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so storing data in ompressed form redues i/o time, whih is more and moreonvenient even in exhange for some extra pu time.Therefore, ompression tehniques have beome attrative methods to savespae and transmission time. However, if the ompression sheme does not allowto searh for words diretly on the ompressed text, the retrieval will be lesseÆient due to the neessity of deompression before the searh.Classi ompression tehniques, as the well-known algorithms of Ziv andLempel [15, 16℄ or the harater oriented ode of Hu�man [4℄, are not suitable forlarge textual databases. One important disadvantage of these tehniques is theineÆieny of searhing for words diretly on the ompressed text. Compressionshemes based on Hu�man odes are not often used on natural language beauseof the poor ompression ratios ahieved. On the other hand, Ziv and Lempelalgorithms obtain better ompression ratios, but the searh for a word on theompressed text is ineÆient. Empirial results [10℄ showed that searhing on aZiv-Lempel ompressed text an take half the time of deompressing that textand then searhing it. However, the ompressed searh is twie as slow as justsearhing the unompressed version of the text.In [12℄, Moura et al. present a ompression sheme that uses a semi-stati word-based model and a Hu�man ode where the oding alphabet isbyte-oriented. This ompression sheme allows the searh for a word on theompressed text without deompressing it in suh a way that the searh anbe up to eight times faster for ertain queries. The key idea of this work (andothers like that of Mo�at and Turpin [7℄) is the onsideration of the text wordsas the symbols that ompose the text (and therefore the symbols that shouldbe ompressed). Sine in Information Retrieval (IR) text words are the atoms ofthe searh, these ompression shemes are partiularly suitable for IR. This ideahas been arried on further up to a full integration between inverted indexesand word-based ompression shemes, opening the door to a brand new familyof low-overhead indexing methods for natural language texts [13, 8, 17℄.Two basi searh methods are proposed in [12℄. One handles plain Hu�manode (over words) and explores one byte of the ompressed text at a time. Thisis quite eÆient, but not as muh as the seond hoie, whih ompresses thepattern and uses any lassial string mathing strategy, suh as Boyer-Moore [9℄.For this seond, faster, hoie to be of use, one has to ensure that no spuriousourrenes are found. The problem is that a text ourrene of the ode ofa word may orrespond to the onatenation of other odes instead of to theourrene of the word. Although Plain Hu�man Code is a pre�x ode (that is,no ode is a pre�x of the other), it does not ensure that the above problem annotour. Hene Moura et al. propose a so-alled Tagged Hu�man Code, where abit of eah byte in the odes is reserved to signal the beginning of a ode. Theprie is an inrease of approximately 8%{10% in the size of the ompressed �le.In this paper we show that, although Plain Hu�man Code gives the shortestpossible output when a soure symbol is always substituted by the same ode,Tagged Hu�man Code largely underutilizes the representation. We show that,by signaling the end instead of the beginning of a ode, the rest of the bits



an be used in all their ombinations and the ode is still a pre�x ode. Theresulting ode, whih we all End-Tagged Dense Code, beomes muh loser tothe ompression obtained by the Plain Hu�man Code. Not only this ode retainsthe ability of being searhable with any string mathing algorithm, but also it isextremely simple to build (it is not based on Hu�man at all) and permits a moreompat voabulary representation. So the advantages over Tagged Hu�manCode are (i) better ompression ratios, (ii) same searhing possibilities, (iii)simpler and smaller voabulary representation, (iv) simpler and faster oding.2 Related WorkHu�man is a well-known oding method [4℄. The idea of Hu�man oding isto ompress the text by assigning shorter odes to more frequent symbols. Ithas been proven that Hu�man algorithm obtains an optimal (i.e., shortest totallength) pre�x ode for a given text.A ode is alled a pre�x ode (or instantaneous ode) if no odeword is apre�x of any other odeword. A pre�x ode an be deoded without refereneto future odewords, sine the end of a odeword is immediately reognizable.2.1 Word-Based Hu�man CompressionThe traditional implementations of the Hu�man ode are harater based, i.e.,they adopt the haraters as the symbols of the alphabet. A brilliant idea [6℄uses the words in the text as the symbols to be ompressed. This idea joinsthe requirements of ompression algorithms and of IR systems, as words are thebasi atoms for most IR systems. The basi point is that a text is muh easierto ompress when regarded as a sequene of words rather than haraters.In [12, 17℄, a ompression sheme is presented that uses this strategyombined with a Hu�man ode. From a ompression viewpoint, harater-basedHu�man methods are able to redue English texts to approximately 60% of theiroriginal size, while word-based Hu�man methods are able to redue them to 25%of their original size, beause the distribution of words is muh more biased thanthe distribution of haraters.The ompression shemes presented in [12, 17℄ use a semi-stati model, thatis, the enoder makes a �rst pass over the text to obtain the frequeny of allthe words in the text and then the text is oded in the seond pass. Duringthe oding phase, original symbols (words) are replaed by odewords. For eahword in the text there is a unique odeword, whose length varies depending onthe frequeny of the word in the text. Using the Hu�man algorithm, shorterodewords are assigned to more frequent words.The set of odewords used to ompress a text are arranged as a tree withedges labeled by bits, suh that eah path from the root to a leaf spells outa di�erent ode. Sine this is a pre�x ode, no ode is represented by aninternal tree node. On the other hand, eah tree leaf orresponds to a odewordthat represents a di�erent word of the text. For deompression purposes, the



orresponding original text word is attahed to eah leaf, and the whole tree isseen as a representation of the voabulary of the text. Hene, the ompressed�le is formed by the ompressed text plus this voabulary representation. TheHu�man algorithm gives the tree that minimizes the length of the ompressed�le. See [4, 3℄ for a detailed desription.Example 1. Consider a text with voabulary A, B, C, D, E where theorresponding frequenies are 0.25, 0.25, 0.20, 0.15, 0.15. A possible Hu�mantree, given by the Hu�man algorithm, is shown in Figure 1. Observe that A isoded with 01, B with 10, C with 11, D with 000 and E with 001. ut
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Fig. 1. Hu�man tree2.2 Byte-Oriented Hu�man CodingThe basi method proposed by Hu�man is mostly used as a binary ode, thatis, eah word in the original text is oded as a sequene of bits. Moura et al. [12℄modify the ode assignment suh that a sequene of whole bytes is assoiatedwith eah word in the text.Experimental results have shown that, on natural language, there is nosigni�ant degradation in the ompression ratio by using bytes instead of bits.In addition, deompression and searhing are faster with byte-oriented Hu�manode beause no bit manipulations are neessary.In [12℄ two odes following this approah are presented. In that artile, theyall Plain Hu�man Code the one we have already desribed, that is, a word-basedbyte-oriented Hu�man ode.The seond ode proposed is alled Tagged Hu�man Code. This is just likethe previous one di�ering only in that the �rst bit of eah byte is reserved toag whether or not the byte is the �rst byte of a odeword. Hene, only 7 bits ofeah byte are used for the Hu�man ode. Note that the use of a Hu�man ode



over the remaining 7 bits is mandatory, as the ag is not useful by itself to makethe ode a pre�x ode.Tagged Hu�man Code has a prie in terms of ompression performane: westore full bytes but use only 7 bits for oding. Hene the ompressed �le growsapproximately by 8%{10%.Example 2. We show the di�erenes among the odes generated by the PlainHu�man Code and Tagged Hu�man Code. In our example we assume that thetext voabulary has 16 words, with uniform distribution in Table 1 and withexponential distribution (pi = 1=2i) in Table 2.For the sake of simpliity, from this example on, we will onsider that our\bytes" are formed by only two bits. Hene, Tagged Hu�man Code uses onebit for the ag and one for the ode (this makes it look worse than it is). Weunderline the ag bits. utWord Probab. Plain Hu�man Tagged Hu�manA 1=16 00 00 1�0 0�0 0�0 0�0B 1=16 00 01 1�0 0�0 0�0 0�1C 1=16 00 10 1�0 0�0 0�1 0�0D 1=16 00 11 1�0 0�0 0�1 0�1E 1=16 01 00 1�0 0�1 0�0 0�0F 1=16 01 01 1�0 0�1 0�0 0�1G 1=16 01 10 1�0 0�1 0�1 0�0H 1=16 01 11 1�0 0�1 0�1 0�1I 1=16 10 00 1�1 0�0 0�0 0�0J 1=16 10 01 1�1 0�0 0�0 0�1K 1=16 10 10 1�1 0�0 0�1 0�0L 1=16 10 11 1�1 0�0 0�1 0�1M 1=16 11 00 1�1 0�1 0�0 0�0N 1=16 11 01 1�1 0�1 0�0 0�1O 1=16 11 10 1�1 0�1 0�1 0�0P 1=16 11 11 1�1 0�1 0�1 0�1Table 1. Codes for a uniform distribution.The addition of a tag bit in the Tagged Hu�man Code permits diretsearhing on the ompressed text with any string mathing algorithm, by simplyompressing the pattern and then resorting to lassial string mathing.On Plain Hu�man this does not work, as the pattern ould our in the textand yet not orrespond to our odeword. The problem is that the onatenationof parts of two odewords may form the odeword of another voabulary word.This annot happen in the Tagged Hu�man Code due to the use of one bitin eah byte to determine if the byte is the �rst byte of a odeword or not.



