Alphabet-Independent Compressed Text
Indexing *

Djamal Belazzougui! and Gonzalo Navarro?

! LIAFA, Univ. Paris Diderot - Paris 7, France. dbelaz@liafa. jussieu.fr
2 Department of Computer Science, University of Chile. gnavarro@dcc.uchile.cl

Abstract. Self-indexes can represent a text in asymptotically optimal
space under the k-th order entropy model, give access to text substrings,
and support indexed pattern searches. Their time complexities are not
optimal, however: they always depend on the alphabet size. In this pa-
per we achieve, for the first time, full alphabet-independence in the time
complexities of self-indexes, while retaining space optimality. We obtain
also some relevant byproducts on compressed suffix trees.

1 Introduction

Text indexes, like the suffix tree [1] and the suffix array [18], can count the
occurrences of a pattern P[1,m] in a text T[1,n] over alphabet [1,0] in time
teount = O(m) or even teount = O(m/1g, n) (suflix trees), or teount = O(m +lgn)
(suffix arrays). Afterwards, they can locate the position of any such occurrence
in T in time #jocate = O(1). As the text is available, one can eztract any substring
Tli,i+ £ — 1] in optimal time textrace = O(£/1g, n). Yet, their O(nlgn)-bit space
complexity renders these structures unapplicable for large text collections.

Compressed text self-indezes [21] represent a text T'[1, n] over alphabet [1, 0]
within compressed space and allow not only extracting any substring of T', but
also counting and locating the occurrences of patterns.

A popular model to measure text compressibility is the k-th order empirical
entropy [19], Hi(T). This is a lower bound to the bits per symbol emitted by any
statistical compressor that models T considering the context of k& symbols that
precede (or follow) the symbol to encode. It holds 0 < Hy(T) < Hx_1(T) < lgo.

Starting with the FM-index [9] and the Compressed Suffix Array [16, 23],
self-indexes have evolved up to a point where they have reached asymptotically
optimal space within the k-th order entropy model, that is, nHy(T) + o(nlgo)
bits [24, 14, 10,21, 11, 3, 2]. While remarkable in terms of space, self-indexes have
not retained the time complexities of the classical suffix trees and arrays.

Table 1 lists the current space-optimal self-indexes. All follow a model where
a sampling step s is chosen (which costs O((nlgn)/s) bits, so at least we have
s = w(lg, n) for asymptotic space optimality), and then locating an occurrence

* Partially funded by the Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile. First author also partially sup-
ported by the French ANR-2010-COSI-004 MAPPI Project.

costs s multiplied by some factor that depends on the alphabet size ¢. The
time for extracting is linear in s + ¢, and is also multiplied by the same factor.
There are some recent results [2] where the concept of asymptotic optimality is
carried out one step further, achieving o(nHy(T))+o(n) C o(nlgo) extra space.
The only structure achieving locating and extracting times independent of o is
Sadakane’s [24], yet its counting time is the worst. Note that a recent FM-index
[11] achieves O(m) counting, O(s) locating, and O(s + £) extraction time when
the alphabet is polylogarithmic in the text size, o = O(polylog(n)).

Ounly the structures of Grossi et al. [14] escape from this general scheme,
however they need to use more than the optimal space in order to achieve alpha-
bet independent times. By using (2 + ¢)nHy(T') + o(nlgo) bits, for any € > 0,
they achieve the optimal O(m/lg,n) counting time, albeit with an additive
polylogarithmic penalty of p(n) = O(lgf,3+5)/(1+s) nlg? o). They can also achieve
sublogarithmic locating time, O(lgl/ (1+e) n). Finally the extraction time is also
optimal plus the polylogarithmic penalty, O(¢/lg, n + p(n)).

Source|Space (+0((nlgn)/s)) Counting Locating Extracting

[14] nHy + o(nlgo) O(mlgo +1g*n)| O(slgo) | O((s + £)1go)
[24] nHy + o(nlgo) O(mlgn) O(s) O(s+9)

[11] nHy + o(nlgo) O(mlgkf;n) O(s 15;1) O((s+¢) 15;;771)
(3] nHy + o(nlgo) O(mlglgo) |O(slglgo)|O((s+¢)lglgo)
(2] nHy + o(nHy) + o(n) O(mléglggn) O(s 15;”) O((s+¢) 1;%;n)
2] nHy + o(nHg) +o(n) | O(mlglgo) |O(slglgo)|O((s+¢)1glgo)
Ours |nHy + o(nHi) + O(n) O(m) O(s) O(s+19)

Table 1. Current and our new complexities for self-indexes, for the case lgo =
w(lglgn). The space results (in bits) hold for any k < «alg_(n) — 1 and constant
0 < a < 1, and any sampling parameter s. The counting time is for a pattern
of length m and the extracting time for ¢ consecutive symbols of T'. The space for
Sadakane’s structure [24] refers to a more recent analysis [21]; see also the clarifica-
tions in www.dcc.uchile.cl/gnavarro/fixes/acmcs06.html.

