Suffix Arrays in Parallel*

Mauricio Marin Gonzalo Navarro

University of Magallanes University of Chile
Center for Web Research (www.cwr.cl)

Abstract. Suffix arrays are powerful data structures for text indexing.
In this paper we present parallel algorithms devised to increase through-
put of suffix arrays on a multiple-query setting. Experimental results
show that efficient performance is indeed feasible in this strongly se-
quential and very poor locality data structure.

1 Introduction

In the last decade, the design of efficient data structures and algorithms for
textual databases and related applications has received a great deal of attention
due to the rapid growth of the Web [1]. To reduce the cost of searching a full large
text collection, specialized indexing structures are adopted. Suffiz arrays or PAT
arrays [1] are examples of such index structures. They are more suitable than
the popular inverted lists for searching phrases or complex queries composed of
regular expressions [1]. A fact to consider in parallel processing natural language
texts is that words are not uniformly distributed both in the text itself and the
queries provided by the users of the system. This produces load imbalance.

The efficient construction in parallel of suffix arrays has been investigated in
[3,2]. In this paper we focus on query processing. We propose efficient parallel
algorithms for (1) processing queries grouped in batches of @) queries, and (2)
load balancing properly this process when dealing with biased collections of
words such as in natural language.

2 Global suffix arrays in parallel

The suffix array is a binary search based strategy. The array contains pointers
to the document terms, where pointers identify both documents and positions
of terms within them. The array is sorted in lexicographical order by terms. A
search is conducted by direct comparison of the terms pointed to by the array
elements. A typical query is finding all text positions where a given substring
appears in and it can be solved by performing two searches that locate the
delimiting positions of the array for the substring.

We assume a broker (server) operating upon a set of P machines running the
BSP model [4]. The broker services clients’ requests by distributing queries onto

* Partially funded by Millenium Nucleus Center for Web Research, Grant P01-029-F,
Mideplan, Chile.

the P machines implementing the BSP server. We assume that under a situation
of heavy traffic the server processes batches of QQ = g P queries.

A suffix array can be distributed onto the processors using a global index
approach in which a single array of N elements is built from the whole text
collection and mapped evenly on the processors. In this case, each processor
stands for an interval or range of suffixes (lexicographic partition). The broker
machine mantains information of the values limiting the intervals in each ma-
chine and route queries to the processors accordingly. This fact can be the source
of load imbalance in the processors when queries tend to be dinamically biased
to particular intervals. We call this strategy GO.

In the local index strategy, on the other hand, a suffix array is constructed
in each processor by considering only the subset of text stored in its respective
processor. Unlike the global approach, no references to text postitions stored in
other processors are made. However, for every query it is necessary to search in all
of the processors in order to find the pieces of local arrays that form the solution
for a given interval defined by the query. It is also necessary to broadcast every
query to every processor. We have found both theoretically and experimentally
that the global index approach offers the potential of better performance.

A drawback of the global index approach is related to the possibility of load
imbalance coming from large and sustained sequences of queries being routed
to the same processor. The best way to avoid particular preferences for a given
processor is to send queries uniformly at random among the processors. We
propose to achieve this effect by multiplexing each interval defined by the original
global array so that if the array element i is stored in processor p, then the
elements 141, i+ 2, ... are stored stored in processors p+ 1, p+ 2, ... respectively
in a circular manner. We call this strategy G1.

In this case, any binary search can start at any processor. Once a search
has determined that the given term must be located between two consecutive
entries £ and k + 1 of the array in a processor, the search is continued in the
next processor and so on, where at each processor it is only necessary to look
at entry k of the local arrays. In general, for large P, the inter-processors search
can be done in at most log P additional BSP supersteps by performing a binary
search accross processors.

The binary search on the global index approach can lead to a certain number
of accesses to remote memory. A very effective way to reduce this is to associate
with every array entry the first ¢ characters of the terms respectively. The value
of t depends of the average length of terms. This reduced remote accesses to less
than 5% in [2], and less than 1% in our experiments, for relatively small .

In GO we keep in each processor an array of P strings of size ¢ marking
the delimiting points of each interval of GO. The broker machine routes queries
uniformly at random to the P real processors, and in every processor a log P
time binary search is performed to determine to which processor send a given
query (we do so to avoid the broker becoming a bottleneck). Once a query has
been sent to its target processor it cannot migrate to other processors as in the
case of G1. That is, this strategy avoids the inter-processors log P binary search.

3 Experimental results and conclusions

We now compare the multiplexed strategy (G1) with the plain global suffix array
(GO). For each element of the array we keep t characters which are the t-sized
prefix of the suffix pointed to by the array element. We found ¢ = 4 to be a good
value for our text collection. We also implemented the local index strategy, but
it was always at least 3 times slower than GO or G1.