Word Probab. Plain Hu�man Tagged Hu�manA 1=2 00 1�1B 1=4 01 1�0 0�1C 1=8 10 1�0 0�0 0�1D 1=16 11 00 1�0 0�0 0�0 0�1E 1=32 11 01 1�0 0�0 0�0 0�0 0�1F 1=64 11 10 1�0 0�0 0�0 0�0 0�0 0�1G 1=128 11 11 0�0 1�0 0�0 0�0 0�0 0�0 0�0 0�1H 1=256 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1I 1=512 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1J 1=1024 11 11 11 0�0 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1K 1=2048 11 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1L 1=4096 11 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1M 1=8192 11 11 11 11 00 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1N 1=16384 11 11 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1O 1=32768 11 11 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1P 1=32768 11 11 11 11 11 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1Table 2. Codes for an exponential distribution.For this reason, searhing with Plain Hu�man requires inspeting all thebytes of the ompressed text from the beginning, while Boyer-Moore typesearhing (that is, skipping bytes) is possible over Tagged Hu�man Code.Example 3. Let us suppose that we have to ompress a text with a voabularyformed by the words A, B, C, D and assume that the Hu�man algorithm assignsthe following odewords to the original words:A 00B 01C 10D 11 00Let us onsider the following portion of a ompressed text using the odeshown above, for the sequene ABAD:: : : 00 01 00 11 00 : : :Finally, let us suppose that we searh for word A. If we resort to plain patternmathing, we �nd two ourrenes in the text. However, the seond does notreally represent an ourrene of A in the text, but it is part of D. The programshould have a postproessing phase where eah potential ourrene is veri�ed,whih ruins the simpliity and performane of the algorithm. utThe algorithm to searh for a single word under Tagged Hu�man Codestarts by �nding the word in the voabulary to obtain the odeword that



represents it in the ompressed text. Then the obtained odeword is searhedfor in the ompressed text using any lassial string mathing algorithm with nomodi�ations. They all this tehnique diret searhing [12, 17℄.Today's IR systems require also exibility in the searh patterns. Thereis a range of omplex patterns that are interesting in IR systems, inludingregular expressions and \approximate" searhing (also known as \searh allowingerrors"). See [12, 17℄ for more details.3 A New Compression Sheme: End-Tagged Dense CodesWe start with a seemingly dull hange to Tagged Hu�man Code. Instead of usingthe ag bit to signal the beginning of a odeword, we use it to signal the end ofa odeword. That is, the bit will be 1 for the last byte of eah odeword.This hange has surprising onsequenes. Now the ag bit is enough to ensurethat the ode is a pre�x ode, no matter what we do with the other 7 bits. Tosee this, notie that, given two odewords X and Y , where jX j < jY j, X annotbe a pre�x of Y beause the last byte of X has its ag bit in 1, while the jX j-thbyte of Y has its ag bit in 0.At this point, there is no need at all to use Hu�man oding over the remaining7 bits. We an just use all the possible ombinations of 7 bits in all the bytes,as long as we reserve the ag bit to signal the end of the odeword.One we are not bound to use a Hu�man ode, we have the problem of�nding the optimal ode assignment, that is, the one minimizing the length ofthe output. It is still true that we want to assign shorter odewords to morefrequent words. Indeed, the optimal assignment is obtained with the followingproedure.1. The words in the voabulary are ordered by their frequeny, more frequent�rst.2. Codewords from 1�0000000 to 1�1111111 are assigned sequentially to the �rst128 words of the voabulary, using the 27 possibilities.3. Words at positions 128 + 1 to 128 + 1282 are enoded using twobytes, by exploiting the 214 ombinations from 0�0000000:1�0000000 to0�1111111:1�1111111.4. Words at positions 128+1282+1 to 128+1282+1283 are enoded using threebytes, by exploiting the 221 ombinations from 0�0000000:0�0000000:1�0000000to 0�1111111:0�1111111:1�1111111. And so on.The assignment is done in a ompletely sequential fashion, that is, the 130-thword is enoded as 0�0000000:1�0000001, the 131-th as 0�0000000:1�0000010, andso on, just as if we had a 14-bit number. As it an be seen, the omputation ofodes is extremely simple: It is only neessary to order the voabulary words byfrequeny and then sequentially assign the odewords. Hene the oding phasewill be faster beause obtaining the odes is simpler.