Our main result in this paper is the last row of Table 1. We achieve for
the first time full alphabet independence for all alphabet sizes, at the price of
converting an o(n)-bit redundancy into O(n). This is an important step towards
leveraging the time penalties incurred by asymptotically optimal space indexes.

We apply various techniques to achieve our result. The general strategy is
to find an alternative to the use of rank operation on sequences, on which all
FM-based indexes build, and for which no constant-time solution is known. We
combine FM-indexes with concepts of Compressed Suffix Arrays, monotone min-
imum perfect hash functions, and compressed suffix trees. As a byproduct we
enhance Sadakane’s compressed suffix tree [25], which uses O(n) bits on top
of an underlying self-index, with a data structure using O(nlglgo) bits that
speeds up the important child operation; the only one that still depended on the
alphabet size and now is also freed from that dependence.

Sections 2 and 3 give the necessary background on self-indexes and monotone
minimal perfect hash functions (mmphfs). The latter section finishes with a

simple illustration of the power of mmphfs to achieve alphabet independence
on locating and extracting time on FM-indexes. This is not in the main path
to achieve alphabet independence on counting as well, however, so in Section 4
we reimplement locating and extracting using constant-time select operations.
Section 5 shows how to use mmphfs to improve the child operation on suffix
trees, and this is used in Section 6 to reduce the search time on suffix trees.
These results are of general interest, but are not used in Section 7, where we
use (compressed) suffix trees in a different way to finally achieve linear counting
time (in combination with the results of Section 4).

2 Compressed Self-Indexes

An important subproblem that arises in self-indexing is that of representing a
sequence S[1,n] over an alphabet [1, 0], supporting the following operations:

— access(S,i) = S[i], in time taccess-
— rank.(S,) is the number of times symbol ¢ appears in S[1,4], in time ¢,ank.
— select.(S,1) is the position in S of the ith occurrence of ¢, in time tseject.

For the particular case of bitmaps, constant-time operations can be achieved
using n + o(n) bits [20], or Ig () + O(Iglgm) + o(n) = nHo(S) + O(m) + o(n)
bits, where m is the number of 1s (or 0s) in S [22]. General sequences can
also be represented within asympotically zero-order entropy space nHy(S) =
Zce[l,a] nelg nﬂc, where n. is the number of times ¢ occurs in S. Among the
many compressed sequence representations [13,11,3,2,15], we emphasize two
results for this paper. The first corresponds to Thm. 1, variant (¢), of Barbay
et al.’s recent result [2]. The second is obtained by using the same theorem,
vet replacing Golynski et al.’s representation [13] for the sequences of similar
frequency, by another recent result of Grossi et al. [15] (the scheme compresses
itself to Hy(S) + o(]S|lgo) bits, but with more restrictions; when combining
with Barbay et al. we only need that it takes |S|lgo + o(]S|lg o) bits).

Lemma 1 ([2,15]). A sequence S[1,n] over alphabet [1,0] can be represented
within nHo(S) +o(n(Ho(S)+1))+O(clgn) bits of space, so that the operations
are supported in times either (1) taccess = trank = O(lglg o) and tselect = O(1), or
(2) tselect = trank = O(lg Ig U) and taccess = O(l)

The FM-index [10] is a compressed self-index built on such sequence repre-
sentations. In its modern form [11], the index computes the Burrows-Wheeler
transform [6] of a text T'[1,n], T*"*[1,n], then cuts it into O(c*) partitions, and
represents each partition as a sequence supporting rank and access operations.
From their analysis [11] it follows that if each such sequence S is represented
within |S|Ho(S) +o(|S|Ho(S)) +o(]S|) + O(o 1g n) bits of space, then the overall
space of the index is nHy(T) +o(nHy(T)) +o(n) +O(c**+11gn). The latter term
is usually removed by assuming k < a/lg,(n) —1 and constant 0 < « < 1. This is
precisely the space Barbay et al. [2] achieve, and the best space reported so far
for compressed text indexes under the k-th order entropy model (see Table 1).

