(n) bits and does not access A (Fischer and Heun 2011; Ferrada and Navarro
2017).

ContaCT (Brisaboa et al. 2021) includes a structure that solves both queries, rmq
and rMq, within at most 3n + o(n) bits. The structure uses rmq and rMq struc-
tures over the local minima and maxima, respectively, whose positions are marked in
a bitmap. After obtaining the extreme local minimum and maximum, these are com-
pared with the values at the extremes of the queried interval, A[i] and A[j]. Therefore,
to solve the query in O(1) time, we need to store the array A or a structure that
retrieves its cells in O(1) time.

3.4. The k2-tree

A k2-tree (Brisaboa, Ladra, and Navarro 2014) represents a binary matrix M of size
s × s with a k2-ary tree, built by recursively splitting M into k2 submatrices of the
same size. Thus, in each level i the size of the submatrices is s2/k2i cells. The algorithm
starts by splitting the matrix into k2 submatrices of size s2/k2, each corresponding
to a child of the root node. When the submatrix is full of 0-bits, the node stores a
0-bit; otherwise, it stores a 1-bit. The children of a node are placed in Z-order. For
example, in Figure 1, the four children of the root node correspond to the first four
8 × 8 submatrices, and as seen, the first and the third submatrices in Z-order are
represented with 0-bits because they only contain 0-bits. For each node with a 1-
bit, we continue recursively splitting its submatrix into k2 smaller submatrices. This
procedure is repeated until reaching a submatrix full of 0s or until the submatrices
are individual cells, whose contents are also stored as bits. Therefore, every empty
submatrix is encoded with only one node.

The tree is represented without using pointers, using just two bitmaps, T and L.
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Bitmap T is the levelwise concatenation of the bits of all the internal nodes, whereas
L stores the nodes in the last level (the cell descriptions). The navigation of the tree is
supported by rank and select operations over T. Given a 1-bit at position p in T , its
k2 children are sequentially located from position children(p) = rank1(T, p) × k2 of
T : L, which denotes the concatenation of T and L. The parent of a node at position
p of T : L is computed as parent(p) = select1(T, ⌊p/k2⌋). For example, in Figure 1,
the position of the first child of the node at T [3] is rank1(T, 3)×22 = 8. Therefore, its
children are stored at T [8..11]. The parent of one of those children, for example T [10],
is computed as select1(T, ⌊10/k2⌋) = 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

T

:

0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L

:

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0

0 0 0 01 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 00000000000

1

1 1 1 1

111

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 1.: Example of a k2-tree with k = 2.

By traversing the tree, we can obtain different information about the 1s in the
matrix: in a top-down traversal we can discern which 1s are within a region, and from
a leaf, we can obtain its position in the whole matrix with a bottom-up traversal.

3.5. R-trees

The R-tree (Guttman 1984) is a classical spatial index analogous to a B-tree. The
variant that stores points is a balanced multiary tree where the leaves store point sets.
Each subtree is summarized with its Minimum Bounding Rectangle (MBR), that is,
the smallest rectangle containing all the points in its leaves. Each internal node points
to several subtrees and stores their MBRs. To find all the points within a region, we
start from the root and recursively enter into every subtree whose MBR intersects the
region.

Although R-trees are dynamic and do not consider compression, there is a static
version (Brisaboa et al. 2013) where the nodes are compressed. Notice that each MBR
can be represented by two coordinates: the bottom-left and the top-right corners. The
compressed version represents the bottom-left corner as the difference with respect to
the bottom-left of its parent node. The top-right corner is encoded as the difference
with the bottom-left corner of the same node.

Figure 2 shows an example of R-tree. The left part shows the points and the MBRs
of the nodes; the right part shows the resulting R-tree. To find all objects contained
in the query window (or region) Q , the algorithm only traverses the nodes in grey,
whose MBRs contain or intersect with Q. In the leaves, the points are checked one by
one and added to the solution if they qualify. On the bottom of the right part we show
how the corners of node R6 are encoded.
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Figure 2.: Example of an R-tree and how its nodes are compressed.

3.6. Snapshots

As we presented in Section 2.4, GraCT and ContaCT structures share a spatial index
called a snapshot. The snapshots are represented essentially as k2-trees.

We consider the space as a raster, that is, a tessellation of equal-sized squares (cells).
Therefore, the locations where there are objects can be represented as a binary matrix
having one bit per square of the raster, that is, each 1-bit represents a cell with at
least one object. By using the k2-tree to store that matrix, we also obtain an index
over the positions containing objects. In fact, the k2-tree can be seen as a modern
sophisticated version of a region quadtree (Samet 1984). Observe in the left part of
Figure 3 that the space is represented as a raster with some cells with objects. On
that grid, we depict the quadrants of the k2-tree (with k = 2) shown on the right part.
Recall that the k2-tree is represented with just the bitmaps T and L.

However, we also need to know which objects are within each cell. That is, we need
to label those 1-bits of the matrix with the identifiers of the objects lying within the
corresponding cell. For this purpose, the snapshot includes an array perm and a bitmap
Q. Those are filled by traversing the bitmap L from left to right, and for each 1-bit
in L, appending to perm the list ids of object identifiers that lie on the corresponding
cell, also adding to Q as many 1-bits as objects are in ids minus 1, followed by a 0-
bit. Therefore, the objects that are within a leaf L[i] = 1 can be located in perm[l..r],
where l = select0(Q, rank1(L, i)−1)+1 and r = select next0(Q, l). With this method,
after traversing the k2-tree, the objects within a region can be efficiently identified. In
our example, the cell (9,5) is represented with the 1-bit at position 33 of L. This is
the second 1-bit of L, therefore, to check how many objects are located in that cell,
we search for the position of the first 0-bit (obtained by subtracting 1 to 2, where the
2 comes from the second 1-bit of L) in Q, which in our case is at position 2. Then,
we search from the next position (3) until reaching a 0-bit. In our case, there is one
0-bit at position 4, which indicates that there are two objects (corresponding to the
positions 3 and 4 of Q) in the cell (9,5). In the same positions 3 and 4 of perm, we can
obtain the identifiers of the objects within the cell (9,5).

Given an object identifier, computing its location requires detecting its leaf on the
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children(18)

1 2 3 4 5 6

1 0 1 0 0 0

l r
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3,6

4,5

2

11

0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

Figure 3.: Example of a snapshot, the steps followed to retrieve the objects within a
region, and the location of a specific object.

k2-tree, and traversing the tree bottom-up. This requires identifying the position of
the object in perm. To avoid a linear search, the snapshot includes a structure over
perm (Munro et al. 2012) that uses n(1 + ϵ log2 n) additional bits and computes the
location of the object in perm in time O(1/ϵ), where n = |perm| and 0 < ϵ ≤ 1.
Then, the corresponding leaf of that object on the k2-tree is computed with rank
and select operations. Finally, by traversing the k2-tree upwards, we can compute the
position of that leaf in the space. Therefore, computing the location of an object takes
O(1/ϵ+ logk s) time. In Figure 3, to obtain the location of object 1, the index of this
object in perm is computed: 6. It is the fourth (rank1(Q, 6 − 1) + 1 = 4) leaf with
objects, and its position in T :L corresponds to select1(L, 4) = 43. From that position
on, the algorithm traverses the tree up to the root (underlined 1-bits) by running
parent operations. Since each node determines a specific submatrix, the path of the
traversal determines the position of the object.

To obtain the objects within a region, the algorithm starts looking for the leaves of
the k2-tree whose labels are 1-bits and that are within the queried region. Those leaves
can be computed by traversing the k2-tree from the root following the nodes whose
regions overlap the query area. For each leaf obtained, the algorithm computes its
range perm[l..r] of and adds those objects to the solution. For example in Figure 3, to
obtain the objects within the region ⟨(8, 5)×(11, 9)⟩, starting at the root of the tree, we
traverse the tree with children operations through those 1-bits (the shadowed positions
of T and L), which represent regions with objects that intersect or are contained
within the queried region. Finally, we detect that the sixth element of L (at position
33) is the only leaf with objects within the region, and its corresponding range is
perm[3..4] = 4,5. Hence, 4 and 5 are the identifiers of the objects within the region.

Since the range and values of perm is computed in constant time, the total time
for a query of area p× q retrieving occ objects is O(p+ q+ (occ+1)k logk s) (Navarro
2016, Sec. 10.2.1).

3.7. Compact data structures for trajectories

The same snapshots are used by both GraCT and ContaCT. The difference between
them is in the way the log is compressed. Recall that the log stores the movements
between snapshots.

10



3.7.1. GraCT

To compress the logs GraCT exploits the repetitiveness of the movements by com-
pressing the log with RePair (Larsson and Moffat 2000), a grammar compressor.

In the upper part of Figure 4, we can see the original trajectory. The first step for
compressing the log is to translate the original trajectory into a sequence of differences.
That is, the first position of the object is stored in absolute coordinates, and the rest
as differences with respect to the previous position. Thus, the object’s position at t0
is represented as (0,1), and its position at t1, which in absolute coordinates is (1,0), is
represented as (+1,−1). These relative coordinates are the symbols that RePair will
compress.

Now, observe in Figure 4, in the middle part, that GraCT adds the snapshots
at regular intervals of time. The first snapshot stores the first position in absolute
coordinates, the rest of relative coordinates are processed following RePair algorithm.

From the sequence of relative coordinates, RePair takes the most frequent pair
of consecutive symbols (relative coordinates in this step). Those occurrences are re-
placed by a new symbol, and a rule is added to the grammar to keep record of
that substitution. In our example, there are five occurrences of the pair of symbols
⟨(+2,+1), (+1,+1)⟩, RePair replaces the five occurrences by a new symbol A, and
adds a rule A → (+2,+1), (+1,+1) to the grammar. This process continues as long
there are two or more appearances of a pair of symbols, considering original and new
symbols. For example, in our case, we assume that the pair ⟨A,B⟩ appears more than
once (the figure only displays part of the trajectory) and thus, all appearances of ⟨A,B⟩
are replaced by C, and the corresponding rule C → AB is added to the grammar.

At the end, the compression produces a sequence of symbols composed of two types
of symbols: terminals and nonterminals. Terminals are the original symbols that were
not replaced, whereas nonterminals are the new symbols defined by the grammar. For
example, the log of Figure 4 contains three nonterminals: A, B, and C. Observe that
nonterminals represent two or more consecutive movements, for example, in Figure 4,
B replaces two movements: moving one position to the right and one position up, and
then, one position to the right.

GraCT enriches the basic rules of RePair with additional information. For each non-
terminal, it stores: #t, the number of movements; (x, y), the total relative displacement
in coordinates of those movements; and mbr , the relative MBR that encloses all the
movements of the nonterminal. The nonterminal C in Figure 4 includes the nonter-
minals A and B, and corresponds to four movements. Applying the movements of C
is equivalent to moving five positions right and three up. Finally the relative MBR
enclosing its movements is mbr = (0, 0,+5,+3).

With the extra information, GraCT avoids the decompression of some nonterminals.
For example, in Figure 4, to retrieve the position at time instant t6, the algorithm
starts by retrieving the position of the object from the snapshot S0. Then, it traverses
the log, until the symbol that contains the information at t6. During that traversal,
the algorithm adds the movements to the previous computed position. In the example,
after obtaining the position (0, 1) at t0 from S0, the algorithm adds the first movement
(+1,−1) to (0, 1). The result (1, 0) is the position at t1. Then, the positions at t2 and
t3 are computed as (1, 0)+(+2,+1) = (3, 1) and (3, 1)+(+1,−1) = (4, 0), respectively.
The next entry from the log is a nonterminal representing #t = 2 movements, thus
that entry has information about the time interval [t4, t5]. Since it does not reach t6,
we can directly compute the position of the object at t5 by adding the information of
the rule (x, y) = (+3,+2) to (4, 0), whose result is (7, 2). The next entry of the log
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Figure 4.: Example of GraCT for an object trajectory. The snapshots and logs are
represented with triangles and arrays, respectively.

covers [t6, t7]. Since that interval contains t6, the symbol A has to be decompressed
using its rule in the grammar, in this case, A → (+2,+1), (+1,+1). The first element
corresponds to t6 and thus it gives us the movement of the object for t6, that is, the
position at t6 is (7, 2) + (+2,+1) = (9, 3).