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0 1 1 1 1 1 1 1Fig. 2. End-Tagged Dense CodewordsIn fat, we do not even need to physially store the results of theseomputations: With a few operations we an obtain on the y, given a wordrank i, its `-byte odeword, in O(`) = O(log i) time.What is perhaps less obvious is that the ode depends on the rank of thewords, not on their atual frequeny. That is, if we have four words A, B, C,D with frequenies 0.27, 0.26, 0.25 and 0.23, respetively, the ode will be thesame as if their frequenies were 0.9, 0.09, 0.009 and 0.001.Hene, we do not need to store the odewords (in any form suh as a tree)nor the frequenies in the ompressed �le. It is enough to store the plain wordssorted by frequeny. Therefore, the voabulary will be smaller than in the aseof the Hu�man ode, where either the frequenies or the odewords or the treemust be stored with the voabulary.In order to obtain the odewords of a ompressed text, the deoder an runa simple omputation to obtain, from the odeword, the rank of the word, andthen obtain the word from the voabulary sorted by frequeny. An `-byte oden an be deoded in O(`) = O(logn) time.Table 3 shows the odewords obtained by the End-Tagged Dense Code for theexamples in Tables 1 and 2 (remember that we are using bytes of two bits). Notethat, independently of the distribution, exponential or uniform, the odi�ationis the same.It is interesting to point out how our odes look like on a Hu�man tree.Basially, our odes an be regarded as a tree of arity 128 (like that of TaggedHu�man), but in this ase we an use also the internal nodes of the tree,while Tagged Hu�man is restrited to use only the leaves. This reason showsimmediately that the best tree for us is the most balaned one (that is, a denseode), as any tree is legal and the balaned one minimizes the weighted pathlength.4 Analytial ResultsWe try to analyze the ompression performane of our new sheme. Let us assumea word distribution fpigi=1:::N , where pi is the probability of the i-th mostfrequent word and N is the voabulary size. Let us assume that we use symbols



Word Rank CodewordA 1 1�0B 2 1�1C 3 0�0 1�0D 4 0�0 1�1E 5 0�1 1�0F 6 0�1 1�1G 7 0�0 0�0 1�0H 8 0�0 0�0 1�1I 9 0�0 0�1 1�0J 10 0�0 0�1 1�1K 11 0�1 0�0 1�0L 12 0�1 0�0 1�1M 13 0�1 0�1 1�0N 14 0�1 0�1 1�1O 15 0�0 0�0 0�0 1�0P 16 0�0 0�0 0�0 1�1Table 3. Example of End-Tagged Dense Codeof b bits to represent the odewords, so that eah odeword is a sequene of b-bitsymbols. In pratie we use bytes, so b = 8.It is well known [3℄ that Plain Hu�man oding produes an average symbollength whih is at most one extra symbol over the zero-order entropy. That is,if we all Eb = NXi=1 pi log2b(1=pi) = 1b NXi=1 pi log2(1=pi)the zero-order entropy in base b of the text, then the average number of symbolsto ode a word using Plain Hu�man isEb � Hb � Eb + 1Tagged Hu�man ode is also easy to analyze. It is a Hu�man ode over b� 1bits, but using b bits per symbol, heneEb�1 � Tb � Eb�1 + 1Let us now onsider our new method, with average number of symbols perword Db. It is lear that Hb � Db � Tb, beause ours is a pre�x ode andHu�man is the best pre�x ode, and beause we use all the b � 1 remainingbit ombinations and Tagged Hu�man does not. We try now to obtain a morepreise omparison. Let us all B = 2b�1. Sine Bi di�erent words will be odedusing i symbols, let us de�nesi = iXj=1Bj = BB � 1 (Bi � 1)