A fundamental operation of the FM-index is the so-called LF-mapping LF (i) =
Clc] + rank.(T" i), where ¢ = T*"![i]. Here C is a small array storing in C|c|
the number of occurrences in T' of symbols < ¢. The LF-mapping is used with
various purposes. The BWT T?% is actually aligned with the suffix array [18]
A[l,n] of T[1,n], so that T*"![i] = T[A[i] — 1]. The suffix array points to all
the suffixes of T" in lexicographic order, and thus the occurrences of any pattern
P[1,m] in T appear in a range of A[sp, ep]. The meaning of the LF-mapping is
that, if Afi] = j, then A[LF(i)] = j — 1, that is, it lets us move virtually back-
wards in T', while using suffix array positions. The FM-index marks the partitions
of the BWT in a sparse bitmap P that is represented within O(c*lgn) + o(n)
bits and offers constant-time rank and select [22]. Therefore the time to com-
pute the LF-mapping is ¢t F = O(taccess + trank), Where taccess and trank refer to the
times in the representation of the partitions.

The time to compute LF impacts all the times of the FM-index. By using a
sampling step s, which yields extra space O((nlgn)/s) bits, any cell A[i] can be
computed in time O(s-t), and any substring of T" of length ¢ can be extracted in
time O((s+£) -tLg). As no known solution offers t,ank = O(1), we will circumvent
the dependence on tynk in order to achieve ¢ = O(1).

The remaining operation offered by the FM-index is counting, that is, deter-
mining the area A[sp, ep] where pattern P occurs, so that its occurrences can be
counted as ep— sp+1 and each occurrence position can be located using A[i], for
sp < i < ep. Counting is done via the so-called backward search, which processes
the pattern in reverse order. Let A[sp,ep] be the interval for P[i + 1,m], then
the interval for P[i,m] is A[sp’, ep’], where sp’ = C|[c] + rank.(T*"* sp — 1) + 1
and ep’ = Clc]+rank.(T"", ep), where ¢ = P[i]. This requires computing O(m)
times operation rank, yet this rank operation is of a more general type than for
LF (i.e., it does not hold T""![i] = ¢ for rank.(T*"*,i)), and therefore achieving
linear time for it will require a more elaborate technique.

The other family of self-indexes are Compressed Suffix Arrays (CSAs) [16,
24, 14]. Here the main component is function ¥ (i) = A~1[A[i] + 1], which is the
inverse of function LF. The array ¥ is represented directly within compressed
space and giving constant access time to any value. A sparse bitmap DI[1,n] is
stored, so that we mark positions ¢ = 1 and the positions 7 such that T[A[i]] #
T[A[i — 1]]. In addition, the distinct symbols of T are stored in a string Q[1, o],
in lexicographic order. By storing D in compressed form [22], D and @ occupy
O(olgn) 4+ o(n) bits and we have constant time rank and select on D. Then we
have T[A[i]] = Q[rank;(D,)]. Moreover, T[A[i] + k] = T[A[¥*(4)]], which gives
any string T[A[i], Ali] + £ — 1] in time O(¥).

This enables a simple binary-search-based suffix array searching for P[1,m)]
in time O(mlgn). By using the same sampling mechanism mentioned for the
FM-index, and considering that this time ¥ virtually moves forwards instead of
backwards in T, we achieve O(s) locating time and O(s + ¢) extracting time.

For completeness we describe the sampling for the CSA. For locating, sample
T regularly every s positions by setting up a bitmap V[1,n] where V[j] = 1
iff A[j] mod s = 0 plus an array Sa[ranki(V,j)] = A[j]/s for those j where

V[j] = 1. To compute A[i], compute successively j = ¥*(j) for k =0,1,...,5—1
until V[j] = 1; then A[i] = Sa[rank,(V,j)] - s + k. For extracting simply store
Srlj] = A1 +s-4] for j = 0,1,...,n/s, then to extract T[i,i + £ — 1],
compute j = | (i — 1)/s] and extract the longer substring T'[j - s+ 1, + £ — 1].
Since the extraction starts from A[St[j]] we obtain the first character as ¢ =
T[A[St[j]]] = ranki(D, St[j]), and we use ¥ to find the positions in A pointing
to the consecutive characters to extract.