Similarly, GraCT can compute the rectangular area where an object moves during a
time interval represented by a nonterminal. For example, we know that the position at
t3 is (4, 0) and the next symbol is the nonterminal A, whose time interval is [t4, t5]. By
adding (4, 0) to the mbr of the rule (0, 0,+3,+2), we know that the MBR that covers
the movements of that object in [t4, t5] has its bottom-left corner at (4, 0) + (0, 0) =
(4, 0) and its top-right corner at (4, 0) + (+3,+2) = (7, 2).

Those tricks avoid sometimes decompressing nonterminals, thus speeding up queries.
This enables GraCT to achieve time performance comparable to classic spatio-
temporal indexes. The main feature of this structure, however, are its good compression
ratios on highly repetitive datasets.

3.7.2. ContaCT

ContaCT stores the log movements by using delta compression, but its approach is
completely different from the classic one. Instead of storing the displacements between
pairs of timestamped positions as a pair of integers, it represents those differences by
using two bitmaps for each dimension. Let us define a dimension as D ∈ {X,Y }, and
two bitmapsDp andDn. The bitmapDp stores the positive displacements in dimension
D, and Dn the negative displacements. For each positive displacement of c cells, it
appends c 0-bits and one 1-bit to Dp, and a 1-bit to Dn. A negative displacement of c
cells appends c 0-bits followed by a 1-bit to Dn, and appends one 1-bit to Dp. A zero
displacement is represented with a 1-bit in Dn and a 1-bit in Dp.

Observe, in the upper part of Figure 5, the array of differences of an object tra-
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Figure 5.: Example of ContaCT for an object trajectory. The snapshots and logs are
represented with triangles and arrays, respectively.

jectory, with the first position in absolute coordinates. The process of obtaining the
bitmaps of ContaCT is depicted below for the Y coordinate. First, the values of the
Y are extracted in the Y array. Then two arrays are created, Yp form the positive dif-
ferences and Yn for the negative differences. For example, in t1, the Y array contains
a −1, thus the corresponding position of Yp is 0, and in Yn, there is a 1. Finally, in
the bitmap version of Yp and Yn, in each entry, there are as many 0-bits as the value
stored in the integer version of the array, plus a 1-bit. For example, in t1, Yn stores a
1, thus in the bitmap version there is a 01.

This technique makes it possible to compute the position of an object in constant
time. In order to compute the cumulative movement from t0 to ti, the algorithm only
needs to compute the number of 0-bits in the positive bitmap until the i–th 1-bit,
and subtract the number of 0-bits in the negative bitmap until the i–th 1-bit, for each
dimension. Therefore, the cumulative movement until ti in dimension D is computed
as select1(Dp, i)−select1(Dn, i). ContaCT keeps in Fid the initial position of the object
id, so by adding the cumulative displacement to that value, we obtain the position at
ti.

At the bottom of Figure 5, we illustrate the complete ContaCT structure for the
trajectory and how we can obtain the cumulative movement until t6. Basically, this is
the number of 0-bits in Xp until t6 (9), minus the number of 0-bits in Xn until t6 (0),
this can be computed in constant time as select1(Xp, 6)− select1(Xn, 6) = 14− 5 = 9.
For the Y coordinate, the process is analogous, select1(Yp, 6)−select1(Yn, 6) = 9−7 =
2. Therefore, the cumulative movement is (9, 2) and by adding it to Fid, we obtain the
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position of the object at t6 in O(1) time.
Notice that the position of the object is not obtained from a snapshot, but instead

from Fid, thus avoiding the traversal of the k2-tree. The structure that obtains the
position of an object in perm is then not required.

In addition, ContaCT uses one rmq and rMq structure for the local minima and
maxima, respectively, and the bitmap that marks the positions where the local minima
and maxima occur. This structure is replicated for each dimension. Since ContaCT
can compute those positions in constant time, the minimum and maximum values can
be computed in constant time for each dimension, thus making it possible to obtain
the MBR of an object between two time instants also in O(1) time.

4. Queries

We now present the queries supported by GraCT and ContaCT in the literature (Bris-
aboa et al. 2019; Brisaboa et al. 2021); we will expand this set with new queries
in subsequent sections. We define a trajectory of n movements of an object id as
Tid = {⟨t0, p0⟩, ⟨t1, p1⟩, . . . , ⟨tn, pn⟩}, where each pair ⟨ti, pi⟩ stores the position pi of
the object id at time instant ti. We classify the queries in three groups: trajectory,
spatio-temporal, and nearest neighbour queries.

4.1. Trajectory queries

This group includes three kinds of queries, all of them are related to obtaining some
information from the original set of trajectories.

The first query of this group is Object position, which computes the position of a
specific object at a given time instant tq.

Definition 4.1. Given an object identifier id and a specific time instant tq, the object
position query computes the location pq such that ⟨tq, pq⟩ ∈ Tid.

An extension of Object position is Object trajectory, which instead of computing the
position at a specific time instant, computes all the positions of the object during an
interval of time [tb, te].

Definition 4.2. Given an object identifier id and a time interval [tb, te], the object
trajectory query computes the sequence of locations ⟨ti, pi⟩ ∈ Tid such that tb ≤ ti ≤ te,
in increasing order of ti.

In GraCT, the object position query requires O(logk s+ δ+log n) time in the worst
case, where δ is the distance between snapshots. Instead, ContaCT solves it in O(1)
time. Both require O(te − tb) additional time for an object trajectory query.

A non-classical query for structures that compress trajectories is computing the
MBR of the trajectory of an object during an interval of time [tb, te]. This query is
quite useful for obtaining summary information about the path followed by an object
between tb and te, without computing its whole trajectory.

Definition 4.3. Given an object identifier id and a time interval [tb, te], the MBR
query returns the smallest rectangular area R such that, for every element ⟨ti, pi⟩ ∈ Tid
where tb ≤ ti ≤ te, it holds that pi ∈ R.
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In ContaCT, this query can be solved in O(1) time by using rmq and rMq struc-
tures. Instead, GraCT requires O(logk s+ (te − tb + δ) + log n) time in the worst case,
because it may need to extract the whole trajectory from tb to te (though in practice
it can skip most nonterminals using the mbr fields).

4.2. Spatio-temporal queries

Spatio-temporal queries identify those objects that satisfy a spatio-temporal con-
straint, like being within a region during an interval of time. This group includes the
typical queries supported by methods that focus on indexing trajectories (Section 2.3)
and methods like TrajStore and SharkDB.

The simplest query, Time Slice, retrieves the objects within a region rq at a time
instant tq.

Definition 4.4. Given a region rq and a time instant tq, the time slice query returns
the set of object identifiers O, such that, for each id ∈ O, there exists a pair ⟨tq, pq⟩ ∈
Tid where pq ∈ rq.

The query Time Interval extends Time Slice so that the queried time instant tq
becomes an interval [tb, te] of time.

Definition 4.5. For a given region rq and a time interval [tb, te], the time interval
query returns the set of object identifiers O, such that, for each id ∈ O, there exists at
least one pair ⟨ti, pi⟩ ∈ Tid where tb ≤ ti ≤ te and pi ∈ rq.

4.3. Nearest neighbour queries

Nearest neighbour queries compute the objects closest to a spatial geometry (such
as a point or a line). Systems that index trajectories with R-trees (MVR-tree, SETI,
Trajstore, SharkDB) are efficient at computing theK objects closest to a given position
at a given time instant. This is the only nearest neighbour query supported by GraCT
and ContaCT.

Definition 4.6. The K-nearest neighbour query for a point pq at time instant tq
returns a set O of objects such that |O| = K and d(pq, id1) ≤ d(pq, id2) for any objects
id1 ∈ O and id2 ̸∈ O, where d(pq, id) is the Euclidean distance from point pq to the
position of object id at time instant tq (i.e., such that ⟨pq, tq⟩ ∈ Tid).

GraCT and ContaCT can efficiently handle the three types of queries: trajectory,
spatio-temporal, and nearest neighbour. The other indexes are only efficient in running
one or two types of queries. This is a consequence of the architecture of GraCT and
ContaCT: they explicitly represent trajectories of objects with the log, which allows
solving trajectory queries, and they are equipped with spatial indexes (snapshots) at
regular time instants, which help in solving the spatio-temporal and nearest neighbour
queries. The MVR-tree, for example, stores an R-tree per time instant, which solves
spatio-temporal and nearest neighbour queries fast, but recovering the trajectory of a
given object is costly.
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5. Supporting complex nearest neighbour queries

In this section we introduce two new more sophisticated nearest neighbour queries not
supported in the original GraCT and ContaCT articles: KNN of trajectories and KNN
during an interval. We show how the data structures already present in both GraCT
and ContaCT can be used to solve these sophisticated queries: First, the spatial index
(snapshot) is able to prioritize the objects according to a distance bound. Second,
both structures can implement an operation refine that shrinks the previous bound to
a tighter one.

5.1. KNN of trajectories

Given a query trajectory Tq, our goal is to obtain the K trajectories that are closest to
it during an interval of time [tb, te]. We then obtain a list of objects whose trajectories
during [tb, te] are closest to Tq. There are various choices in the literature to define a
closeness (or similarity) measure between trajectories. The simplest measures assume
that the points are already aligned and are variants of averaging the Euclidean dis-
tances between the corresponding points (Su et al. 2020). More sophisticated variants
enable varying the alignment between the points of both trajectories. For example,
the edit distance (EDR) (Chen, Özsu, and Oria 2005) computes the number of ‘ed-
its’ needed to transform one trajectory to the other, where the cost of substituting
one point by another may be their Euclidean distance in space. Dynamic time warp-
ing (DTW) (Berndt and Clifford 1994) is a variant of the latter that allows a single
point in one trajectory to align with many of the other. The Discrete Fréchet distance
(DFD) (Eiter and Mannila 1994), instead, measures the maximum Euclidean distance
between the aligned points. It can be regarded as an adaptation of the Hausdorff dis-
tance (Hausdorff 2005) to trajectory points, and has become a standard measure of
distance between two parametric curves.

We choose a simplification of the DFD that suits our scenario where the points are
already aligned. This becomes simply the farthest distance between all the (already
aligned) points along the time interval. Such a definition is also connected with vari-
ants of the Euclidean distance that take the Lp-norm over the distances between the
aligned points (Su et al. 2020); while the classic Euclidean distance uses L1, our def-
inition corresponds to using L∞. Besides its support in the literature, an algorithmic
advantage of this definition is that we can easily compute lower and upper bounds
of the maximum distance by using the MBR of the trajectory, and these bounds can
be progressively refined by successively splitting the trajectory into subtrajectories
and using their MBRs. Note that the DFD measure does not depend on some of
those MBRs (e.g., an MBR whose maximum distance to the trajectory is smaller than
the current lower bound). We can then focus on the parts of the trajectory that can
contain the maximum distance and avoid further splitting the subtrajectories that
cannot. Instead, using a similarity measure that sums or averages the pointwise dis-
tances forces us to consider every point. Indeed, various techniques that build on sums
of distances allow returning approximate answers in order to perform efficiently, for
example PDTW (Keogh and Pazzani 2000), STLCSS (Vlachos, Kollios, and Gunop-
ulos 2002), and STLC (Shang et al. 2017). Instead, we always find the correct KNN
answers under our distance.

Definition 5.1. The K-Nearest neighbour of trajectories for a given trajectory Tq at
time interval [tb, te] returns a set O of objects such that |O| = K and dmax(Tq, T1) ≤
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dmax(Tq, T2) for the trajectory T1 of any id1 ∈ O and T2 of any id2 ̸∈ O, during [tb, te].
We denote with dmax(Tq, Ti) the maximum Euclidean distance between two trajectories,
dmax(Tq, Ti) = max{d(pk, pj), ⟨pk, tl⟩ ∈ Tq, ⟨pj , tl⟩ ∈ Ti, tl ∈ [tb, te]}.

The idea to solve this query without comparing the trajectory of every object with
Tq is to prioritize both the traversal of snapshots towards promising objects, and the
precise computation of the trajectories of the objects, so that we only compute as much
as necessary to identify the K closest trajectories. To compute priorities efficiently,
the algorithm uses just the MBRs of trajectories to compute a range [l, h] where the
maximum distance between both trajectories must lie.