(where s0 = 0) the number of words that an be oded with up to i symbols.Let us also all fi = siXj=si�1+1 pjthe overall probability of words oded with i symbols.Then, the average length of a odeword under our new method isDb = SXi=1 ifiwhere S = logB �B�1B N + 1�.The most interesting partiular ase is a distribution typial of naturallanguage texts. It is well known [3℄ that, in natural language texts, the voabularydistribution losely follows a generalized Zipf's law [14℄, that is, pi = A=i� andN =1, for suitable onstants A and �. In pratie � is between 1.4 and 1.8 anddepends on the text [1, 2℄, whileA = 1Pi�1 1=i� = 1�(�)makes sure that the distribution adds up 11. Under this distribution the entropyisEb = 1b Xi�1 pi log2 1pi = A�b Xi�1 � log2 ii� � log2 A� = ��� 0(�)=�(�) + ln �(�)b ln 2On the other hand, we haveDb = A Xi�1 i siXj=si�1+1 1=j� = 1+A Xi�1 i si+1Xj=si+1 1=j� = 1+A Xi�1 Xj�si+1 1=j�At this point we resort to integration to get lower and upper bounds. Sine1=j� dereases with j, we have that the above summation is upper bounded asfollowsDb � 1 +A Xi�1 Z 1si 1=x�dx = 1 + A(B � 1)��1(� � 1)B��1 Xi�1 1(Bi � 1)��1� 1 + A(B � 1)��1(� � 1)B��1 B1��1�B1�� (1� 1=B)1�� = 1 + 1(� � 1)�(�)(B��1 � 1)A lower bound an be obtained similarly, as followsDb � 1 +A Xi�1 Z 1si+1 1=x�dx = 1 + A(B � 1)��1� � 1 Xi�1 1(Bi+1 � 1)��1� 1 + A(B � 1)��1(� � 1) B2(1��)1�B1�� = 1 + (1� 1=B)��1(� � 1)�(�)(B��1 � 1)1 We are using the Zeta funtion �(x) =Pi>0 1=ix. We will also use �0(x) = ��(x)=�x.



This gives us the length of the ode with a preision fator of (1� 1=B)��1,whih in our ase (B = 128, � =1.4 to 1.8) is around 0.5%. This shows that thenew ode is also simpler to analyze than Hu�man, as the existing bounds forHu�man are muh looser.In fat, the lower bound Eb for the performane of Hu�man is quite uselessfor our ase: For b = 8 bits, Eb < 1 for � > 1:3, where 1 symbol is an obviouslower bound. The same happens when using Eb�1 to bound Tagged Hu�man.We have onsidered tighter estimates [5, 11℄ but none was useful for this ase.In order to ompare our results with Plain Hu�man and Tagged Hu�man,we resort to our own analysis. If we take b = 9 bits, then B = 256 and we obtainthe length of a dense ode where all the 8 bits are used in the optimal form. Thisis neessarily better than Hu�man (on 8 bits), as not all the 8-bit ombinationsare legal for Hu�man. On the other hand, onsider b = 7. In this ase our newode is a 7-bit pre�x ode, neessarily inferior to Tagged Hu�man (over 8 bits).Hene we have the following inequalitiesDb+1 � Hb � Db � Tb � Db�1These results give us usable bounds to ompare our performane. Inidentally,the analysis of our new ode turns out to give new upper and lower bounds for theredundany of d-ary Hu�man odes. Figure 3 illustrates our analytial estimatesas a funtion of �. Our lower and upper bounds are rather lose. Plain Hu�manmust lie between its lower bound and our upper bound. Tagged Hu�man mustlie between our lower bound and its upper bound.5 Experimental ResultsWe show some experimental results now. We have used some large textolletions from tre-4 (Congressional Reord 1993, Finanial Times 1991 and1992); and some smaller from the Calgary Corpus (Book1, Book2, Paper1 toPaper6, Bib). We have ompressed them using Plain Hu�man Code, TaggedHu�man Code, and our End-Tagged Dense Code. We have exluded the sizeof the voabulary in the results (this size is almost equal in the three ases,although a bit smaller in our ase). Separators (that is, maximal strings betweentwo onseutive words) were treated as words as well. Sine words and separatorsstritly alternate, we used separate ditionaries for words and separators, as onean ompress and deompress using one after the other.Table 4 shows the results. It an be seen that, in