3 Monotone Minimal Perfect Hash Functions

A monotone minimal perfect hash function (mmphf) [4,5] f:[1,u] — [1,n], for
n < u, assigns consecutive values 1,2,...,n to domain values u; < ug < ... <
Uy, and arbitrary values to the rest. Seen another way, it maps the elements of
a set {uy,uz,...,u,}t C [1,u] into consecutive values in [1,n]. Yet a third view
is a bitmap B[1,u] with n bits set; then f(i) = rank;(B,i) where B[i] = 1 and
f(3) is arbitrary where BJi] = 0.

A mmphf on B does not give sufficient information to reconstruct B, and
thus it can be stored within less than Ig (;‘L) bits, more precisely O(nlglg * +n)
bits. This allows using it to speed up operations while adding an extra space
that is asymptotically negligible.

As a simple application of mmphfs, we show how to compute the LF-mapping
on a sequence S[1,n] within time O(taccess), by using additional O(n(lg Hy + 1))
bits of space. For each character ¢ appearing in the sequence we build a mmphf f,.
which records all the positions at which the character ¢ appears in the sequence.
This hash function occupies O(n.(lglg ;- + 1)) bits, where n is the number of
occurrences of ¢ in S. Summing up over all characters we get additional space
usage O(n(lg Hy + 1)) bits by using the log-sum inequality?.

The LF-mapping can now be easily computed in time O(taccess) as LF (i) =
Clc] + f.(i), where ¢ = T"*[i], since we know that f. is well-defined at c.
Therefore the time of the LF function becomes O(1) if we have constant access
time to the BWT. Consider now partitioning the BWT as in the FM-index [11].
Our extra space is O(]S|(lg Ho(S) + 1)) within each partition S of the BWT. By
the log-sum inequality again* we get total space O(n(lg Hy(T) + 1)). We obtain
the following result.

Lemma 2. By adding O(n(lg H,(T) + 1)) bits to an FM-index built on text
T[1,n] over alphabet [1,0], one can compute the LF-mapping in time t g =
O(taccess), Where taccess 1S the time needed to access any element in Thwt,

We choose the sequence representation (2) of Lemma 1, so that taccess = O(1).
Thus we achieve constant-time LF-mapping (Lemma 2) and, consequently, locate
time O(s) and extract time O(s + £), at the cost of O((nlgn)/s) extra bits.

3 Given n pairs of numbers a;,b; > 0, it holds SailgE > P ai)lg %Z[". Use a; =

ne/n and b; = —a; lga; to obtain the claim.
4 This time using a; = |SZ| and b; = |Sl| lgHo(Si).

The sequence representation for each partition S takes |\S|Ho(S)+o(|S|Ho(S))+
o(|S]) + O(olgn) bits. Added over all the partitions [11], this gives the main
space term nHy(T) + o(nHg(T)) + o(n) + O(c**11gn), as explained. On top of
this, Lemma 2 requires O(n(lg H(T') + 1)) bits. This is o(nHy(T')) + O(n) if
Hi(T) = w(1), and O(n) otherwise.

Theorem 1. Given a text T[1,n] over alphabet [1, 0], one can build an FM-index
occupying nHy,(T)+o(nHy(T))+O(n+(nlgn)/s+a*+11gn) bits of space for any
k>0 and s > 0, such that counting is supported in time teoun = O(mlglgo),
locating is supported in time tiocate = O(S) and extraction of a substring of T of
length £ in time textract = O(s + £).

In order to improve counting time to O(m), however, we will need a much
more sophisticated approach that cannot be combined with this first simple
result. This is what the rest of the paper is about.

4 Fast Locating and Extracting using Select

Our strategies for achieving O(m) counting time make use of constant-time select
operation on the sequences, and therefore will be incompatible with Thm. 1.
In this section we develop a new technique that achieves linear locating and
extracting time using constant-time select operations.

Consider the O(c*) partitions of 7. This time we represent each partition
using variant (1) of Lemma 1, so the total space is nHy(T) +o(nHy(T))+o(n) +
O(c**11gn) bits. Unlike the case of access, the use of bitmap P to mark the
beginnings of the partitions and the support for local select in the partitions is
not sufficient to achieve global select on T*®t.

