
An EÆ
ient Compression Codefor Text Databases ?Nieves R. Brisaboa1, Eva L. Iglesias2, Gonzalo Navarro3 and Jos�e R. Param�a21 Database Lab., Univ. da Coru~na, Fa
ultade de Inform�ati
a, Campus de Elvi~na s/n,15071 A Coru~na, Spain. fbrisaboa,paramag�ud
.es2 Computer S
ien
e Dept., Univ. de Vigo , Es
ola Superior de Enxe~ner��a Inform�ati
a,Campus As Lagoas s/n, 32001, Ourense, Spain. eva�uvigo.es3 Dept. of Computer S
ien
e, Univ. de Chile, Blan
o En
alada 2120, Santiago, Chile.gnavarro�d

.u
hile.
lAbstra
t. We present a new
ompression format for naturallanguage texts, allowing both exa
t and approximate sear
h withoutde
ompression. This new
ode {
alled End-Tagged Dense Code{ hassome advantages with respe
t to other
ompression te
hniques withsimilar features su
h as the Tagged Hu�man Code of [Moura et al., ACMTOIS 2000℄. Our
ompression method obtains (i) better
ompressionratios, (ii) a smaller and simpler vo
abulary representation, and (iii)a simpler and faster en
oding. At the same time, it retains the mostinteresting features of the method based on the Tagged Hu�man Code,i.e., exa
t sear
h for words and phrases dire
tly on the
ompressedtext using any known sequential pattern mat
hing algorithm, eÆ
ientword-based approximate and extended sear
hes without any de
oding,and eÆ
ient de
ompression of arbitrary portions of the text. As a sidee�e
t, our analyti
al results give new upper and lower bounds for theredundan
y of d-ary Hu�man
odes.Keywords: Text
ompression, D-ary Hu�man
oding, text databases.1 Introdu
tionText
ompression te
hniques are based on exploiting redundan
ies in the textto represent it using less spa
e [3℄. The amount of text
olle
tions has grown inre
ent years mainly due to the widespread use of digital libraries, do
umentaldatabases, oÆ
e automation systems and the Web. Current text databases
ontain hundreds of gigabytes and the Web is measured in terabytes. Althoughthe
apa
ity of new devi
es to store data grows fast, while the asso
iated
ostsde
rease, the size of the text
olle
tions in
reases also rapidly. Moreover,
puspeed grows mu
h faster than that of se
ondary memory devi
es and networks,? This work is partially supported by CICYT grant (#TEL99-0335-C04), CYTEDVII.19 RIBIDI Proje
t, and (for the third author) Fonde
yt Grant 1-020831.

so storing data in
ompressed form redu
es i/o time, whi
h is more and more
onvenient even in ex
hange for some extra
pu time.Therefore,
ompression te
hniques have be
ome attra
tive methods to savespa
e and transmission time. However, if the
ompression s
heme does not allowto sear
h for words dire
tly on the
ompressed text, the retrieval will be lesseÆ
ient due to the ne
essity of de
ompression before the sear
h.Classi

ompression te
hniques, as the well-known algorithms of Ziv andLempel [15, 16℄ or the
hara
ter oriented
ode of Hu�man [4℄, are not suitable forlarge textual databases. One important disadvantage of these te
hniques is theineÆ
ien
y of sear
hing for words dire
tly on the
ompressed text. Compressions
hemes based on Hu�man
odes are not often used on natural language be
auseof the poor
ompression ratios a
hieved. On the other hand, Ziv and Lempelalgorithms obtain better
ompression ratios, but the sear
h for a word on the
ompressed text is ineÆ
ient. Empiri
al results [10℄ showed that sear
hing on aZiv-Lempel
ompressed text
an take half the time of de
ompressing that textand then sear
hing it. However, the
ompressed sear
h is twi
e as slow as justsear
hing the un
ompressed version of the text.In [12℄, Moura et al. present a
ompression s
heme that uses a semi-stati
 word-based model and a Hu�man
ode where the
oding alphabet isbyte-oriented. This
ompression s
heme allows the sear
h for a word on the
ompressed text without de
ompressing it in su
h a way that the sear
h
anbe up to eight times faster for
ertain queries. The key idea of this work (andothers like that of Mo�at and Turpin [7℄) is the
onsideration of the text wordsas the symbols that
ompose the text (and therefore the symbols that shouldbe
ompressed). Sin
e in Information Retrieval (IR) text words are the atoms ofthe sear
h, these
ompression s
hemes are parti
ularly suitable for IR. This ideahas been
arried on further up to a full integration between inverted indexesand word-based
ompression s
hemes, opening the door to a brand new familyof low-overhead indexing methods for natural language texts [13, 8, 17℄.Two basi
 sear
h methods are proposed in [12℄. One handles plain Hu�man
ode (over words) and explores one byte of the
ompressed text at a time. Thisis quite eÆ
ient, but not as mu
h as the se
ond
hoi
e, whi
h
ompresses thepattern and uses any
lassi
al string mat
hing strategy, su
h as Boyer-Moore [9℄.For this se
ond, faster,
hoi
e to be of use, one has to ensure that no spuriouso

urren
es are found. The problem is that a text o

urren
e of the
ode ofa word may
orrespond to the
on
atenation of other
odes instead of to theo

urren
e of the word. Although Plain Hu�man Code is a pre�x
ode (that is,no
ode is a pre�x of the other), it does not ensure that the above problem
annoto

