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Since the problem has appeared in unrelated areas, the corresponding algo-rithms and data structures seem to emerge from a great diversity, and di�erentapproaches have been proposed and analyzed separately, often under di�erentassumptions [5, 20,22, 19, 21, 23, 13, 15, 1, 4, 14, 18, 3, 11, 17, 7, 8, 24]. Due to spacelimitations we refer the reader to a recent survey where all the known approachesfor similarity searching are discussed [9].Currently, the only realistic way to compare two di�erent algorithms is toapply them to the same data set. We present a uni�ed complexity model for thesearch in metric spaces. Its main contribution can be summarized in Figure 1:all the indexing algorithms partition the set of elements into subsets. An indexis built which allows to determine a set of candidate sets where the elements rel-evant for the query can appear. At query time, que index is searched to �nd therelevant subsets (the cost to do this is called \internal complexity") and thosesubsets are checked exhaustively (which corresponds to the \external complex-ity" of the search). There is a tradeo� between internal and external complexity:�ner grained partitions have higher internal and lower external complexity.
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Fig. 1. The uni�ed model for indexing and querying metric spaces.2 Metric Spaces and Proximity QueriesWe introduce now the basic notation for the problem. The set Xwill denotethe universe of objects. A �nite subset U, of size n = jUj, will be called thedictionary. The function d : X�X�! Rwill denote a measure of \similarity"between objects, satisfying the following properties for all x; y; z 2X:



(p1) d(x; y) � 0 positiveness,(p2) d(x; y) = d(y; x) symmetry,(p3) d(x; x) = 0 reexivity, and in most cases(p4) d(x; y) = 0 i� x = y strict positiveness.The similarity d will be called a distance if it satis�es the triangle inequality(p5) d(x; y) � d(x; z) + d(z; y).There are basically two types of queries of interest in metric spaces:(a) Range queries: retrieve all elements which are within distance r to q. Thisis, (q; r)d = fu 2U= d(q; u) � rg.(b) Nearest neighbor queries: retrieve the closest elements to q in U. This is,nnd(q) = fu 2 U = 8v 2 U; d(q; u) � d(q; v)g. We may also want the knearest neighbors.We restrict ourselves to the analysis of range queries, since nearest neighborqueries can be derived from range queries using a branch and bound scheme.3 Equivalence Relations and CosetsGiven a set X, a partition �(X) = f�1; �2; � � � ; �`; � � � g is a subset of the powerset P(X) such that every element of the set belongs exactly to one partition, i.e.[1̀�i =X; and �i \ �j = � for all i 6= jA relation, denoted by �, is a subset of the cross product X�X(the set ofordered pairs) of X. Two elements x; y are said to be related, denoted by x � y,if the pair (x; y) is in the subset. A relation � is said to be an equivalencerelation if it satis�es the properties of{ x � x for all x 2X, reexivity{ x � y if and only if y � x, symmetry{ x � y and y � z then x � z, transitivityIt can be shown that every partition �(X) induces an equivalence relation �and, conversely, every equivalence relation induces a partition [10]. Two elementsare related if they belong to the same partition. Every element �i of the partitionis then called an equivalence class. An equivalence class is often named afterone of its representatives (any element of �i can be taken as a representative).An alternative de�nition of an equivalence class of an element x is the set of ally such that x � y. We will denote the equivalence class of x as [x] = fy : x � yg:Given the setXand an equivalence relation �, we obtain the quotient �(X) =X=�. It indicates the set of equivalence classes or cosets, obtained when applyingthe equivalence relation to the set X:For a �xed set X; consider two equivalence relations �1 and �2. We saythat �1 is a re�nement of �2 if for any pair x; y 2 Xsuch that x �1 y then