GraCT and ContaCT implement the same algorithm, though they differ in the way
the MBRs are computed and refined. In general terms, we divide our exposition in
two parts: prioritizing the objects using the snapshots and refining the object distance
bounds. Algorithm 1 gives the pseudocode.

5.1.1. Prioritizing the objects using the snapshots

We take advantage of the hierarchical structure of the k2-tree representing the snap-
shots, to sort the objects according to their chances of being close to Tq. The objects
to be prioritized are obtained from the snapshots in the interval [tb, te], that is, the
snapshots from time instant ⌊tb/δ⌋ × δ to ⌊te/δ⌋ × δ, where δ is the number of time
instants between snapshots. The idea is to process first the k2-tree nodes that are
closer to Tq, independently of their depth in the k2-tree.

The algorithm builds a priority queue Qglobal where each element, called a header,
is a triple ⟨n, l, h⟩. The term n is a k2-tree node and [l, h] is a range bounding the
maximum distance between Tq and any object in the region of n. Qglobal is a min-heap
sorted by l and the ties are broken by h. We know the maximum speed M at which
an object moves in the dataset, and use it to compute [l, h] by expanding the area of
n in all directions at the maximum speed, and then comparing the expanded region
with the MBR of Tq.

Let R be the region defined by n. The snapshot gives the position of the objects in
a given time instant, say τ . Since every object moves at most c = (te − τ) ·M cells on
every direction from time instant τ to te, an object within R = [x1, y1]× [x2, y2] at τ
can only move within the expanded region R′ = [x1− c, y1− c]× [x2+ c, y2+ c]. Hence,
we define l and h as the minimum and maximum distances, respectively, between
R′ and the MBR of Tq. When the query spans several snapshots, the range [tb, te] is
intersected with the area covered by the log of each snapshot when performing this
computation.

The process then starts by adding the roots of the k2-trees of all the snapshots
involved in the query; see lines 1–5 of Algorithm 1, where distances computes the
described distance estimation between Tq and k2-tree nodes. The nodes whose objects
are estimated to have more chances to be closer to Tq are at the top of Qglobal. We
thus traverse the internal nodes of all the involved snapshots by popping the elements
from Qglobal, and reinserting the children of the extracted k2-tree nodes (lines 7–12).
It is then more likely that we reach sooner the k2-tree leaves that contain the objects
whose trajectories are closer to Tq.

5.1.2. Refining the object distance bounds

Once the children of a node extracted from Qglobal are leaves, we do not reinsert those
leaves into Qglobal, but rather extract the objects associated with each leaf (lines 14–16;
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Algorithm 1: KNNTrajectory(K, Tq, tb, te)
Qglobal ← ∅; result← ∅;
MBRq ← MBR(Tq , tb, te);
for Si ∈ [S⌊tb/δ⌋×δ, . . . ,S⌊te/δ⌋×δ] do
⟨l, h⟩ ← distances(Si.root.R,MBRq)
Qglobal.add(⟨Si.root, l, h⟩);

while Qglobal ̸= ∅ and |result| < K do
⟨e, l, h⟩ ← Qglobal.pop();
if e is a node then

for nonempty node ∈ e.children do
if node is internal then
⟨lnew, hnew⟩ ← distances(node.R,MBRq);

Qglobal.add(⟨node, lnew, hnew⟩);

else
for id ∈ e.objects and id.traj not initialized do
⟨lnew, hnew⟩ ← init(id.traj, Tq);
Qglobal.add(⟨id, lnew, hnew⟩);

else
⟨e′, l′, h′⟩ ← Qglobal.top();

if h ≤ l′ then
result← result ∪ {e};

else
⟨lnew, hnew⟩ ← refine(e.traj, Tq);
Qglobal.add(⟨e, lnew, hnew⟩);

return result

the objects are id ∈ e.objects) and insert those. This means that Qglobal has not only
headers associated with k2-tree nodes, but also with objects. Those objects are also
associated with an MBR, which is not anymore bounded using the maximum speed,
but with data from their actual trajectory, which is stored in id.traj. In principle,
function init initially computes the MBR of the trajectory during [tb, te] using the
mbr query provided by GraCT or ContaCT, and uses it to provide a range [lnew, hnew]
of maximum distances to the MBR of Tq.

As the algorithm progresses, the trajectory of the object will be successively split
along time intervals to provide a better estimation, and id.traj will become a max-
heap of pieces of this trajectory. Each element of id.traj contains the minimum (dmin)
and maximum (dmax) distance between the MBR of the object during some interval
[ti, tj ] ⊆ [tb, te] and the MBR of Tq at the same interval. The exact partitioning into
intervals in the beginning (init) and after successive refinements (refine) depends on
the log used (GraCT or ContaCT); we will describe them later.

The queue id.traj is sorted by dmax, and the ties are broken with dmin. That is,
we locate on top of the queue the time interval most likely to contain the point of the
trajectory of id that is farthest from Tq. The top of id.traj is used to compute the
range [l, h] with which the header is prioritized in Qglobal.

Lines 18–23 show how we process object headers. We first examine the next header
in Qglobal. If the maximum bound h of the current object does not exceed the minimum
bound l′ of the next header, we can be sure that the current object is the next result,
and include it in the result. Otherwise, we refine the trajectory estimation of the
current object e. This is done by partitioning the top trajectory interval in e.traj into
smaller subintervals, whose upper-bound distances to Tq will be tighter, and reinserting
them into e.traj. This is done by function refine, which provides a new estimation
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[lnew, hnew] that is used to reinsert the object in Qglobal.

5.1.3. Computing the MBR of the input trajectory

Along the algorithm, we need to compute MBRs of the input trajectory Tq between
arbitrary time instants [ti, tj ]. We then start the query by preprocessing Tq so as to
build range minima and maxima (rmq and rMq) query structures (Fischer and Heun
2011; Ferrada and Navarro 2017) on the values of Tq along each axis (X and Y ), in
time O(|Tq|). We can then compute any MBR(Tq, ti, tj) in constant time as

[X[rmq(X, ti, tj)], Y [rmq(Y, ti, tj)]× [X[rMq(X, ti, tj), Y [rMq(Y, ti, tj)].

5.1.4. GraCT

Let S = {s1, s2, . . . , st} be the symbols of the log covering [tb, te]. In GraCT, we can
compute in constant time the MBR of each sr ∈ S, either from a single movement (if
sr is a terminal) or else from the mbr data we store for sr. Let sr span times [ti, tj ].
We compute the minimum and maximum distances, dmin and dmax, between the MBR
of sr and MBR(Tq, ti, tj). This is stored in a tuple ⟨ti, tj , dmin, dmax, pi−1, sr⟩, where
pi−1 is the object position at time ti−1. The init operation adds all those tuples to the
priority queue id.traj, and returns the values hnew and lnew as the maximum dmax

and dmin values, respectively, of all those tuples.
Since id.traj is a max-heap sorted by dmax, h is always the dmax value on top of the

queue, so it can be computed in O(1) time. Instead, the value of l can be located in
another position of the queue. To avoid traversing the queue looking for the maximum
dmin, we use another max-priority queue sorted the dmin values, and synchronized
with id.traj. That arrangement allows us to compute l in O(1) time as well.

Once id.traj is initialized, every time we call refine, it takes the tuple on top of
the queue. If the tuple has tj = ti, we have obtained the exact maximum distance
of the object to Tq. Otherwise, the tuple refers to a nonterminal sr and we apply
the corresponding rule to expand it. The tuple is then split into two that cover time
intervals [ti, tm] and [tm+1, tj ]. After obtaining the MBRs associated with those inter-
vals, their dmin and dmax values are computed with respect to MBR(Tq, ti, tm) and
MBR(Tq, tm+1, tj), respectively, and reinserted in id.traj.

For example, in Figure 6, the first step takes the tuple ⟨t9, t12, 10, 6, (10, 6), C⟩. We
observe that sr = C and C → A,B, and A has #t = 2, (x, y) = (+3,+2) and
mbr = (0, 0,+3,+2). Since A lasts two movements, the new tuples cover the intervals
[t9, t10] and [t11, t12]. For the first one, the previous position is still (10, 6), and for the
second one, the previous position is (10, 6) + (+3,+2) = (13, 8). Then, the MBR of
each new tuple can be computed by adding those previous positions to the stored mbr
for A and B, respectively. With those MBRs, the distances of the tuples are computed.
Notice that our Tq is a horizontal line in y = 0, thus its MBR covers all the cells at
y = 0. For the first new tuple the distances are dmin = 6 and dmax = 8, and for the
second they are dmin = 8 and dmax = 9. The new values for hnew and lnew are 9 and
8, respectively.

5.1.5. ContaCT

ContaCT can compute arbitrary MBRs in constant time, which simplifies the imple-
mentation of init and refine. In principle, init could initialize id.traj with a single
entry relating MBR(id, tb, te) and MBR(Tj , tb, te), computing dmin and dmax from
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Rule #t (x, y) mbr

A (+1,+2), (+2, 0) 2 (+3,+2) ( 0, 0,+3,+2)

B (+1, 0), (+1, +1) 2 (+2,+1) ( 0, 0,+2,+1)

C A, B 4 (+5,+3) ( 0, 0,+5,+3)

t7-t8 t9-t12 t13-t16 t17t1-t2 t3-t4 t5-t6

13

12

11
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9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Step 1

<t9, t12, 6, 9, (10,6), C>

<t7, t8, 5, 6, (8,5), B>

<t5, t6, 4, 5, (6,4), B>

<t3, t4, 3, 4, (4,3), B>

<t1, t2, 1, 3, (1,1), A>

t9-t12

refine refine

init

A B B B C C (0,+1)

Step 2

<t11, t12, 8, 9, (13,8), B>

<t9, t10, 6, 8, (10,6), A>

<t7, t8, 5, 6, (8,5), B>

<t5, t6, 4, 5, (6,4), B>

<t3, t4, 3, 4, (4,3), B>

<t1, t2, 1, 3, (1,1), A>

Step 3

<t12, t12, 9, 9, -, ->

<t11, t11, 8, 8,-,->

<t9, t10, 6, 8, (10,6), A>

<t7, t8, 5, 6, (8,5), B>

<t5, t6, 4, 5, (6,4), B>

<t3, t4, 3, 4, (4,3), B>

<t1, t2, 1, 3, (1,1), A>

t9-t10

Tq

Figure 6.: Example of GraCT for KNN of trajectories. The queues below the structure
represent the different steps and states of id.traj.

those. However, the time interval [tb, te] can cover several snapshots, so init must
insert one tuple for each. For each involved snapshot starting at time τ , it com-
putes the distances dmin and dmax between the MBRs of id and Tq within times
[max(τ, tb),min(τ + δ − 1, te)].

The mechanics are then exactly as for GraCT, except that the tuples stored have
the form ⟨ti, tj , dmax, dmin⟩. To apply refine on such a tuple, the algorithm divides it
by half, tm = ⌊(ti + tj)/2⌋. For each half the algorithm computes its MBR and the
values dmax and dmin with respect to Tq, all in constant time.

Figure 7 shows an example. After the init operation we compute the MBR during
[t0, t12] with dmin = 1 and dmax = 9. With refine, that tuple is split into the intervals
[t0, t6] and [t7, t12]. According their MBRs we obtain the distances dmax = 5 and
dmin = 1, and dmax = 9 and dmin = 5, respectively. Therefore the new tuples are
⟨t0, t6, 5, 1⟩ and ⟨t7, t12, 9, 5⟩, and the new boundaries for the maximum distance are
l = 5 and h = 9.

5.2. KNN during an interval

In this kind of query, we compute theK objects whose trajectories during an interval of
time [tb, te] are the closest to a given point pq. The distance between a trajectory and pq
is defined as the minimum distance to pq at any time instant t ∈ [tb, te]. This distance
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Step 1

<t0, t12, 1, 9>

Step 2

<t7, t12, 5, 9>

<t0, t6, 1, 5>

Step 3

<t10, t12, 8, 9>

<t7, t9, 5, 8>

<t0, t6, 1, 5>

t0-t12
refine refineinit

t7-t12

t0-t6

t7-t9

t10-t12

Tq

Figure 7.: Example of ContaCT for KNN of a trajectory. The right part represents the
different steps and states of id.traj.

measure was applied in previous works and applications. For example, in applications
that study animal habits (Gao et al. 2007) and in social networks where users want
to plan a trip based on routes of friends that visit their points of interest (Tang et
al. 2011).