The text collection is formed by a 1GB sample of the Chilean Web retrieved
by the search engine www.todocl.cl. We treated it as a single string of characters,
and queries were formed by selecting positions at random within this string. For
each position a substring of size 16 is used as a query. In the first set of experi-
ments these positions were selected uniformly at random. Thus load balance is
expected to be near optimal. In the second set of experiments we selected at
random only the positions whose starting word character were one of the four
most popular letters of the Spanish language. This produces large imbalance as
searches tend to end up in a subset of the global array. Experiments with an
actual set of queries from users of “todocl” produced similar results to this case.

The experiments were performed on a PC cluster of 16 machines. Runs with
more than 16 processors were performed by simulating virtual processors. At
each superstep we introduced 1024/ P new queries in each processor. Most speed-
ups obtained against a sequential realization of suffix arrays were super-linear.
This was not a surprise since due to hardware limitations we had to keep large
pieces of the suffix array in secondary memory whilst communication among
machines was composed by a comparatively small number of strings.

The whole text was kept on disk so that once the first ¢ chars of a query
were found to be equal to the t chars kept in the respective array element, a disk
access was necessary to verify that the string forming the query was effectively
found at that position. With high probability this required an access to a disk
file located in other processor, case in which the whole query is sent to that
processor to be compared with the text retrieved from the remote disk.

Though we present running time comparisons below, what we considered
more relevant to the scope of this paper is an implementation and hardware
independent comparison among GO and G1. This came in the form of two per-
formance metrics devised to evaluate load balance in computation and communi-
cation. They are the average maximum across supersteps. During the processing
of a query each strategy performs the same kind of operations, so for the case of
computation the number of these ones executed in each processor per superstep
suffices as an indicator of load balance for computation. For communication we
measured the amount of data sent to and received from at each processor in
every superstep. We also measured balance of disk accesses.

Table 1.1 shows results for queries biased to the 4 popular letters. Columns
2, 3, and 4 show the ratio G1/GO for each of the above defined performance
metrics (average maximum for computation, communication and disk access).
These results confirm intuition, that is GO can degenerate into a very poor
performance strategy whereas G1 is a much better alternative. G1 is independent
of the application but, though well-balanced, it tends to generate more message

traffic due to the inter-processors binary searches (specially for large t). The
differences among G1 and GO are not significant for the case of queries selected
uniformly at random. G1 tends to have a slightly better load balance.

|P|c0mp|c0mm| disk” P|comp|comm| disk| P|Biased|Uniform
2| 0.95| 0.90| 0.89|[16] 0.39| 0.35| 0.36 4/ 0.68 0.78
4] 0.49] 0.61| 0.69(|32| 0.38| 0.29| 0.24 8 0.55 0.78
8| 0.43] 0.45| 0.53||64| 0.35| 0.27| 0.17 16| 0.61 0.86
(1) Performance metrics (2) Running times

Table 1. G1/GO ratios.

As speed-ups were superlinear due to disk activity, we performed experiments
with a reduced text database. We used a sample of 1MB per processor which
reduces very significantly the computation costs and thereby it makes much more
relevant the communication and synchronization costs in the overall running
time. We observed an average speed-up efficiency of 0.65.

Table 1.2 shows running time ratios obtained with our 16 machines cluster.
The biased workload increased running times by a factor of 1.7 approximately. In
both cases G1 outperformed GO, but G1 loses efficiency as the number of proces-
sors increases. This is because, as P grows, the effect of the inter-processor binary
searches becomes more significant in this very low-cost computation scenario.

Yet another method which solves both load imbalance and remote references
is to re-order the original global array so that every element of it contains only
pointers to local text (or most of them). This becomes similar to the local index
strategy whilst it still keep global information which avoids the P parallel binary
searches and broadcast per query. Unfortunately we now lose the capability
of performing the inter-processors log P-cost binary search. We are currently
investigating ways of performing this search efficiently using little extra space.

Also note that the above GO strategy can be extended to approximate G1
by partitioning the array in V = k P virtual processors and mapping the V'
pieces of the array in a circular manner on the P actual processors. Preliminary
experiments shows that this strategy tends to significantly reduce the imbalance
of GO at a small k value.

References

1. R. Baeza and B. Ribeiro. Modern Information Retrieval. Addison-Wesley., 1999.
2. J. Kitajima and G. Navarro. A fast distributed suffix array generation algorithm.
In 6th Symp. String Processing and Information Retrieval, pages 97-104, 1999.

3. G. Navarro, J. Kitajima, B. Ribeiro, and N. Ziviani. Distributed generation of
suffix arrays. In 8th Symp. Combinatorial Pattern Matching, pages 102-115, 1997.
LNCS 1264.

4. L.G. Valiant. A bridging model for parallel computation. Comm. ACM, 33:103—
111, Aug. 1990.