necessarily x �2 y. Equivalently, a partition �1(X) is a re�nement of partition�2(X) if �1i� �2j for every partition element �1i of �1 and some coset �2j of thepartition �2. We may also say that �2 (equivalently �2) is a coarsening of �1(equivalently �1).The relevance of equivalence classes for us comes from the possibility of usingthem on a metric space in a way that a new metric space is derived from thequotient set. This new metric space will be a coarser version of the original one.4 Indexing and PartitionsThe equivalence classes obtained with an equivalence relation of a metric spacecan be considered themselves as points in a new metric space, as soon as wede�ne the distance function D of this new metric space.In Figure 1 we can see a schematic example of the idea. We divide the spacein several regions (equivalence classes). The points inside each region are indis-tinguishable. We consider them as points in a new metric space. To answer aquery, we �rst search the relevant classes in the quotient space. Then, insteadof exhaustively examining the entire dictionary we just examine the classes thatcontain potentially interesting points. In other words, if a class can contain apoint that should be returned in the outcome of the query, then the class willbe examined.For this approach to be useful we need that the mapping is contractive, i.e.D([a]; [b])� d(a; b) for any a; b 2X. This ensures that all the points relevant toa query (q; r)d are contained in the classes returned by the query ([q]; r)D on thequotient space. We explain the idea in more detail now.We introduce a new function D0 : �(X) � �(X) �! R+ now de�ned inthe quotient. Since D0 is de�ned between equivalence classes, a natural choice isD0([x]; [y]) = infx2[x];y2[y]fd(x; y)g, which we call the extension of d. We de�nethe outcome of a query in the coset as ([q]; r)D0 = fu 2U: D0([u]; [q])� rg.D0 could be used for similarity searching in a natural way. From the de�nitionit is clear that D0([x]; [y]) � d(x; y) for any x 2 [x], y 2 [y]. This permits toconvert one search problem into another, hopefully simpler, search problem. For agiven query (q; r)d we �nd out the equivalence class [q] the query point q belongsto. Then, using the new distance function D0 the query is transformed into([q]; r)D0. Since D0([q]; [u]) � d(q; u), this naturally implies (q; r)d � ([q]; r)D0.That is, ([q]; r)D0 is indeed a list of candidates, so it is enough to perform anexhaustive search on that candidate list (now using the original distance d), toobtain the actual outcome of the query (q; r)d.Unfortunately, D0 does not satisfy the triangle inequality, just (p1) to (p3),and in most cases (p4). Hence, no general search algorithm is possible using D0itself. However, D0 gives the maximum possible values that keep the mappingcontractive, and therefore we can use any other distance that satis�es the prop-erties of metric spaces and that lower bounds D0. This distance, D, can be usedfor indexing purposes and still serves to obtain a list of candidates for the actual



outcome using d. An example of D is given in Figure 2, where the equivalenceclasses are rings centered around a point p.
D([x],[y])

y

d(x,y)

x

p

[y]

[x]Fig. 2. Two points x and y, and their equivalence classes (the shaded rings). D givesthe minimum distance among rings, which lower bounds the distance between x andy. When selecting D, another important consideration is the cost to computeit. In fact, the most important tradeo� for an indexing algorithm is to keep lowthe number of evaluations to compute the D distance, and at the same timeto reduce the �nal exhaustive search. In fact, the above procedure is used invirtually every indexing algorithm. In other words:Most indexing algorithms for proximity searching consist in building aset of equivalence classes, discard some classes, and search exhaustivelythe rest.Some examples may help to understand the above de�nitions.Example 1. The brute force method of not indexing and examining everypoint in the dictionary for each query, creates one equivalence class per pointin the set X. In this case, the coset obtained is the same as the original set�(X) = X=� = X, it holds x � y () x = y, D0([x]; [y]) = d(x; y) for anypair x; y and consequently (q; r)d = ([q]; r)D0. In other words the candidate listis actually the outcome of the query. No extra e�ort is done in trimming thecandidate list, however all the work have been done in building the candidatelist.Example 2. Another trivial example, situated in the other side of thespectrum, is when all points in Xare assigned to the same equivalence class, i.e.x � y () x; y 2X. Hence [x] = [y] for all elements in the set X. In this case wehave �(X) =X=�= f�g, a set with a single element, and it holds D0([x]; [y]) = 0for every pair of points. In this case �nding the candidate list is trivial, since it isactually the dictionary itself, but trimming the list is as di�cult as the originalproblem.