Definition 5.2. The K-Nearest neighbour of an interval [tb, te] with respect to a point
pq returns a set O of objects such that |O| = K and dmin(pq, T1) ≤ dmin(pq, T2) for any
trajectory T1 of id1 ∈ O and T2 of id2 ̸∈ O, during [tb, te]. We denote dmin(pq, Ti) =
min{d(pq, pk), ⟨pk, tl⟩ ∈ Ti, tl ∈ [tb, te]}.

This query is similar to that of Section 5.1, with two differences:

• The distance is computed with respect to a point pq, instead of a trajectory Tq.
• This query finds the minimum distance of the objects to pq during the interval

of time [tb, te], instead of the maximum distance to Tq.

The algorithm is then similar to the one of Section 5.1, but instead of computing
the maximum distance to the input spatial data (point or trajectory), we compute the
minimum distance. The previous algorithm then undergoes some modifications:

• Each id.traj is transformed to a min-heap where the tuples are sorted by the
minimum distance dmin from the MBR to pq, and the ties are broken with dmax.
By splitting the top tuple of id.traj, we focus on the interval of time where the
object has more chances to be closer to pq.

• We now have the tuple with the smallest dmin on top, thus we can compute
l in O(1) time, but now we cannot compute h in O(1) time. Analogously to
Section 5.1, we synchronize another min-heap priority queue with id.traj, which
stores the values of dmax. We can then compute h in O(1) time as well.

• Qglobal is still a min-heap storing tuples ⟨n, l, h⟩ sorted by l and breaking ties
with h. As we now look for the minimum distance, however, [l, h] now bounds
the minimum distance between pq and the MBR of n. If n is an object, l and
h are the minima over the dmin and dmax values of all the trajectory segments,
respectively.

• Since we are comparing the distance to a point pq instead of a trajectory Tq, we
do not need the rmq and rMq structures for computing MBRs on Tq.
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5.3. Analysis

It is not easy to give meaningful worst-case time guarantees on KNN algorithms,
because an adversarial setup where all the objects are at almost the same distance to
the query forces the algorithms to inspect nearly every object in the dataset; this is
known as the “curse of dimensionality” (Chávez et al. 2001). A useful concept for this
kind of algorithms is range optimality (Böhm, Berchtold, and Keim 2001; Hjaltason
and Samet 2000), which states that an algorithm retrieving the K nearest neighbors
performs the same amount of work as the canonical range-search algorithm that finds
all the objects at distance d from the query, where d is the distance between the query
and its K-th nearest neighbor.

Hjaltason and Samet (Hjaltason and Samet 2000; Hjaltason and Samet 2003) de-
scribed a generic KNN search algorithm that works on any hierarchical data structure
and is range-optimal (with respect to that data structure). The algorithms we have
described in this section follow their generic scheme, and are therefore range-optimal.

The hierarchy in our case corresponds to the composition of the k2-tree and then the
recursive partitioning of the trajectory into subtrajectories. In other words, if we had
to traverse our data structure in order to find all the trajectories at distance d from
our (trajectory or point) query, we would have to traverse exactly the same nodes of
the hierarchy. The multiplicative overhead with respect to the range-search algorithm
is the O(log n) time incurred by manipulating the heaps, plus the time to compute the
MBR queries. This is variable for GraCT and constant for ContaCT, as described.

5.4. Experimental evaluation

We now experimentally evaluate the performance of the new KNN queries on GraCT
and ContaCT. We modified their original C++ implementations, and used some com-
ponents of the SDSL library1 (Gog et al. 2014). There are two possible implementations
for ContaCT, where the bitmaps Dp and Dn are represented either in plain form or
using a representation for sparse bitmaps called sdarray (Okanohara and Sadakane
2007), depending on the magnitude of the differential values. The structure that uses
plain bitmaps is labelled as ContaCT, and the one with sparse bitmaps is called
ContaCT-SD.

The experiments were run on an Intel® CoreTM i7-3820 CPU @ 3.60GHz (4 cores)
with 10MB of cache and 64 GB of RAM, running Debian GNU/Linux 9 with kernel
4.9.0-8 (64 bits), gcc version 6.3.0 with -O3 optimization.

5.4.1. Datasets

We used the four datasets originally used to evaluate ContaCT (Brisaboa et al. 2021),
formed by three real and a pseudo-real one:

• Ships: a real dataset that contains the coordinates of 4,461 vessels travelling
within the UTM Zone 10 during one month of 2017. The original data can be
obtained from MarineCadastre.2

• Planes: real flight data of 2,263 aircrafts from 30 different airlines between 30
European airports. Altitude is not considered, only latitude and longitude are
represented in our dataset. The original data can be obtained from OpenSky

1. https://github.com/simongog/sdsl-lite

2. http://marinecadastre.gov/ais
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Ships Planes Taxis Ciconia

Total objects 4,461 2,263 24 88
Total points 63,093,559 36,741,877 46,677,278 4,390,159
Max x 6,000 229,010 1,074,480 4,073,661
Max y 647,755 46,872 340,142 2,995,928
Max time 44,639 172,547 2,102,639 505,573
Size Plain 1,413.47 MB 809.00 MB 1,024.00 MB 107.09 MB
Size Bin 541.54 MB 350.40 MB 426.08 MB 41.87 MB
Size p7zip 57.88 MB 85.40 MB 86.91 MB 12.06 MB

Table 1.: Datasets and their dimensions.

Network.3

• Taxis: a pseudo-real dataset containing trajectories of 24 taxis in New York City
during 2013. Since the original dataset only includes the origin and destination
of each trip, the trajectory was computed as the shortest path between them by
taking into account the road network. The original data are available at NYC
Taxis: A Day in the life.4

• Ciconia: a small and non-repetitive real dataset of 88 white storks travelling
between Europe and North Africa from 2013 to 2019. The original data can be
obtained from MoveBank Data Repository (Flack, Fiedler, and Wikelski 2016;
Cheng et al. 2019).

Those datasets are preprocessed as in previous work (Brisaboa et al. 2021). The
trajectories are stored in a plain text file composed of four columns: object identifier,
time instant, x coordinate, and y coordinate. The features of each of our datasets are
shown in Table 1. We show the size of the binary representation of each dataset, that
is, by using the number of bytes required for each column. The last row is the size
after compressing the binary representation with p7zip and gives us an idea of how
repetitive the data is. We observe that p7zip compresses the data to 10%–30% of its
binary representation.

5.4.2. Time performance

In our first experiment, we implement the algorithms of KNN of trajectories (KNNTraj-
ectory) and KNN during an interval (KNNInterval) on GraCT, ContaCT, and
ContaCT-SD. All those structures are configured with four different distances δ be-
tween snapshots: 30, 60, 120, 240, 360, and 720. For each type of query, we ran 1,000
different queries and compute the average user time. In both cases, K is a random
value between 1 and 50. The queried interval covers 200 time instants. Additionally,
we designed brute force algorithms for solving both KNN queries. They go through all
the trajectories computing the distances of each timestamped position with respect
to the input trajectory or point and sorting them according to minimum/maximum
distance by using a min-heap. The K first trajectories of that heap will be the solution
of the query.

Figures 8a and 8b show the average user time of the KNNTrajectory and
KNNInterval queries, and the compression ratio of the three structures (compressed

3. https://opensky-network.org

4. http://chriswhong.github.io/nyctaxi/
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Figure 8.: Average time and compression ratios for KNNTrajectory and KNNInterval.

divided by original space, as a percentage). The solid lines represent the three differ-
ent structures, and their markers the four different configurations. The configuration
with the largest δ = 720 obtains the best (smallest) compression ratio, and the one
with the shortest δ = 30, the worst compression ratio. In Ships and Planes, we can
observe a horizontal dashed line that represents the running time of the brute force
algorithm. In Taxis and Ciconia, the brute force algorithm requires around 20ms and
2ms, respectively, that is, more than twice the time consumed by the compact data
structures. We omit the horizontal dashed lines in those plots. In addition, in Ciconia

we omit ContaCT because it uses significantly more space than the raw data.
ContaCT and ContaCT-SD are much faster than GraCT at solving KNNTrajectory

queries. Comparing the least-space configuration of ContaCT or ContaCT-SD with the
fastest configuration of GraCT, we see that ContaCT is 2.9 times faster on Ships, and
ContaCT-SD is 4.3 times faster on Planes, 2.3 on Taxis, and 1.7 on Ciconia. This is
because ContaCT avoids the linear traversals of the log performed by GraCT, in order
to retrieve the symbols and add them to the priority queue. The number of elements
in the priority queue of each object is also smaller in ContaCT than in GraCT. This is
more noticeable on Ships, the only case where GraCT is slower than the brute force
algorithm. Instead, the ContaCT variants outperform the brute force algorithm when
solving KNNTrajectory, being 3 times faster on Ships and 8.4 on Planes.

The results for the KNNInterval queries are similar, but we observe an improvement
in time performance. This is because the query is simpler and does not compute
MBRs on an input trajectory. Since GraCT initializes the queue with more elements,
the improvement with respect to KNNTrajectory is more evident, and now the three
structures outperform the brute force algorithm. In the dataset where the brute force
algorithm is closer to the performance of the three structures (Ships), we observe that
GraCT is 1.5, ContaCT is 3.2, and ContaCT-SD is 3 times faster.

Although ContaCT is significantly faster than GraCT, it generally uses much more
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space. Except on Ciconia, in the tested datasets with δ = 720, GraCT uses 40%–80%
of the space of ContaCT. This difference is due to the ability of GraCT to exploit the
repetitiveness of movements between trajectories.

5.5. Discussion

The experimental evaluation shows the performance of our proposed nearest-neighbor
algorithms for KNNTrajectory and KNNInterval queries on GraCT and ContaCT.
Both structures offer a good space-time trade-off, but each is better depending on the
application. When compression is a primary requirement, GraCT is the best option
because it exploits the repetitiveness between trajectories, and thus it uses half the
space of ContaCT. However, GraCT is slower than ContaCT to solve KNNTrajectory
and KNNInterval queries. Note that, in the first step to solve these queries, GraCT
needs to traverse the log, which is not necessary in ContaCT. During that traversal,
GraCT inserts in the priority queue each log entry that belongs to the queried interval,
whereas ContaCT initially adds only one entry per object. The subsequent process of
each entry is also more costly in GraCT than in ContaCT. Hence ContaCT is more
suitable for scenarios where time performance is a primary goal and space is secondary.

Therefore, we observe two weak points of these structures when solving
KNNTrajectory and KNNInterval queries: (1) the performance of GraCT is not too
far from the brute force algorithm; (2) ContaCT obtains a good time performance, but
there is an important difference in compression compared to GraCT. In the following
sections, we propose solutions to both points, which have positive effects on other
types of queries.

6. Snapshots based on R-trees

One of the weakest points in the algorithms for KNNTrajectory is that the snapshot
based on k2-trees does not give any information on where the objects can be during
the interval up to the next snapshot. That is, they only store the position of the ob-
jects at the time instant represented by the snapshot. Therefore, to upper bound the
movements of the object during the time interval until the next snapshot, the query
algorithms expand the k2-tree node areas assuming that the objects move at the maxi-
mum possible speed in all possible directions. This leads to poor filtration performance,
sometimes worse than the brute-force algorithm. In this section we present an alter-
native snapshot data structure to alleviate this problem, which instead of storing the
current position of the objects, stores their MBR up to the next snapshot, that is, for
each object id in the snapshot at time τ we store MBR(id, τ, τ + δ − 1). For storing
those MBRs, we use a static compressed R-tree (Brisaboa et al. 2013) instead of the
k2-tree.