Following Golynski et al.’s idea [13] we set up o bitmaps B, ¢ € [1,0],
of total length n + o(n), as B, = 01™&D017(e2) 01/ where n(c, i)
is the number of occurrences of symbol ¢ in partition S;. So there are overall
n 1s and O(c**1) Os across all the B, bitmaps, and thus all of them can be
represented in compressed form [22] using O(c**1 1gn) bits, answering rank and
select queries in constant time. Now g = ranko(select1 (B, j)) = select1(B., j)—
j tells us the block number where the jth occurrence of ¢ lies in T°%*, and it is
the rth occurrence within S, where r = selecty (B, j) — selecto(B, ¢). Thus we
can implement in constant time operation select.(T?"!,j) = select,(P,q) — 1 +
selecto(Sq,), since the local select operation in S, takes constant time.

It is known [17] that the ¥ function can be simulated on top of T"“! as
W(i) = select.(T"", j), where ¢ = T[A[i]] and i is the j-th suffix in A starting
with c. Therefore we can use bitmap D and string @ so as to compute in constant
time r = rank, (D, 1), c = Q[r], and j =i — select,(D,r) + 1.

With this representation we have a constant-time simulation of ¥ using an
FM-index, and hence we can locate in time tjpcate = O(s) and extract a substring
of length ¢ of T in time texract = O(s + £) using O((nlgn)/s) extra space, as
explained in Section 2. This representation is compatible with the linear-time
counting data structures that are presented next.

5 Improving Child Operation in Suffix Trees

We now give a result that has independent interest. One of the most important
and frequently used operations in compressed suffix trees (CSTs) is also usually
the slowest: operation child(v, c) gives the node that descends from node v by
symbol c, if it exists. For example, if tsa is the time to compute a cell of the
underlying suffix array or of its inverse permutation,® then operation child costs
time O(tsalgo) in Sadakane’s CST [25].

We improve the operation as follows. Given any node of degree d whose d
children are labeled with characters ¢y, co, .. ., ¢q, we store all of them in a mmphf
fu occupying O(dlglgo) bits. As the sum of the degrees of all of the nodes in
the suffix tree is at most 2n — 1, the total space usage is O(nlglg o) bits.

To answer child(v, ¢) we compute f,(c) = and verify that the ¢th child of v,
u, descends by symbol c. If so, then u = child(v,), else v has no child labeled c.

Lemma 3. Given a suffix tree we can build an additional data structure that
occupies O(nlglgo) bits, so as to support operation child(v,c) in the time re-
quired by computing the ith child of v, u, for any given i, plus the time to extract
the first letter of edge (v, u).

Sadakane’s CST represents the tree topology using balanced parentheses. If
we use Sadakane and Navarro’s parentheses representation [26], then the ith
child of node v is computed in constant time, as well as all the other operations
used in Sadakane’s CST. Moreovoer, computing the first letter of the edge (v, u)
takes time O(tsa). Therefore, we reduce the time for operation child(v, ¢) from
O(tsalgo) to O(tsa) at the price of O(nlglg o) extra bits. Sadakane’s CST space
is [CSA|4 O(n) bits, where |C'S A| is the size of the underlying self-index. While
this new variant raises the space to |CSA| + O(nlglgo), it turns out that, for
o = w(1), the new extra space is within the usual o(nlgc) bits of redundancy
of most underlying CSAs (though not all of them [2]).

We note that Sadakane [25] also shows how to achieve time complexity O(tsa)
for child, but at the much heavier expense of using O(nlgo) extra space.

6 Improving Counting Time in Compressed Suffix Trees

Using the encoding of the child operation as described in the previous section
we can find the suffix array interval A[sp, ep| corresponding to a pattern P[1, m]
in time O(m - tsa). We show now how to enhance the suffix tree structure with
O(nlgtsa) extra bits of space so that this operation requires just O(m) time in
addition to that for extracting m symbols from T given its pointer from A.

We use a blind search strategy [8]. We first traverse the trie considering only
the characters at branching nodes (moreover we can make mistakes, as seen
soon). This returns an interval A[sp,ep] whose correctness is then checked at

5In compressed text indexes it usually holds tsa = tiocate. This holds in particular with
the sampling scheme described in Section 2.

the end. We store, in addition to the tree topology and to the data structure of
Section 5, the number of skipped characters at each node whenever this number
is smaller than tsa — 1. If it is larger than that, then we store a special marker.
Then, given a pattern P, we traverse the suffix tree top-down and each time
we have a branching node and we are at character ¢ in the pattern, we use
the result of Section 5 to find the child labeled by ¢ (yet we do not spend
time in verifying it) and continue the traversal from that child. For skipping
the characters during the top-down traversal, we notice that whenever the skip
count of a node is below tsa, we can get it from the node, otherwise we get
it in O(tsp) time using Sadakane’s CST [25], as the string depth of the node
minus that of its parent, depth(v) — depth(parent(v)). Note that because we are
skipping at least tsa characters, the total time to traverse the trie is O(m) (this
is true even if m < tga since we know in constant time whether the next skip
surpasses the remaining pattern). Finally, after we have finished the traversal,
we need to check whether the obtained result was right or not. For that we need
to extract the first m characters of any of the suffixes below the node arrived
at, and compare them with P. If they match, we return the computed range,
otherwise P does not occur in 7.