Example 3. A more realistic example, indeed a true indexing algorithm, iswhen we have an arbitrary reference point p 2Xand the equivalence relation isgiven by x � y () d(p; x) = d(p; y). In this case D([x]; [y]) = jd(x; p)� d(y; p)jis a safe lower bound for the D0 distance (guaranteed by triangle inequality). Fora query of the form (q; r)d the candidate list ([q]; r)D consist of all points suchthat D([q]; [x]) � r or in other way all the points such that jd(q; p)� d(x; p)j �r. Graphically, this distance represents a ring centered at p containing a diskcentered at q and radius r (recall Figure 2). This is the familiar rule used inmany independent algorithms to trim the space, as seen later.Example 4. The approximate search problem was �rstly introduced in\vector spaces" (Rk), and the very �rst family of algorithms used there werebased on a coset operation. These were called bucketing methods, and consist inthe construction of cells or buckets [2]. Searching for an arbitrary point in Rk isconverted into an exhaustive search in a �nite set of cells. The procedure usedtwo steps: (1) �rst they �nd which cell the query point belongs to and after thatthey build a set of candidate cells using the query range; (2) this set of candidatecells is inspected exhaustively to �nd the actual points inside the query range.In this case the equivalence classes are the cells, and the tradeo� is expressed asfollows: the larger the cells, the cheaper it is to �nd the appropriate ones, butthe more costly is the �nal exhaustive search.5 Measures of E�ciencyAs sketched previously, most indexing algorithms rely on building an equivalenceclass. The corresponding search algorithms have two parts:1. Find the classes that may be relevant for the query.2. Exhaustively search all the elements of these classes.The �rst part involves performing some evaluations of the d distance, asshown in the Example 3 above. It may also involve some extra CPU time (whichalthough not the central point in this paper, must be kept reasonable). The dis-tance evaluations performed in this stage are called internal, and their numberde�ne the internal complexity.The second part consists of directly comparing the query against the candi-date list. These evaluations of d are called external. The amount of externalevaluations is called external complexity and is related to the discriminativepower of the D distance, a concept that we explain shortly.The indexing scheme needs to �nd a balance between the complexity tocompute D and its discriminative power.Examples 1 and 2 can serve as upper and lower bounds of what is done by theactual indexing algorithms. The �rst algorithm has minimal external complexity,since the distance function D discriminates as much as the original distancefunction d. However, the internal complexity is maximal, in the sense that �ndingthe relevant classes is as hard as solving the original problem. This case shows



maximum discriminative power, as the metric spaces (X; d) and (�(X); D) areisometric [16]. Example 2 has minimal internal complexity, since it is trivial tocompute the relevant equivalence class. However, its external complexity is ashigh as in the original problem, since all the points are candidates.Example 3 is in between for internal and external complexity. The internalcomplexity is 1 distance evaluation (the distance from q to p), and the externalcomplexity will correspond to the number of elements that lie in the selectedring. We could intersect it with more rings (increasing internal complexity) toreduce the external complexity.The tradeo� is partially formalized with the notions of re�nement and coars-ening of a partition. In particular, the following theorems show that the externalcomplexity decreases as the partition is more re�ned (and we may assume thatthe internal complexity increases since more information has to be obtained).Theorem 1. If �1is a coarsening of �2 then the extended distances D1 and D2have the property D2([x]; [y]) � D1([x]; [y]).Proof. D1([x]; [y]) = infx2[x]1;y2[y]1fd(x; y)g � infx2[x]2 ;y2[y]2fd(x; y)g =D2([x]; [y]), since [x]2 � [x]1 and [y]2 � [y]1. We are using [x]i and [y]i to denotethe equivalence class of x and y under equivalence relation �i.Theorem 2. If A1 and A2 are indexing algorithms based on equivalence rela-tions �1 and �2, respectively, and �2 is a coarsening of �1, then A1 has lowerexternal complexity than A2.Proof. We have to show that ([q]; r)D1 � ([q]; r)D2. But this is clear, sinceD2([x]; [y]) � D1([x]; [y]) implies ([q]; r)D1 = fy 2 U : D1([q]; [y]) � rg � fy 2U: D2([q]; [y]) � rg = ([q]; r)D2:An interesting idea arising from the above theorems is to build a hierarchy ofcoarsening operations. Using this hierarchy we could proceed downwards from avery coarse level building a candidate list of equivalence classes of the next level,using for example Dj ; this candidate list will be re�ned using the Dj�1 distancefunction and so on until we reach the bottom level. This is done, e.g. in [4].The concept of discriminative power serves as an indicator of the performanceor �tness of the equivalence relation (or equivalently, of the distance function D).In general, it will be more costly to have more discriminative power. A relatedconcept is that of \fragmentation", which is explained next.5.1 Locality and Fragmentation of a PartitionThe equivalence classes can be thought of as a set of non intersecting cells inthe space, where every point inside a given cell belongs to the same equivalenceclass. Of course, this is not very precise from a mathematical point of view, butcan serve to clarify the concept. In the mathematical de�nition an equivalenceclass is not con�ned to a single cell; indeed it can be an arbitrary collection ofcells.