The first reason for this choice is that the k2-tree is conceptually a region quadtree,
which stores points, not MBRs, while the R-tree is designed to store MBRs. The R-tree
and its variants are the most well-known and commonly used storage techniques (Azri
et al. 2013) and are the basis of several real systems Rigaux, Scholl, and Voisard 2002,
Section 6.1.3. A second advantage is that the R-tree is a data-driven structure Section
6.1.3. These structures partition the space into rectangular areas by following the
distribution of the objects, which makes the partition a better bound on the positions
the objects will have up to the next snapshot. In contrast, space driven structures
Section 6.2 like the region quadtree partition the space independently of the indexed

25



objects, which results in poorer bounds.

6.1. Structure

The new snapshot is then an R-tree storing, at its leaves, the object identifiers and their
MBRs, as described. The internal nodes store the MBRs of the descendant MBRs.

Note that the snapshot does not contain the precise positions of the objects at its
time instant τ . Since the log of GraCT does not store those positions, we add the
necessary structures to the snapshots in GraCT. For each snapshot, we store a bitmap
B whose size is the number of objects. We then have B[id] = 1 if object id appears in
the snapshot. The cell coordinates are stored in the same order in two arrays, X and
Y , so that the position of id is (X[rank1(B, id)], Y [rank1(B, id)]).

Figure 9 shows an example of a snapshot based on an R-tree. The left part represents
the positions of the objects at τ and their trajectories during [τ, τ + δ − 1]. The right
part illustrates the structure of the snapshot: the R-tree, the bitmap B, and the
arrays X and Y . To obtain the objects that can be within the region delimited by
the dashed line during [τ, τ + δ − 1], the algorithm traverses the tree following the
nodes whose MBRs intersect the queried region. In the first level, it only checks R3,
and then its children. From those children, R8 intersects the region and includes the
object with id 3. To obtain the location of the object at τ , we just have to compute
(X[rank1(B, 3)], Y [rank1(B, 3)]) = (10, 13).

Since every R-tree node stores the MBR that wraps the trajectories of the descen-
dant objects, we can now prioritize the nodes with respect to a KNN query (trajectory
or point) using the distances from the node MBR to the queried object (trajectory
MBR or point). In the leaves of the R-tree, each object stores the MBR of its trajec-
tory during [τ, τ+δ−1]. Only when the individual MBR of an object is extracted from
Qglobal we run init to compute a more precise trajectory in [tb, te]. All these explicitly
stored MBRs allow the algorithm compute a more accurate minimum and maximum
distance between the area of a node or object and a trajectory or point.

This new type of snapshot not only improves nearest neighbour queries. The k2-tree
based snapshots also need to expand, using the maximum speed, the queried regions
R of classical spatio-temporal queries, in order to determine if a k2-tree node must
be inspected or not. This produces more candidate objects than with R-trees, which
know the precise MBR of the objects descending from each node. Precisely, if any
object under an R-tree node are within R at any t ∈ [τ, τ +δ−1], the node MBR must
intersect the query region R. Therefore, the algorithm simply runs a classical R-tree
traversal following the nodes that intersect R.

In summary, with the snapshots based on R-trees, we can compute the location
of an object at the snapshot time instant τ in constant time, and obtain a stricter
region to better prioritize or filter the nodes and objects in both nearest neighbour
and spatio-temporal queries. The worst-case time complexities are then unchanged,
and the KNN algorithms stay range-optimal (over this new structure), as described
in Section 5.3. The next section shows that these advantages turn into orders-of-
magnitude improvements in query times in practice.
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Figure 9.: Example of a snapshot based on an R-tree.

6.2. Experimental evaluation

We implemented GraCT and ContaCT with snapshots based on R-trees, in C++,
using an existing R-tree implementation (Brisaboa et al. 2013).5 We represent B as a
plain bitmap, its rank being supported in O(1) time with a structure that adds 6.25%
extra space to the bitmap. Both of them are included in the SDSL library. In figures,
GraCT, ContaCT, and ContaCT-SD with this new type of snapshots are labelled with
the ‘-R’ suffix.

We built the three structures with different values of δ (30, 60, 120, 240, 360, 720)
and used the same datasets presented in Section 5.4. We ran the following queries:

• ObjectPosition: We averaged 20,000 different queries where the objects and
time instants are chosen randomly.

• ObjectTrajectory: We computed a set of 10,000 queries for randomly chosen
objects and intervals. The span of the interval was around 2,000 time instants.

• MBR: We averaged the time of 1,000 queries for randomly chosen objects and time
intervals of 200 time instants.

• TimeSlice S and TimeSlice L: Both cases included 1,000 queries of a region at
a random time instant. In TimeSlice S the regions were small (40 × 40 cells),
and in TimeSlice L, they were large (320× 320 cells).

• TimeInterval S and TimeInterval L: In the first kind of query, we performed
1,000 queries for small regions (40×40 cells) and short intervals of time (100 time
instants). The second type runs the same number of queries with large regions
(320× 320 cells) and long time intervals (200 time instants).

• KNN: We averaged 1,000 queries for random positions at random time instants.
The value of K was randomly chosen between 1 and 50.

• KNNTrajectory and KNNInterval: We averaged each kind of query over 1,000
queries whereK is randomly chosen between 1 and 50. The span of the trajectory
and the queried time interval is 200 time instants.

5. https://lbd.udc.es/research/serangequerying/
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6.2.1. Trajectory queries and space usage

Recall that to compute the position of an object at a given time instant t, GraCT
requires O(logk s + δ + logn) time, where the first term is the cost of traversing the
snapshot at the latest time τ ≤ t to obtain the position of the object at time τ .
Since the snapshots based on R-trees can compute object positions in constant time,
obtaining the position at time t requires time O(δ + log n). Instead, in ContaCT the
computation of the position does not depend on the snapshot, and it is always constant
time.

Figure 10a shows that effect in ObjectPosition queries. GraCT-R can solve the
query in around 20%–85% of the time required by GraCT. Figures 10b and 10c show
that the difference is smaller for ObjectTrajectory and MBR queries. This is because a
larger fraction of the time in those queries is spent in traversing and/or decompressing
portions of the log, which takes the same time in both GraCT variants. The difference
shrinks when δ increases, because fewer snapshots need to be accessed to cover the
same trajectory. While GraCT has a cost of O(logk s) for each such snapshot, and thus
improves for these queries as it uses less space, GraCT-R and the ContaCT variants
only incur a constant overhead per snapshot, so their time is mostly insensitive to δ
(GraCT-R improves with shorter logs because it must sequentially scan δ/2 unnecesary
movements on average). Since the time interval of MBR queries lasts 200 time instants,
and ObjectTrajectory queries cover 2,000 time instants, the difference of performance
between GraCT variants is smaller in MBR queries. On the other hand, ContaCT and
ContaCT-SD are constant and much faster, because they do not need to traverse any
snapshot nor logs, just to compute MBRs in constant time. For example, ContaCT
takes 0.3–3.2 microseconds for the ObjectPosition and MBR queries on all the datasets.

In addition, there is hardly any difference between the compression ratio achieved
by the structures with the original snapshot and the new one. The new space usage is
around 90%–100% of the structures based on k2-trees.

6.2.2. Spatio-temporal queries

Figure 11 shows the average times for the spatio-temporal queries. Figures 11a and 11b
show an improvement around 2–30 and 2-140 times in TimeSlice with GraCT-R and
ContaCT-R compared to GraCT and ContaCT, respectively. Since snapshots based
on R-trees obtain a tighter area about where the object is moving, the set of candidate
objects is smaller, which reduces the number of positions to check and improves the
performance. For the same reason, similar speedups are seen on TimeInterval queries,
where GraCT-R and ContaCT-R are 2–275 and 2–200 times faster than GraCT and
ContaCT, respectively. The fastest configurations reach 12–80 microseconds in GraCT-
R, 13–150 in ContaCT-R, and 12–160 in ContaCT-SD-R.

6.2.3. Nearest neighbour queries

Figure 12 shows that the R-tree based snapshots also run faster on KNN queries. The
effect is more noticeable on the larger datasets: the R-trees are 7–16 times faster on
Ships, and 1.3–3.3 times faster on the others.

The improvements are larger for the more complex queries, KNNTrajectory and
KNNInterval. For example, in Ships and Planes, both queries are 10–60 and 2.3–40
times faster, respectively, using R-trees. In the rest of the datasets, R-trees perform
1.1–3.0 times faster. The datasets with more objects display better improvements,
showing the ability of the snapshots based on R-trees to better prioritize the objects.
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Figure 10.: Space and time for trajectory queries.

The fastest configurations reach 230–2,100 microseconds in GraCT-R, 190–900 in
ContaCT-R, and 190–930 in ContaCT-SD-R.

6.3. Comparison with a spatio-temporal index

In this section, we compare ContaCT-R and GraCT-R with the MVR-Tree (Tao and
Papadias 2001), a classical spatio-temporal index that uses a set of R-trees along
time. Each R-tree is called a version and stores the MBR of the objects during an
interval of time. Note that consecutive versions can be quite similar. To save space
usage, when two consecutive R-trees share a subtree, that subtree in the second R-
tree points to the first subtree. Since its basis is the R-tree, the MVR-Tree is de-
signed for solving TimeSlice, TimeInterval, KNN, and KNNInterval queries. For sup-
porting ObjectPosition and ObjectTrajectory, it would require traversing all the
nodes of the versions that intersect with the queried interval of time. Further, for
KNNTrajectory it has no efficient mechanism to compute the distance between the
information of a node and the trajectory.
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Figure 11.: Space and time for spatio-temporal queries.

Therefore, we compared ContaCT-R and GraCT-R with the MVR-tree in
TimeSlice, TimeInterval, KNN, and KNNInterval queries on the two datasets with
the most objects: Ships and Planes. The configuration of the queries are identical to
those presented before. We set δ = 120 on ContaCT-R and GraCT-R, with the vari-
ant of plain bitmaps in Ships, and sparse bitmaps in Planes. We used the MVR-tree
implemented in the C++ spatialindex library with default parameters (the capacity
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0 10 20 30
Compression ratio (%)

5000

10000

15000

20000

25000

30000

Ti
m

e 
(µ

s)

Ships

0 25 50 75 100
Compression ratio (%)

2500

5000

7500

10000

12500

15000

17500

Ti
m

e 
(µ

s)

Planes

0 20 40 60
Compression ratio (%)

100

200

300

400

500

600

700

Ti
m

e 
(µ

s)

Taxis

0 25 50 75 100
Compression ratio (%)

100

200

300

400

500

600

Ti
m

e 
(µ

s)

Ciconia

(c) KNNInterval

Figure 12.: Space and time for nearest neighbour queries.

of each node set to 10 records and the fill factor set to 70%).6 For a fair comparison,
we load the MVR-tree into main memory, thus avoiding any disk access at query time.

The average time of each query is shown in Figure 13. The MVR-tree obtains its best
results in TimeSlice and KNN queries, because it needs to traverse only one version,
even so, GraCT-R and ContaCT-R are faster. On Ships, ContaCT-R and GraCT-R
are 3–9 and 1.3–1.7 times faster for TimeSlice and KNN queries, respectively. The
differences are more remarkable on Planes: 14–22 times faster for TimeSlice, and
2.5–3.8 for KNN.

Queries TimeInterval and KNNInterval cover a larger interval of time and the
MVR-tree has to check more versions, thus the differences between the compact data
structures and MVR-tree grow more sharply (we use logscales). On Planes, for exam-
ple, GraCT-R and ContaCT-R can solve TimeInterval queries in 50–300 microsec-
onds, whereas the MVR-tree needs 1.7–11.6 milliseconds. The smallest difference oc-
curs for KNNInterval on Planes, where GraCT-R and ContaCT-R are still 2.5 and
3.7 times faster than the MVR-tree, respectively.

6. http://libspatialindex.github.io
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(a) TimeSlice (b) TimeInterval

(c) KNN (d) KNNInterval

Figure 13.: Comparison with the MVR-tree. Note the logscale on the right plots.

With respect to space usage, the MVR-trees on Ships and on Planes require
12.16 GB and 11.72 GB, respectively. The sizes of GraCT-R and ContaCT-R indexes,
even using a large-space configuration (δ = 120), are around 100 times smaller.