all ases, our End-TaggedDense Codes are superior to Tagged Hu�man Codes. In partiular, on the largenatural language olletions, we are 5%{6% better than Tagged Hu�man andjust less than 2% over the optimal Plain Hu�man. The results hange a bit onthe smaller olletions of the Calgary Corpus, but essentially the results are thesame. Note that the separators are so biased (� lose to 2.0) that they permitan almost optimal oding (1 byte per separator), while words have a smaller �(1.4{1.6), whih makes their ode longer (1.5{1.7 bytes per word). Observe thatthe � values for the smaller �les of the Calgary orpus strongly deviate from
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Fig. 3. Analytial bounds on the average ode length for byte-oriented Plain Hu�man,Tagged Hu�man, and our new method. We assume a Zipf distribution with parameter� (whih is the x axis).these lines and from previous results on other large olletions [1℄, whih showsthat this kind of analysis applies well to large olletions only.6 ConlusionsWe have presented a new ompression ode useful for text databases. The odeinherits from previous work, where byte-oriented word-based Hu�man odeswere shown to be an exellent hoie. To permit fast searhing over that ode,Tagged Hu�man odes were introdued, whih in exhange produed an outputabout 7%{8% larger.In this paper we have introdued End-Tagged Dense Codes, whih is a pre�xode retaining all the searhability properties of Tagged Hu�man ode whileimproving it on several aspets: (i) odes are shorter: 5%{6% shorter than TaggedHu�man and just less than 2% over Hu�man; (ii) oding is muh simpler andfaster; (iii) the voabulary representation is simpler and shorter.We have shown analytially and experimentally the advantages of End-Tagged Dense Codes in terms of output size. An Information Retrieval systembased on this new tehnique should also bene�t from the other advantages.For example, (iii) means that we just need to store the voabulary sorted byfrequeny, without any additional information, whih has an important impat



Corpus Tot. Words Vo. Words Plain End-Tagged Tagged ThetaTot. Sep. Vo. Sep. Hu�man Dense Hu�manCongressional Reord 7,765,434 112,850 1.543411 1.586550 1.709030 1.6239031993 7,765,481 1,320 1.000506 1.001422 1.001595 2.319811Finanial Times 2,426,418 74,351 1.539468 1.581893 1.702489 1.4385031991 2,426,433 1,245 1.000843 1.001705 1.001870 2,003911Finanial Times 28,882,888 279,330 1.552060 1.591722 1.721922 1.6276021992 28,883,064 5,564 1.001234 1.002280 1.002726 1.775175Calgary: Book1 31,722 5,565 1.381281 1.460280 1.511727 0.96907231,723 317 1.001954 1.007313 1.007439 1.531933Calgary: Book2 105,962 7,907 1.410222 1.491638 1.564929 1.271044105,963 1,114 1.014467 1.027028 1.028444 1.521758Calgary: Paper1 9,157 1,791 1.300426 1.415420 1.435514 1.0041439,158 316 1.006661 1.028281 1.028936 1.426831Calgary: Paper2 14,266 2,468 1.326090 1.427309 1.453175 1.03551214,267 184 1.000000 1.003925 1.003995 1.632045Calgary: Paper3 7,364 2,087 1.381586 1.483568 1.502308 0.8358707,365 125 0.999999 0.999999 0.999999 1.667132Calgary: Paper4 2,219 751 1,248422 1,385933 1,392696 0.8099302,218 75 0.999999 0.999999 0.999999 1.582207Calgary: Paper5 2,207 613 1.166289 1.299048 1.304486 0.9146702,208 190 0.999999 1.028080 1.028533 1.134055Calgary: Paper6 7,246 1,163 1.213497 1.341844 1.355921 1.0985757,247 373 1.016283 1.044708 1.045361 1.263650Calgary: Bib 20,519 3,667 1.295287 1.365953 1.393391 0.92265320,520 56 1.000000 1.000000 1.000000 2.735627Calgary: News 62,794 9,912 1.511116 1.581616 1.701739 1.02576462,795 2,060 1.045242 