A consequence of the above observation is that we need an additional prop-erty which will be called locality. It stands for how much the equivalence classresembles a cell. Intuitively the opposite property, fragmentation of a partition,can be easier to understand. An equivalence class is fragmented if it consists ofseveral \local" pieces. We do not go beyond with the formalization of this con-cept, because the de�nition involves properties not common to every metricspace and we want to maintain our model as general as possible.Figure 3 exempli�es a fragmented partition. It is natural to expect a betterperformance, i.e. more discriminative power, from a local partition than froma fragmented partition. This is because the candidate list obtained with thedistance D will contain points actually far away from the query if the partitionis fragmented. Notice that in Figure 3, the fragmentation would disappear if weadded a third pivot.
Two fragments of the same
equivalence classFig. 3. With two rings we de�ne an equivalence based on being at the same distanceto both points. However, the resulting class is partitioned.6 Pivot Based and Clustering AlgorithmsA large class of methods to index metric spaces are just variants of what we call\pivot-based algorithms" [5, 20, 22, 21, 23, 13, 15,1, 14, 18, 3, 11, 7, 8, 24]. The ideais an extension of Example 3, using more pivots in order to decrease the externalcomplexity. Instead of just one pivot, one selects h \pivots" p1 � � �ph 2 U, andstores all the distances d(u; pi) for all u 2 U. This set of distances is the index.Now, given a query (q; r)d, q is compared against each pivot. This costs h distanceevaluations, which is the internal complexity.The elements are �ltered out with the following reasoning. For any u 2 U,the distance d(q; u) cannot be smaller than jd(u; pi) � d(q; pi)j for any pivotpi, because of the triangular inequality. Therefore, all the elements u such thatjd(u; pi)� d(q; pi)j > r for some pi can be safely discarded (recall that d(u; pi) isprecomputed). The external complexity then corresponds to comparing q directlyagainst all those u 2 Uthat could not be discarded.In terms of our model, we have that the equivalence classes correspond tothe intersection of sphere shells centered at the pi's (recall Figure 3). Hence



D([x]; [y]) = maxifjd(x; pi)� d(y; pi)jg is a safe lower bound to the D0 functioncorresponding to these equivalence classes.As explained, the internal complexity increases and the external complexitydecreases as h grows, so there exists an optimum. We present an experimentshowing this phenomenon. Our metric space is the unitary real cube in k dimen-sions ([0; 1)k) under the Euclidean distance. We generated n = 100; 000 randompoints and search a random query q with a radius r such that 0.01% of thedictionary is retrieved.Figure 4 (left) shows internal, external and total distance evaluations in 8dimensions, using up to 256 pivots. The optimum number of pivots for this caseis close to h = 110. Despite that with 256 pivots we reach an optimum onlyuntil 8 dimensions, it seems clear that the optimal h grows very fast with k. Theoptimal h is 15, 30 and 110 for 4, 6, and 8 dimensions, respectively. Figure 4(right) shows the overall complexity in higher dimensions, where the optimumis not achieved with 256 pivots.
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7 The Curse of Dimensionality and ConclusionsThe fact that the optimum number of pivots grows quickly with the dimensionis just one aspect of the general phenomenon called \curse of dimensionality". Itis expressed as an exponential dependency on k that appears in the performanceof any algorithm to index k-dimensional vector spaces. It is interesting thatthe phenomenon appears also when we disregard the coordinates and view thevector space just as a metric space, so that one can in general speak of \high-dimensional" metric spaces even when no explicit concept of dimension exists.This phenomenon has a general cause which has also been mentioned in [23,4, 6, 12, 9]. Very briey, high dimensional metric spaces have a more concentratedhistogram of distances, and therefore a random query selecting a band of width2r of the histogram of distances to a pivot pi captures much more points inhigh dimensional metric spaces. Only the points outside the band can be dis-carded, and therefore more and more pivots have to be considered to discard asigni�cative amount of points. Figure 5 illustrates.
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q qra rb ra rbFig. 5. A low-dimensional (left) and high-dimensional (right) histogram of distances,showing that on high dimensions virtually all the elements become candidates for theexhaustive evaluation.Another facet of high dimensionality is the di�culty of obtaining local par-titions. Even with perfect pivot selection we need k + 1 points to obtain a localpartition in Rk (recall Figure 3). In general metric spaces one resorts to randompivot selection and this number is much higher. This shows why clustering al-gorithms may be better suited for high dimensional spaces, as the experimentsin [9] show: fragmentation is smaller in the equivalence relations produced byclustering algorithms. As a consequence, pivot based algorithms need much morememory than clustering algorithms to beat them in high dimensions.The most interesting research line on indexing metric spaces seems to bethe development of a clustering approach that can be improved by using morememory and that needs less memory than pivot based algorithms to achieve thesame performance.
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