6.4. Discussion

In our evaluation, we observe that both kinds of snapshots require similar space. The
most remarkable differences are in time performance on spatio-temporal and nearest
neighbour queries. To solve those queries, the algorithm uses the snapshots to obtain a
rough idea of the area where the object moves during the queried interval. According
to that area, the objects are selected or prioritized, depending on the query. Snapshots
based on R-trees can retrieve that area as the MBR where the object is moving between
two snapshots. Snapshots based on k2-trees, instead, compute that area assuming
that every object moves at the maximum speed of the fastest object. That assumption
enlarges the area where an object is moving, which is more noticeable when the number
of objects is larger. The tighter area obtained from the snapshots based on R-trees
allows us to get a better and smaller set of candidates, thereby improving the time
performance by orders of magnitude.

Concerning trajectory queries, snapshots only affect GraCT. In that structure, the
algorithms of trajectory queries need to obtain the positions of the objects from the
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snapshots. In snapshots based on R-trees, those positions are directly stored in an
array. Hence, they are retrieved in constant time, avoiding the top-down traversal
of the snapshots based on k2-trees. For this reason, GraCT-R outperforms the time
performance of GraCT in this particular kind of queries.

In summary, with R-tree based snapshots, we use about the same space of k2-tree
based snapshots, but the time performance is greatly improved on all queries. In fact,
this new type of snapshot makes GraCT and ContaCT faster than the MVR tree,
while using 100 times less space.

7. Relative compression of trajectories

The preceding evaluation shows that, while ContaCT is considerably faster than
GraCT in several queries, the latter index is generally much smaller: GraCT uses
40%–80% of the space of ContaCT.

GraCT exploits the repetitiveness of the datasets, whereas ContaCT only takes
advantage of the fact that most movements are small. In larger datasets, the repet-
itiveness of the movements can play an important role to reduce the space. GraCT
exploits repetitiveness using grammar compression (Kieffer and Yang 2000) of the
trajectories, as explained in Section 3.7.1, and this induces a certain overhead when
accessing trajectories at random positions. In this section we explore instead Relative
Lempel-Ziv (RLZ) (Kuruppu, Puglisi, and Zobel 2010), another compressor for highly
repetitive sequences that enables fast random access to them.

Our new index, Relative Compression of Trajectories (RelaCT), adapts ContaCT
to highly repetitive datasets by compressing the trajectories using RLZ. With this
structure, we achieve a space usage closer to that of GraCT, and a time performance
similar to that of ContaCT, which leads to a good space-time tradeoff.

7.1. Structure

As said, the RelaCT index builds on Relative Lempel-Ziv (RLZ) (Kuruppu, Puglisi,
and Zobel 2010). A special trajectory R called the reference is created and saved in
plain form (this can be one of the trajectories in the dataset, a concatenation of parts
of those, a synthetic sequence, etc.). Each trajectory in the dataset is then represented
as the concatenation of z phrases: w1w2 . . . wz. Each phrase wi is represented as a pair
of integers (pi, li), where pi is a position in the reference and li is the length of the
phrase, that is, wi = R[pi..pi + li − 1]. The RLZ algorithm generates the phrases in
greedy form, maximizing li at each step; recall Section 3.2.

7.1.1. The reference

In RelaCT, the reference R is an artificial trajectory built by concatenating some of
the real trajectories. Note that we regard each trajectory as a sequence of movements,
that is, of relative displacements. To build R, we copy the first trajectory to it and
then, for each new trajectory S[1..n]:

(1) We compute the number of phrases z obtained from applying the RLZ algorithm
to S, with respect to the current reference R.

(2) If the fraction z/n is below a parameter 0 < α < 1, the new trajectory S is well
represented by the reference R. Otherwise, we append S to R.
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We note that the trajectories that are included in R can be represented by a single
phrase, pointing to their position in R. On the other hand, we represent the reference
R using the ContaCT structure. This allows us compute any cumulative displacement,
as well as relative MBRs, on R in constant time.

7.1.2. Log representation

The obtained reference R is global for the whole RelaCT index. Once R is defined with
the process above, the log Sid[1..n] of relative movements of every object id between
two snapshots is compressed by applying RLZ on Sid with respect to R. This results
in a sequence of z pairs (pi, li) representing the substrings wi of R that make up Sid.

The pointers pi are concatenated into an array Pid[1..z], whereas the lengths li are
represented by marking with 1s in a bitmap Lid[1..n] the starting position of each
phrase wi in Sid, so that li = select1(Lid, i) − select1(Lid, i − 1). In addition, the log
stores the initial position of the trajectory and its time instant as Fid = ⟨(xid, yid), tid⟩.
Finally, two arrays Xid[1..z] and Yid[1..z] store the cumulative movement from the
beginning of the trajectory until the end of each phrase. Figure 14 shows an example.

To compute the position of object id at time instant tq, we find the phrase that
contains tq with j = rank1(L, tq − tid). The cumulative movement until the beginning
of that phrase is (Xid[j − 1], Yid[j − 1]). Since the jth phrase starts at time instant
t = tid + select1(Lid, j), we have computed the cumulative movement until t− 1.

We now have to add the cumulative movement from t to tq. This is obtained from
R[Pid[j]..Pid[j]+ t− tq], since that substring of the reference is equal to the one we are
querying. That sum of movements can be computed in constant time in the reference
as ∆(Pid[j] + tq − t)−∆(Pid[j]− 1), where

∆(i) = (select1(Xp, i)− select1(Xn, i), select1(Yp, i)− select1(Yn, i)),

is computed with the structures defined by ContaCT on R; recall Section 3.7.2.
By both results we obtain the total displacement of the object from the beginning

to tq. The location of the object at tq is computed by adding that displacement to
(xid, yid):

(xid, yid) + (Xid[j − 1], Yid[j − 1]) + ∆(Pid[j] + tq − t)−∆(Pid[j]− 1).

Figure 14 shows how the cumulative movement is computed for tq = t10. This is
the 8th movement of the trajectory because tq − tid = 8. That movement lies on the
second phrase because rank1(L, 8) = 2. This phrase starts at the time instant t =
t2 + select1(L, 8) = t8. Therefore the cumulative movement from the beginning of the
trajectory until t7 is (5, 2). The remaining displacement from t8 to t10 is computed as
∆(10)−∆(7) = (3, 2). Finally, the cumulative movement position until t10 is obtained
as (5, 2) + (3, 2) = (8, 4). This value added to (xid, yid) = (1, 3) results in the position
of the object at t10, (1, 3) + (8, 4) = (9, 7).

7.1.3. Absence of information

In many cases, we lack information about the location of an object at some time
instants, for different reasons (e.g., precision errors, low GPS signal, GPS device not
working). We need a mechanism to represent that absence of information. Just as for
GraCT and ContaCT, in RelaCT we use a bitmap Mid[1..n] per log, setting Mid[i] = 1
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Figure 14.: Log structure for RelaCT with a reference and its corresponding trajectory.

Algorithm 2: ObjectPosition(id, tq)

if tq = tid then return (xid, yid);
j ← rank1(Lid, tq);

p← Pid[j];

p′ ← p+ (tq − select1(Lid, j))
dx← ∆(p′).x−∆(p− 1).x;

dy ← ∆(p′).y −∆(p− 1).y;

return (xid +Xid[j − 1] + dx, yid + Yid[j − 1] + dy);

when there is data about the location of the object at tid + i, or else Mid[i] = 0.
The mechanism for obtaining the location of an object works similarly with this

bitmap, but instead of working with time instants, it uses movements. We compute
the movement corresponding to time instant tq as mq = rank1(Mid, tq − tid). A given
movement m is mapped back to its time with t = tid+ select1(Mid,m). We will ignore
this mapping for simplicity in the sequel, still using tq instead ofmq in the descriptions.

7.2. Queries

We now describe how the queries are handled with this data structure. The first three
simple queries take constant time. As a consequence, the complexities of the following,
more complex, queries is identical to those of ContaCT.

7.2.1. Object position

Algorithm 2 summarizes the constant-time procedure we have explained to retrieve
the position of an object at a given time instant, considering absence of information.
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Algorithm 3: ObjectTrajectory(id, tb, te)
result← ∅;
if tid ≥ tb then result← result ∪ ⟨tid, xid, yid⟩ ;
t← max(tb − tid, 1); j ← rank1(Lid, t);

tb ← select1(Lid, j);
te ← select1(Lid, j + 1)− 1;

p← Pid[j];
∆pre ← ∆(p− 1);

while tid + t ≤ te do
dx← ∆(p+ t− tb).x−∆pre.x;

dy ← ∆(p+ t− tb).y −∆pre.y;

result← result ∪ ⟨tid + t, xid +Xid[j − 1] + dx, yid + Yid[j − 1] + dy⟩;
t← t+ 1;

if t = te + 1 then
j ← j + 1; p← Pid[j];

∆pre ← ∆(p− 1);

tb ← te + 1;
te ← select1(Lid, j + 1)− 1;

return result;

Algorithm 4: MBR(id, tb, te)
mx← rmqX(tb, te); my ← rmqY (tb, te);

Mx← rMqX(tb, te); My ← rMqY (tb, te);
minx ← Best(id, {mx, tb, te}, X, x,min); miny ← Best(id, {my, tb, te}, Y, y,min);

maxx ← Best(id, {Mx, tb, te}, X, x,max); maxy ← Best(id, {My, tb, te}, Y, y,max);

return [minx,miny ]× [maxx,maxy ];

7.2.2. Object trajectory

Algorithm 3 solves this query in optimal time, that is, constant per retrieved position.
It is, in practice, more efficient than querying object positions one by one. The algo-
rithm proceeds by phrases. Lines 3–7 compute the phrase number i, the time interval
[tb, te] it spans, and the starting object position in the reference, p, and in space, ∆pre.
Then it adds the points of this phrase to the trajectory in lines 9–12. Line 13 checks
if we have completed the phrase, in which case the data of the next phrase, i + 1, is
computed in lines 14–17 before continuing.

7.2.3. Minimum bounding rectangle

To compute the MBR that covers the trajectory of an object between two time instants
tb and te, we use the structure of ContaCT that computes the position of the local
minimum and maximum in constant time using at most 3n+o(n) bits per coordinate,
where n is the length of the log. We call those operations rmqD and rMqD, for D ∈
{X,Y }. To compute the final results, we must compare those local extremes with the
values at the endpoints of the queried time interval. To obtain those values to compare,
we use the same procedure of the ObjectPosition query.

Algorithm 4 shows the pseudocode for this constant-time query. The minima and
maxima of the local extremes, for both coordinates, are computed in mx, my, Mx,
and My. The comparison with the endpoints is done by Best, which is depicted in
Algorithm 5.