1.062107 1.065690 1.107732Table 4. Compression results on di�erent text olletions. The ompression isexpressed in terms of bytes per symbol.when oding short olletions; (ii) means that we do not have to build Hu�manode, but an just enode and deode on the y with a program of a few lines.As a side e�et, our analysis has given new upper and lower bounds on theaverage ode length when using d-ary Hu�man oding. These bounds are ofdi�erent nature from those we are aware of, and they ould be better on somedistribution. This was the ase on natural language distributions.For the �nal version we will improve the experimental results and theiragreement with the analytial preditions. There are di�erent valid ways toompute the � value for a distribution (we used plain least squares on the modely = =x�), and we would like to �nd one where the � value is useful to predit theompression obtained aording to the analysis. Right now, a smaller � does notguarantee better ompression, as it would if the real distribution �tted perfetlya Zipf distribution. This does not alter the fat that our End-Tagged Denseodes are stritly better than Tagged Hu�man odes and that in pratie the



improvement is of 5%{6%, but it would be interesting to be able to predit theimprovement just from a suitable � value for the olletion.Referenes1. M. D. Ara�ujo, G. Navarro, and N. Ziviani. Large text searhing allowing errors. InR. Baeza-Yates, editor, Pro. 4th South Amerian Workshop on String Proessing(WSP'97), pages 2{20. Carleton University Press, 1997.2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.3. T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentie Hall, 1990.4. D. A. Hu�man. A method for the onstrution of minimum-redundany odes.Pro. Inst. Radio Eng., 40(9):1098{1101, September 1952.5. D. Manstetten. Tight bounds on the redundany of Hu�man odes. IEEE Trans.on Information Theory, 38(1):144{151, January 1992.6. A. Mo�at. Word-based text ompression. Software - Pratie and Experiene,19(2):185{198, 1989.7. A. Mo�at and A. Turpin. On the implementation of minimum-redundany pre�xodes. In Pro. Data Compression Conferene, pages 170{179, 1996.8. G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.Adding ompression to blok addressing inverted indexes. Information Retrieval,3(1):49{77, 2000.9. G. Navarro and M. RaÆnot. Flexible Pattern Mathing in Strings { Pratialon-line searh algorithms for texts and biologial sequenes. Cambridge UniversityPress, 2002.10. G. Navarro and J. Tarhio. Boyer-moore string mathing over ziv-lempel ompressedtext. In Pro. 11th Annual Symposium on Combinatorial Pattern Mathing(CPM'2000), LNCS 1848, pages 166{180, 2000.11. R. De Priso and A. De Santis. On lower bounds for the redundany of optimalodes. Designs, Codes and Cryptography, 15(1):29{45, 1998.12. E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and exibleword searhing on ompressed text. ACM Transations on Information Systems,18(2):113{139, April 2000.13. I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan KaufmannPublishers, seond edition, 1999.14. G. Zipf. Human Behaviour and the Priniple of Least E�ort. Addison-Wesley,1949.15. J. Ziv and A. Lempel. A universal algorithm for sequential data ompression.IEEE Transations on Information Theory, 23(3):337{343, 1977.16. J. Ziv and A. Lempel. Compression of individual sequenes via variable-rate oding.IEEE Transations on Information Theory, 24(5):530{536, 1978.17. N. Ziviani, E. Silva de Moura, G. Navarro, and R. Baeza-Yates. Compression:A key for next-generation text retrieval systems. IEEE Computer, 33(11):37{44,2000.