Lemma 4. Given a text T[1,n] we can add a data structure occupying O(nlgtsa)
bits on top of its CST, so that the suffix array range corresponding to a pattern
P[1,m] can be determined within O(m) time plus the time to extract a substring
of length m from T whose position in the suffix array is known.

This gives us a first alphabet-independent FM-index. We can choose any s =
O(polylog(n)), so that lgtsa = O(lglgn) C o(lgo) whenever lgo = w(lglgn)
(recall that the other case is already solved [11]).

Theorem 2. Given a text T[1,n]| over alphabet [1,0], one can build an FM-
index occupying nHy(T) + o(nlg o) + O((nlgn)/s + o*T1gn) bits of space for
any k > 0 and 0 < s = O(polylog(n)), such that counting is supported in time
teount = O(M), locating is supported in time tiocate = O(s) and extraction of a
substring of T of length £ in time texract = O(s + £).

An unsatisfactory aspect of this theorem is that we have increased the re-
dundancy from o(nH(T)) + O(n) to o(nlgo). In the next section we present a
more sophisticated approach that recovers the original redundancy.

7 Backward search in O(m) time

We can achieve O(m) time and compressed redundancy by using the suffix tree to
do backward search instead of descending in the tree. As explained in Section 2,
backward search requires carrying out O(m) rank operations. We will manage
to simulate the backward search with operations select instead of rank. We will
make use of mmphfs to aid in this simulation.

Weiner links. The backward step on the suffix array range for X = P[i 4+ 1,m]
leads to the suffix array range for ¢cX = P[i,m]. When ¢X corresponds to an
explicit (i.e., branching) suffix tree node (and hence that of X is explicit too),
this operation corresponds to taking a Weiner link [27] on character ¢ = Pli]
from the suffix tree node corresponding to X = P[i + 1,m]. Weiner links are
in some sense the inverses of suffix links, which lead from the suffix tree node
u representing string ¢X to the node v representing string X, slink(u) = v; the
Weiner link by ¢ at node v is u, wlink(v, ¢) = u. If ¢X is not explicit but descends
by string aW from its parent u’, then X descends by aW from a node v’ such
that wlink(v’, ¢) = v/, and v’ is the closest ancestor of v with wlink(-,c) defined.

We use the CST of T' [25], so that each node is identified by its preorder value
in the parentheses sequence. We use mmphfs to represent the Weiner links. For
each symbol ¢ € [1, 0] we create a mmphf w. and traverse the subtree T, rooted
at child(root, c). As we traverse the nodes of T, in preorder, the suffix links lead
us to suffix tree nodes also in preorder (as the strings remain lexicographically
sorted after removing their first ¢). By storing all those suffix link preorders in
function w,., we have that w.(v) gives in constant time wlink(v,) if it exists, and
an arbitrary value otherwise. More precisely w, gives preorder numbers within
T,; it is very easy to convert it to global preorder numbers.

Assume now we are in a suffix tree node v corresponding to suffix array
interval A[sp,ep] and pattern suffix X = P[i + 1,m]. We wish to determine if
the Weiner link wlink(v, ¢) exists for ¢ = P[i]. We can compute w.(v) = u, so
that if the Weiner link exists, then it leads to node wu.

We can determine whether w is the correct Weiner link as follows. First, and
assuming the preorder of u is within the bounds corresponding to 7., we use
the CST to obtain the range A[sp’, ep’] corresponding to w [25]. Now we want
to determine if the backward step with P[i] from A[sp, ep] leads us to A[sp/, ep’]
or not. Lemma 5 shows how this can be done using four select operations.

Lemma 5. Let Alsp, ep] be the suffiz array interval for string X, then A[sp’, ep']
is the suffix array interval for string cX iff

select (T*™t i —1) < sp A select (T* i) > sp, and
select. (T, j) < ep A selecto(T*,j+1) > ep,

where i = sp’ —Clc], j = ep’ — C|¢], C|c] is the number of occurrences of symbols
< c in the text T, and T*"t is the BWT of T.