More than an algorithm, Best should be regarded as a macro to avoid writing similar
code 4 times. It receives in pos a list of positions to compare, in D/d the coordinate
(X/x or Y /y), and in Op what to take from the values (minimum or maximum).
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Algorithm 5: Best(id, pos, D, d, Op)
values← ∅;
for m ∈ pos do

i← rank1(Lid,m);
p← Pid[i];

p′ ← p+ (m− select1(Lid));

values← values ∪ {did +Did[i− 1] + ∆(p′).d−∆(p− 1).d};
return Op(values);

Algorithm 6: TimeSlice(R, tq)

τ ← ⌊tq/δ⌋ × δ;
candidates← Sτ .intersect(R);

result← ∅;
for id ∈ candidates do

p← ObjectPosition(id, tq);

if p ∈ R then result← result ∪ {id} ;
return result;

Algorithm 7: TimeInterval(R, tb, te)
result← ∅; checked← ∅;
τb ← ⌊tb/δ⌋; τe ← ⌈te/δ⌉;
for i ∈ [τb, τe] do

τ ← i× δ;
candidates← Sτ .intersect(R);

for id ∈ candidates do
if id ̸∈ checked then

if Contained(id, R, tb, te) then result← result ∪ {id} ;
checked← checked ∪ {id};

return result

Algorithm 8: Contained(id, R, tb, te)

if te − tb < λ then
T ← ObjectTrajectory(id, tb, te)

for ⟨t, p⟩ ∈ T do
if p ∈ R then return true;

return false

else
mbr ← MBR(id, tb, te);
if mbr ⊆ R then return true ;

if mbr ∩R = ∅ then return false ;

tm ← tb + ⌊(te − tb)/2⌋
return (Contained(id, R, tb, tm) or Contained(id, R, tm + 1, te))

7.2.4. Time Slice

We retrieve the objects that are within a region R at a time instant tq by computing
their position at tq with ObjectPosition, and checking if they are within R. We use the
preceding snapshot, at time τ ≤ tq < τ + δ, to find the candidates that have chances
of being within R at time tq, namely those whose MBR in the snapshot (which covers
their positions in [τ, τ + δ − 1]) intersects R. Algorithm 6 shows the pseudocode.
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Algorithm 9: Knn(K, pq, tq)

Qc ← ∅; Qr ← ∅, capped to size K;

τ ← ⌊tq/δ⌋ × δ;

Qc.add(⟨Sτ .root, 0,+∞⟩);
while Qc ̸= ∅ and (|Qr| < K or Qc.min < Qr.max) do
⟨e, l, h⟩ ← Qc.pop();
if e is an internal node then

for node ∈ e.children do
⟨lnew, hnew⟩ ← distances(node.R, pq);

Qc.add(⟨node, lnew, hnew⟩);

else
for id ∈ node.objects do

pid ← ObjectPosition(pid, tq);
Qr.add(⟨id, d(pid, pq)⟩);

return Qr;

7.2.5. Time Interval

Retrieving the objects that are within a region R at any time instant of the interval
[tb, te] can be solved similarly to Time Slice. As seen in Algorithm 7, we take the snap-
shots covering any time instant in [tb, te] and search them looking for the candidates
(lines 2–5). For each candidate, the algorithm checks if it is contained within R at
any time instant of [tb, te]. The set checked is used to avoid checking several times the
objects that appear in more than one snapshot.

An object is checked to be contained in R during [tb, te] in Algorithm 8. Lines 7–9
compute the object’s MBR and checks for two immediate inclusion-exclusion condi-
tions (MBR contained in or disjoint with R). If those are not met, the time interval is
partitioned in two halves and those are recursively checked in line 11. Lines 1–5 handle
short enough intervals, defined by a parameter λ, by directly obtaining the object’s
trajectory and checking its positions one by one.

7.2.6. Nearest neighbour queries

To obtain the K objects closest to a point pq at a time instant tq, we proceed as
in Algorithm 9. The algorithm takes the snapshot Sτ that covers the time interval
[τ, τ + δ− 1] containing tq, and traverses its R-tree nodes according to their proximity
to the point pq. The leaf nodes with the objects that have more chances to be closer
to pq are then reached earlier. We use a min-heap priority queue Qc to prioritize those
nodes, according to the minimum distance l to R, and breaking ties with the maximum
distance h. In every iteration the algorithm takes the element on top of Qc. If it is an
internal R-tree node, its children are reinserted to Qc (lines 6–9). If, instead, it is a
leaf, lines 11–13 insert its objects prioritized by their precise distance to pq at time tq,
into a min-heap Qr capped to size K.

The algorithm repeats those steps until there are K elements in Qr and there is no
element in Qc that can improve the distance of the K-th element of Qr with respect
to pq. That is, the object on top of Qc has an l value larger than the distance of the
last element on Qr (line 4). The result is the set of K elements of Qr.

38



7.2.7. Complex nearest neighbour queries

For KNN of trajectories and KNN during an interval, the algorithms of RelaCT are
completely identical to those presented in Section 5.1. Recall that there are two stages:
prioritizing the object by using snapshots and refining the object distance bounds. For
the first one, the algorithm traverses the nodes of the R-tree as in GraCT and Con-
taCT, prioritizing the nodes according to their distances to the input data (trajectory
or point) in constant time. In the second stage, since RelaCT can compute the MBR
between two time instants just as in ContaCT, we refine the bounds of the object
distance by applying the same algorithm of ContaCT.

7.3. Speeding up queries

We can improve the time performance of the queries by adding to each log an addi-
tional structure that stores the minimum and maximum value within each phrase for
each axis D ∈ {X,Y }: Dm[1..z] and DM [1..z], respectively. A range minimum query
structure rmqD, using 2z + o(z) bits (Fischer and Heun 2011; Ferrada and Navarro
2017), is added on Dm, and an analogous range maximum query rMqD is added on
DM . In total, the extra structures use 4z log s + 8z + o(z) bits, where s is the size of
the represented two-dimensional space. Those structures replace the original bitvectors
rmqD and rMqD of the basic RelaCT.

With these additional structures, we can compute the MBR of the phrases that are
completely contained in a time interval [tb, te] without accessing the reference. More
precisely, the MBR of the phrases wi . . . wj is

[Xm[rmq(Xm, i, j)], Ym[rmq(Ym, i, j)]]×
[XM [rMq(XM , i, j)], YM [rMq(YM , i, j)]].

While these structures do not affect the worst-case complexities of the queries, they
can be used to improve the practical performance of MBR and Time Interval queries.

7.3.1. Minimum Bounding Rectangle

To compute MBR on the interval [tb, te], let us assume that wi . . . wj are the phrases
completely contained in the queried time interval. The MBR of those whole phrases,
MBRC , can be computed as shown above. The result of the query will be MBRC ,
except when the phrases that are not completely contained but intersect [tb, te] can
change it. We compute the MBRs of those (whole) phrases, wi−1 and wj+1, as

MBRi−1 = [Xm[i− 1], Ym[i− 1]]× [XM [i− 1], YM [i− 1]]

MBRj+1 = [Xm[j + 1], Ym[j + 1]]× [XM [j + 1], YM [j + 1]].

If MBRi−1 and MBRj+1 are completely contained within MBRC , then there is
nothing else to do. Otherwise, the part of the trajectory not covered by wi . . . wj

might enlarge MBRC . Thus, if MBRi−1 ̸⊆ MBRC , we compute MBR on the interval
[tb, t

′
e] ⊆ [tb, te] that overlaps the phrase wi−1, using the reference as we explained in

Section 7.2.3, and enlarge MBRC so as to contain that MBR. We handle MBRj+1

analogously. After those adjustments, MBRC is the answer to the query.
Figure 15 illustrates an example, where we compute MBR from time instant t8 to

t41. Here, MBRC covers the phrases w3w4w5w6 and the time interval [t14, t36]. It is
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computed using the arrays Xm, Ym, XM , and YM , and their rmq and rMq structures.
The values pointed by the range minimum and maximum structures are marked in
bold. We obtain MBRC = [2, 0] × [7, 6]. The MBR of the phrases at the extremes
(w2 and w7) are computed by directly accessing the arrays of minima and maxima.
Hence, we have MBR2 = [2, 1] × [4, 2] and MBR7 = [1, 2] × [5, 5]. Since MBR7 is
completely within MBRC but MBR2 is not, we have to compute on the reference the
MBR between time instants t8 and t13. That MBR is [2, 1]× [2, 2], which is completely
contained in MBRC . Therefore, our answer is MBRC .

1 2 4 5 3 2 1 1 3 4 7 6 4 5 5 5

2 1 1 0 0 1 2 3 4 2 3 4 5 6 5 8

XMXm

YMYm

1 2 3 4 5 6 7 8

t1 t6 t14 t22 t26 t30 t36 t46 t56
t8 t41

w1 w2 w3 w4 w5 w6 w7 w8

1 2 3 4 5 6 7 8

MBRC = [2,0] × [7,6]MBRt8−t13 = [2,1] × [2,2]

Figure 15.: Example of computing the minimum bounding rectangle between two time
instants.

This approach avoids as much as possible to use the reference, which speeds up the
MBR query. This also improves the performance of several other queries that directly
use the MBR query, such as the complex nearest neighbour queries.

7.3.2. Time Interval

We now exploit the fact that we can obtain the MBR of a sequence of phrases very
quickly to speed up Time Interval queries, which make intensive use of MBR queries.
Concretely, for each candidate, this query performs a binary search with such queries.

We go further than merely exploiting the faster MBR algorithm obtained in the
previous section. We maintain the binary search, but work on whole phrases as much
as possible, because computing their MBR is faster. We exploit the fact that, if the
MBR of a sequence of phrases overlapping [tb, te] is contained in R, then the object
qualifies.

Let wi−1 . . . wj+1 the phrases that minimally contain [tb, te]. Our algorithm com-
putes the MBR of the current interval of phrases without resorting to the reference.
If it is contained in R, the object is added to the output and we finish. Otherwise,
the interval of phrases [i− 1..j + 1] is halved (into whole references) and we continue
recursively by each subinterval. When the interval is formed by a single phrase whose
MBR is not contained in R, we resort to the previous procedure with the time interval
of the phrase. Note also that, in the binary search of phrase sequences, we can also
abort the branches where the MBR is disjoint from R.

Figure 16 shows how we check if an object is contained within R = [5, 5] ×
[5, 5] during the interval [t8, t41]. Those time instants are contained in the phrases
w2w3w4w5w6w7. The algorithm starts computing the MBR covered by all those
phrases, MBR2−7. As it intersects the queried region, we split it into MBR2−4 and
MBR5−7, which cover w2w3w4 and w5w6w7, respectively. Since MBR2−4 does not in-
tersect R, we stop splitting it, and continue recursively with MBR5−7. We continue

40



in this way until reaching the interval of the phrase w7, which covers the time in-
terval [t36, t41]. Since it intersects R, it is partitioned in two halves: MBRt36−t38 and
MBRt39−t41 . Since MBRt36−t38 is completely contained in R, the algorithm stops and
the object is added to the solution.

t1 t6 t14 t22 t26 t30 t36 t46 t56
t8 t41

w1 w2 w3 w4 w5 w6 w7 w8

Reference

MBR2−4

MBR2−7 [0,0] × [5,5]

[0,0] × [3,3]
[4,4] × [5,5]

[4,4] × [4,4] [4,4] × [5,5]
[4,4] × [5,5]

[5, 5] × [5, 5] [4,4] × [4,4]

MBR5−6 MBR7−7

MBR5−7

MBRt39−t41

MBRt36−t41

MBRt36−t38

Figure 16.: Simulation of the procedure to detect if an object is within a region during
an interval of time.

7.4. Experimental evaluation

We experimentally compare RelaCT with GraCT and ContaCT. The evaluation fo-
cuses on larger datasets, which are more repetitive, since RelaCT shows little advan-
tage on the smaller ones. Since the snapshots based on R-trees have shown much better
performance than the original ones, we only test those snapshots.

7.4.1. Large datasets

We build larger variants of the original datasets of Ships and Taxis, with the same
format:

• ShipsLarge: a real dataset from MarineCadastre that contains 19,764 vessels
that move around the coast of the USA during the first four months of 2020.
As in the first experiment, the raster model of this dataset uses a cell size of
10−3 × 10−3 degrees, and the frequency with which an object emits its location
is normalized to regular intervals of 1 minute.

• TaxisLarge: a pseudo-real dataset containing trajectories of 433 taxis in New
York City during 2013. As in the first experiment, the dataset only contains
the origin and destination of each trip, thus each trajectory was computed as
the shortest path between them by taking into account the road network. The
original data are available at NYC Taxis: A Day in the life. The cell size of the
raster model is 10−5×10−5 degrees, and the signals are taken at regular intervals
of 15 seconds.

As before, Table 2 shows the dimensions of the datasets, their size in plain form,
binary form, and p7zip-compressed. The compression ratios of p7zip are around 8%
and 20% in ShipsLarge and TaxisLarge, respectively.
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ShipsLarge TaxisLarge

Total objects 19,765 433
Total points 671,088,660 851,369,612
Max x 1,199,974 1,379,380
Max y 891,731 664,900
Max time 262,079 2,102,691
Size Plain 16,838.92 MB 20,480.00 MB
Size Bin 7,040.00 MB 8,931.22 MB
Size p7zip 574.69 MB 1,738.86 MB

Table 2.: Large datasets and their dimensions.

7.4.2. Compression

We built GraCT, ContaCT, and RelaCT on both datasets, with δ values 30, 60, 120,
240, 360, and 720. We have variants ContaCT and ContaCT-SD, as in Section 5.4.
Since the reference of RelaCT is represented with ContaCT, we have the corresponding
configurations RelaCT and RelaCT-SD. In addition, the RelaCT configurations that
include the structure for speeding up the queries (Section 7.3) are suffixed with ‘+’.

Figure 17 shows the size of those structures and the compression ratios. In both
datasets, GraCT obtains the best compression ratio. In ContaCT and RelaCT, the
variants using sparse bitmaps are the smallest ones.

GraCT is still the only structure that outperforms the compression ratios of
p7zip, whereas ContaCT-SD uses around 3.7 and 1.6 times more space than p7zip
in ShipsLarge and TaxisLarge, respectively. RelaCT-SD and RelaCT-SD+ are be-
tween both. For example, the configuration of GraCT with the space-time trade-off
δ = 120 uses 81% and 77% of the space required by RelaCT-SD in ShipsLarge

and TaxisLarge, respectively. On the other hand, RelaCT-SD is much smaller than
ContaCT-SD.

The relative compression of trajectories is a good approach to use space close to
grammar compression, while computing object positions and MBRs in constant time.
To solve MBR and Time Interval queries faster, RelaCT-SD+ increases the space of
RelaCT by around 8%–60%. The next experiments measure the time performance
achieved.

7.4.3. Query performance

We test the query performance of the different structures on both large datasets, using
the same settings defined in Section 6.2.

Figure 18a shows that all the RelaCT variants have similar time performance for
ObjectPosition queries. It was expected that the ’+’ variants perform similarly as
the basic ones, since they do not affect this query. ContaCT and ContaCT-SD are
1.5–2.5 times faster than RelaCT, but use nearly twice the space. GraCT is twice as
slow as RelaCT on ShipsLarge, but uses about half its space, with δ = 240. The
situation is similar on TaxisLarge, except that GraCT is now many times slower than
RelaCT. Overall, RelaCT-SD offers a very relevant tradeoff for this query.

ObjectTrajectory queries behave in a similar way. However, as shown in Fig-
ure 18b, there is a noticeable difference between the RelaCT structures that use plain
(RelaCT and RelaCT+) and sparse bitmaps (RelaCT-SD and RelaCT-SD+). The
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Figure 17.: Compression ratios of the structures with different values of δ.

cause of this difference is that computing the displacements on the reference with
ContaCT-SD is slower than with ContaCT; observe that the original ContaCT is 1.7–
1.9 times faster than ContaCT-SD on the same kind of queries. RelaCT is also slower
than ContaCT, because it incurs the cost of synchronizing every phrase with the refer-
ence. In addition, no RelaCT variant is competitive with GraCT in space-time. Thus,
RelaCT does not stand out for this query.

The time performance on MBR queries is similar to that of ObjectPosition, but on
ShipsLarge, RelaCT+ and RelaCT-SD+ improve by up to 1.4 times the performance
of RelaCT and RelaCT-SD, respectively. Instead, there is no significant difference on
TaxisLarge. The RelaCT variants are 3.0–5.5 times faster than GraCT, and 40%-
100% slower than ContaCT. Relative compression is 1.25 times worse than GraCT in
space consumption, but it obtains the best space-time trade-off in MBR queries: they
are only slightly slower than ContaCT while using about half the space.

Figure 19 shows the performance for spatio-temporal queries. In TimeSlice with
both large and small regions, the variants of RelaCT obtain competitive times com-
pared to the remaining structures. On ShipsLarge, the RelaCT-SD variants reach very
similar time and space to GraCT, with δ = 120. In TaxisLarge, instead, RelaCT-SD
becomes 2%–15% faster than GraCT using slightly more space. It is also slightly slower
than ContaCT, using about half the space. Since this query only involves one time
instant, the structures labelled with ‘+’ do not change the performance.

Figures 19c and 19d show that the time performance for TimeInterval worsens in
all the structures with respect to TimeSlice. The TimeInterval algorithm of RelaCT
and ContaCT is different from that of TimeSlice, running a binary search through the
MBRs. This intensive use of MBR queries highlights the difference between RelaCT
and the simpler ContaCT, though much of the gap is recovered with the ’+’-suffixed
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(a) ObjectPosition (b) ObjectTrajectory (c) MBR

Figure 18.: Space and time for trajectory queries.

variants of RelaCT, which are more clearly faster than the basic ones (taking 60%–90%
of their time), at least on ShipsLarge. For example, for TimeInterval L, comparing
the fastest configurations in ShipsLarge, we observe that RelaCT+ and RelaCT-
SD+ are 1.1 times slower than GraCT, and 1.3 times slower with respect to the two
structures of ContaCT.

In general, all the structures obtain comparable performance on spatio-temporal
queries, with GraCT, closely followed by RelaCT, using much less space than Con-
taCT.

The space-time trade-offs for nearest neighbour queries can be observed in Figure 20.
There is no significant time difference between the four RelaCT variants, so RelaCT-
SD is always the best choice for its smaller space usage.

Figure 20a shows that RelaCT-SD is the most interesting variant on for KNN queries
on TaxisLarge: it is just 9% slower than ContaCT-SD and 1.4 times faster than
GraCT with δ = 120, and its space is much closer to that of GraCT than to ContaCT.
On ShipsLarge, instead, GraCT is smaller and 10% faster than RelaCT-SD.

With respect to KNNTrajectory (Figure 20b), GraCT dominates RelaCT-SD with
δ = 120, by around 10% in time. Instead, RelaCT-SD is much faster than GraCT and
1.5 times slower than ContaCT (which needs twice the space) on TaxisLarge.

The last complex nearest neighbour query, KNNInterval, is shown in Figure 20c. On
TaxisLarge the performance is similar to KNNTrajectory, though this time RelaCT-
SD is only 1.4 times faster than GraCT with δ = 120. On ShipsLarge, the RelaCT
variants are faster when δ increases. This can be explained by the larger number of
elements maintained in the priority queues from the beginning of the algorithm, as
more snapshots are covered by the query. For example, before adding each element
to the queue, we have to compute its MBR. This effect is more noticeable in RelaCT
than in ContaCT, whose MBRs are computer faster. On ShipsLarge, GraCT is the
dominant solution, whereas RelaCT-SD offers a very good tradeoff on TaxisLarge.
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(a) TimeSlice S (b) TimeSlice L (c) TimeInterval S (d) TimeInterval L

Figure 19.: Space and time for spatio-temporal queries.

(a) KNN (b) KNNTrajectory (c) KNNInterval

Figure 20.: Space and time for nearest neighbour queries.

7.5. Discussion

Overall, RelaCT-SD is the most remarkable variant. There are small differences with
the performance of RelaCT, but the compression is better. This technique offers times
slightly over those of ContaCT, but it uses half the space. It uses slightly more space
than GraCT, and has competitive query times. In particular, RelaCT-SD offers an
outstanding space-time tradeoff for ObjectPosition and MBR queries, and it is close
(sometimes better and sometimes worse) to the dominant performance of GraCT for
spatio-temporal and nearest neighbour queries. The worst performance of RelaCT-SD
is obtained in ObjectTrajectory queries, where it is sharply dominated by GraCT.
Note that each phrase that covers the interval of time needs to be synchronized with
the reference, which adds a cost to each processed phrase.

The configurations of RelaCT suffixed with ‘+’ provide a new space-time tradeoff,
being clearly faster in MBR and TimeInterval. Indeed, they reduce the gap with GraCT
in time performance of TimeInterval. However, the difference in space consumption
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between GraCT and those variants increases.

8. Conclusions

Previous work has demonstrated that compressed indexes for large collections of object
trajectories in free space can compete with classical indexes in query performance
while using orders of magnitude less space. In this work we introduce new algorithms
and data representations that yield stronger compressed indexes, in terms both of
functionality and of space-time performance.

(1) We introduce new algorithms for more sophisticated nearest-neighbour queries.
Previous compressed indexes could only find the objects that were closest to a
spatial point at a certain time instant. We now consider the queries KNN on
an interval and KNN of trajectories, which have been studied in the literature
(Gao et al. 2007; Tang et al. 2011). The former extends the basic query to a
time interval, considering the least distance between the object and the query
point during the interval. The second compares object trajectories with a given
trajectory, looking for the maximum distance reached during a time interval.
Our new algorithms solve those more complex queries on the existing compressed
indexes, GraCT (Brisaboa et al. 2019) and ContaCT(Brisaboa et al. 2021), in
about an order of magnitude more time than the basic nearest neighbour query,
but still within a few milliseconds.

(2) Motivated by the fact that estimating the MBR of an object during a period
of time is key for an efficient nearest neighbour algorithm, we introduce a new
data structure for storing the positions of the objects at sampled times during
the trajectories, based on R-trees instead of the quadtree-like data structure
used in previous compressed structures. The R-tree maintains the MBR of the
object during the sampled time period and, without increasing the space of the
data structures, improves the performance of all nearest neighbour queries by
a factor of 2–10. The new representation in fact improves the times for all the
other queries, reaching speedups of two orders of magnitude on spatio-temporal
queries.

(3) Motivated by the fact that ContaCT uses twice the space of GraCT, but it
is much faster at computing object positions and MBRs, two of the most basic
queries, we define RelaCT, a new compressed index that exploits redundancies in
the trajectories using Relative Lempel-Ziv, a compression method that provides
fast random access to the data. This is in contrast to the grammar-compression
used by GraCT, which is slower for access. On large repetitive datasets, RelaCT
uses about half the space of ContaCT and is only slightly slower. Instead, it uses
slightly more space than GraCT and offers competitive query times, particularly
outperforming it on the mentioned queries. RelaCT then provides a new relevant
tradeoff between both previous compressed indexes.

A relevant future work direction is to introduce dynamism in these compressed
indexes. Right now, all of them are static, so they must be rebuilt in order to add or
remove new objects, and extend or modify trajectories. The easiest of those challenges
is to extend already existing trajectories, as this involves appending movements to the
logs and possibly create new snapshots. In the case of GraCT, this implies adapting
the context-free grammar to accommodate longer strings. This could be achieved by
replacing RePair (Larsson and Moffat 2000), which is an offline grammar compressor,
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by an online version like FOLCA (Maruyama et al. 2013). ContaCT and RelaCT are
even easier to adapt, as their construction is already online. Other kinds of updates, like
modifying past trajectories or adding/removing objects, are more complex and require
not only rebuilding logs, but also updating snapshots. While k2-trees offer dynamic
versions (Brisaboa, Bernardo, and Navarro 2012), we are unaware of any compressed
dynamic R-tree data structure, only the classic pointer-based one (Guttman 1984).

Another research direction of interest is to further expand the functionality with
new queries that have been shown to be useful in the literature. For example, we
could extend the functionality of the structures to detect moving-together patterns
(Gudmundsson, Kreveld, and Speckmann 2004; Alamri, Taniar, and Safar 2013), that
is, objects that move together during a period of time. This query could be solved
by obtaining the closest objects from a snapshot, and refining their proximity with
a similarity function applied on the objects’ MBRs. With a similar approach, those
structures could also detect common patterns between trajectories (trajectory cluster-
ing) (Lee, Han, and Whang 2007) and mine sequential patterns from trajectories (Cao,
Mamoulis, and Cheung 2005), two important tasks in applications related to travel
recommendation or life pattern understanding.
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Brisaboa, Nieves R., Adrián Gómez-Brandón, Gonzalo Navarro, and José R. Paramá.
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Chen, Lei, M Tamer Özsu, and Vincent Oria. 2005. “Robust and fast similarity search
for moving object trajectories.” In Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, 491–502.

48



Cheng, Yachang, Wolfgang Fiedler, Martin Wikelski, and Andrea Flack. 2019.
““Closer-to-home” strategy benefits juvenile survival in a long-distance migra-
tory bird.” Ecology and evolution 9 (16): 8945–8952.

Cudre-Mauroux, P., E. Wu, and S. Madden. 2010. “TrajStore: An adaptive storage
system for very large trajectory data sets.” In Proc. 26th IEEE International
Conference on Data Engineering (ICDE), 109–120.

Douglas, D. H., and T. K. Peuker. 1973. “Algorithms for the Reduction of the Num-
ber of Points Required to Represent a Line or its Caricature.” The Canadian
Cartographer 10 (2): 112–122.

Eiter, Thomas, and Heikki Mannila. 1994. “Computing discrete Fréchet distance.”
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