Proof. Note that the range of A for the suffixes that start with symbol ¢ begins
at A[C[c]+ 1]. Then A[sp'] is the ith suffix starting with ¢, and Alep’] is the jth.
The classical backward search formula (Section 2) for sp’ is given next; then we
transform it using rank/select inequalities. The formula for ep’ is similar.

sp) = Cl +ranko (T sp—1)+1 & i—1 = rank.(T*, sp—1)
& select (T*™1i—1) < sp—1 A select (T i) > sp. O

Thus we have shown how, given a CST node v, compute wlink (v, ¢) or deter-
mine it does not exists in time O(tseect).® Now we describe a backward search
process on the suffix tree instead of on the suffix array ranges.

The traversal. We start at the tree root with the empty suffix Plm + 1,m]. In
general, being at tree node v corresponding to suffix X = P[i + 1, m], we look
for u = wlink(v, ¢) for symbol ¢ = P[i]. If it exists, then we have found node u
corresponding to pattern suffix ¢X = P[i,m] and we are done for that iteration.

If there is no Weiner link from v, it might be that ¢X is not a substring of
T and the search should terminate. However, as explained, it might also be that
there is no explicit suffix tree node for c¢X, but it falls between node u’ repre-
senting a prefix Y of ¢X (¢X = YaW) and node u = child(u', a) representing
string Z, of which c¢X is a prefix.

Our goal is to find node w, which corresponds to the same suffix array interval
of ¢X. For this sake we consider the parent of v, its parent, and so on, until finding
the nearest ancestor v’ such that v’ = wlink(v’, ¢) exists. If we reach the root
without finding a Weiner link, then c¢ is not in 7', and neither is P. Once we have
found u we compute v = child(v’,a) and we finish.

However, computing child would be too slow for our purposes. Instead, we
precompute it using a new mmphf w’, as follows. For each node u = child(u', a)
in T, store v = child(slink(u’), a) in w’; note each v in T is stored exactly once.
The preorders of v follow the same order of u, and thus if we call v’ = wlink(v’, ¢)
(or v’ = slink(u')), we have the desired child in w/,(child(v',a)) = u.

Now, if wlink(v, ¢) does not exist, we traverse v and its successive ancestors v’
looking for w/,(v"). This will eventually reach node u, so we verify correctness of
the mmphf values by comparing (using Lemma 5) the resulting interval directly
with the suffix array interval of v. Note this test also establishes that cX is a
prefix of Z. Only the suffix tree root cannot be dealt with w’,, but we can easily
precompute the o nodes child(root, c).

Actually only function w/, is sufficient. Assume wlink (v, c) = u exists. Then
consider u’, the parent of u. There will also be a Weiner link from an ancestor
v" of v to u'. This ancestor will have a child v” that points to w.(v") = u, and
either v = v or v” is an ancestor of v. So we do not check for wlink(v,c) but
directly v and its ancestors using wy,.

Time and space. The total number of steps amortizes to O(m): Each time we
go to the parent the depth of our node in the suffix tree decreases. Each time we
move by a Weiner link, the depth increases at most by 1, since for any branching
node in the path to «' = wlink(v’, ¢) there is a branching node in the path to v'.
Since we compute m Weiner links, the total number of operations is O(m). All
the operations in the CST tree topology take constant time, and therefore the
time tgelect dominates. Hence the overall time is O(m - tselect)-

As for the space, the subtree T, contains n. leaves and at most 2n. nodes;
therefore mmphf w!, stores at most 2n. values in the range [1,2n]. Therefore it

5 Actually we could by chance get the right range Alsp’, ep'] from an incorrect node,
but this would just speed up the algorithm by finding v ahead of time.

requires space O(n.(lglg 2~ + 1)) bits, which added over all ¢ € [1,0] gives a
total of O(n(lg Ho(T) + 1)}, as in Section 3.

In order to reduce this space we partition the mmphfs according to the O(c*)
partitions of the BWT. Consider all the possible context strings C; of length k,”
their suffix tree node v;, and their corresponding suffix array interval A[sp;, ep;].
The corresponding BWT partition is thus S; = T®%[sp;, ep;], of length n; =
|S;| = ep; — sp; + 1. We split each function w’, into O(c*) subfunctions w?,
each of which will only store the suffix tree preorders that correspond to nodes
descending from v;. There are at most 2n; consecutive preorder values below
node v;, thus the universe of the mmphf w? is of size O(n;). Moreover, the links
stored at w? depart from the subtree that descends from string cC[i], whose
number of leaves is the number of occurrences of ¢ in S;, n(c, 7). Thus the total
space of all the mmphfs is 3. ; O(n(c,i)(Iglg 7t + 1)) = O(n(Ig Hi(T) + 1))

by the log-sum inequality (recall Section 3), as nHy(T) = >, n(c,i)lg COR

Note there are O(c*) nodes with context shorter than k. A simple solution is
to make a “partition” for each such node, increasing the space by O(c*1gn). It
is easy, along our backward search, to know the context C; we are in, and thus
know which mmphf to query.

By combining the results of Section 4, using a sequence representation with
tselect = O(1), with our backward counting algorithm, we have the final result.

Theorem 3. Given a text T[1,n] over alphabet [1, 0], one can build an FM-index
occupying nHy(T) + o(nHg(T)) + O(n + (nlgn)/s + o**11gn) bits of space for
any k > 0 and s > 0, such that counting is supported in time teoue = O(m),
locating is supported in time tiocate = O(S) and extraction of a substring of T of
length £ in time textract = O(s + £).

8 Final Remarks

We have achieved alphabet independence on compressed self-indexes. This refers
not only to time complexities: Even the space usage is independent of o. The
exception is the extra term O(c**11gn), but it rather limits k and it is essentially
unavoidable under the k-th order empirical entropy model [12].

It is open whether we can reduce the O(n) term to o(n), as in the best current
space result [2]. More ambitious is to achieve optimal times within optimal space,
as already (partially) achieved when using enHy,(T) bits for ¢ > 2 [14].

Finally, we have achieved constant times by avoiding the rank operations
on sequences. While no constant-time access/rank/select solution on sequences
within nlgo + o(nlg o) space exist, we are not aware of such a lower bound.

References

1. A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms
on Words, NATO ISI Series, pages 85—96. Springer-Verlag, 1985.

7 Actually the compression booster [7] admits a more flexible partition into suffix tree
nodes; we choose this way for simplicity of exposition.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

22.

23.

24.

25.

26.

27.

. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for com-
pressed rank/select and applications. In ISAAC, pages 315-326, 2010. Part II.

J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings, binary
relations and multi-labeled trees. In SODA, pages 680-689, 2007.

D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hash-
ing: searching a sorted table with o(1) accesses. In SODA, pages 785-794, 2009.
D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Theory and practise of monotone
minimal perfect hashing. In ALENEX, 2009.

M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. J. ACM, 52(4):688-713, 2005.

P. Ferragina and R. Grossi. The string b-tree: A new data structure for string
search in external memory and its applications. J. ACM, 46(2):236-280, 1999.

. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
FOCS, pages 390-398, 2000.

P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552-581,
2005.

P. Ferragina, G. Manzini, V. Makinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Trans. Alg., 3(2):article 20, 2007.
T. Gagie. Large alphabets and incompressibility. Inf. Proc. Lett., 99(6):246-251,
2006.

A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets:
a tool for text indexing. In SODA, pages 368-373, 2006.

R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In SODA, pages 841-850, 2003.

R. Grossi, A. Orlandi, and R. Raman. Optimal trade-offs for succinct string in-
dexes. In ICALP, pages 678689, 2010.

R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In STOC, pages 397406, 2000.

S. Lee and K. Park. Dynamic rank-select structures with applications to run-length
encoded texts. In CPM, pages 95-106, 2007.

U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comp., 22(5):935-948, 1993.

G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407—
430, 2001.

I. Munro. Tables. In FSTTCS, pages 37-42, 1996.

. G. Navarro and V. Méakinen. Compressed full-text indexes. ACM Comp. Surv.,
39(1):article 2, 2007.

R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In SODA, pages 233-242, 2002.

K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In ISAAC, pages 410-421, 2000.

K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Alg., 48(2):294-313, 2003.

K. Sadakane. Compressed suffix trees with full functionality. Theo. Comp. Sys.,
41(4):589-607, 2007.

K. Sadakane and G. Navarro. Fully-functional succinct trees. In SODA, pages
134-149, 2010.

P. Weiner. Linear pattern matching algorithm. In Proc. Ann. IEEE Symp. on
Switching and Automata Theory, pages 1-11, 1973.