ur. Hen
e Moura et al. propose a so-
alled Tagged Hu�man Code, where abit of ea
h byte in the
odes is reserved to signal the beginning of a
ode. Thepri
e is an in
rease of approximately 8%{10% in the size of the
ompressed �le.In this paper we show that, although Plain Hu�man Code gives the shortestpossible output when a sour
e symbol is always substituted by the same
ode,Tagged Hu�man Code largely underutilizes the representation. We show that,by signaling the end instead of the beginning of a
ode, the rest of the bits

an be used in all their
ombinations and the
ode is still a pre�x
ode. Theresulting
ode, whi
h we
all End-Tagged Dense Code, be
omes mu
h
loser tothe
ompression obtained by the Plain Hu�man Code. Not only this
ode retainsthe ability of being sear
hable with any string mat
hing algorithm, but also it isextremely simple to build (it is not based on Hu�man at all) and permits a more
ompa
t vo
abulary representation. So the advantages over Tagged Hu�manCode are (i) better
ompression ratios, (ii) same sear
hing possibilities, (iii)simpler and smaller vo
abulary representation, (iv) simpler and faster
oding.2 Related WorkHu�man is a well-known
oding method [4℄. The idea of Hu�man
oding isto
ompress the text by assigning shorter
odes to more frequent symbols. Ithas been proven that Hu�man algorithm obtains an optimal (i.e., shortest totallength) pre�x
ode for a given text.A
ode is
alled a pre�x
ode (or instantaneous
ode) if no
odeword is apre�x of any other
odeword. A pre�x
ode
an be de
oded without referen
eto future
odewords, sin
e the end of a
odeword is immediately re
ognizable.2.1 Word-Based Hu�man CompressionThe traditional implementations of the Hu�man
ode are
hara
ter based, i.e.,they adopt the
hara
ters as the symbols of the alphabet. A brilliant idea [6℄uses the words in the text as the symbols to be
ompressed. This idea joinsthe requirements of
ompression algorithms and of IR systems, as words are thebasi
 atoms for most IR systems. The basi
 point is that a text is mu
h easierto
ompress when regarded as a sequen
e of words rather than
hara
ters.In [12, 17℄, a
ompression s
heme is presented that uses this strategy
ombined with a Hu�man
ode. From a
ompression viewpoint,
hara
ter-basedHu�man methods are able to redu
e English texts to approximately 60% of theiroriginal size, while word-based Hu�man methods are able to redu
e them to 25%of their original size, be
ause the distribution of words is mu
h more biased thanthe distribution of
hara
ters.The
ompression s
hemes presented in [12, 17℄ use a semi-stati
 model, thatis, the en
oder makes a �rst pass over the text to obtain the frequen
y of allthe words in the text and then the text is
oded in the se
ond pass. Duringthe
oding phase, original symbols (words) are repla
ed by
odewords. For ea
hword in the text there is a unique
odeword, whose length varies depending onthe frequen
y of the word in the text. Using the Hu�man algorithm, shorter
odewords are assigned to more frequent words.The set of
odewords used to
ompress a text are arranged as a tree withedges labeled by bits, su
h that ea
h path from the root to a leaf spells outa di�erent
ode. Sin
e this is a pre�x
ode, no
ode is represented by aninternal tree node. On the other hand, ea
h tree leaf
orresponds to a
odewordthat represents a di�erent word of the text. For de
ompression purposes, the

orresponding original text word is atta
hed to ea
h leaf, and the whole tree isseen as a representation of the vo
abulary of the text. Hen
e, the
ompressed�le is formed by the
ompressed text plus this vo
abulary representation. TheHu�man algorithm gives the tree that minimizes the length of the
ompressed�le. See [4, 3℄ for a detailed des
ription.Example 1. Consider a text with vo
abulary A, B, C, D, E where the
orresponding frequen
ies are 0.25, 0.25, 0.20, 0.15, 0.15. A possible Hu�mantree, given by the Hu�man algorithm, is shown in Figure 1. Observe that A is
oded with 01, B with 10, C with 11, D with 000 and E with 001. ut
0 1

1

A

0

1

E

0

D

1

C

0

B

Fig. 1. Hu�man tree2.2 Byte-Oriented Hu�man CodingThe basi
 method proposed by Hu�man is mostly used as a binary
ode, thatis, ea
h word in the original text is
oded as a sequen
e of bits. Moura et al. [12℄modify the
ode assignment su
h that a sequen
e of whole bytes is asso
iatedwith ea
h word in the text.Experimental results have shown that, on natural language, there is nosigni�
ant degradation in the
ompression ratio by using bytes instead of bits.In addition, de
ompression and sear
hing are faster with byte-oriented Hu�man
ode be
ause no bit manipulations are ne
essary.In [12℄ two
odes following this approa
h are presented. In that arti
le, they
all Plain Hu�man Code the one we have already des
ribed, that is, a word-basedbyte-oriented Hu�man
ode.The se
ond
ode proposed is
alled Tagged Hu�man Code. This is just likethe previous one di�ering only in that the �rst bit of ea
h byte is reserved to
ag whether or not the byte is the �rst byte of a
odeword. Hen
e, only 7 bits ofea
h byte are used for the Hu�man
ode. Note that the use of a Hu�man
ode

over the remaining 7 bits is mandatory, as the
ag is not useful by itself to makethe
ode a pre�x
ode.Tagged Hu�man Code has a pri
e in terms of
ompression performan
e: westore full bytes but use only 7 bits for
oding. Hen
e the
ompressed �le growsapproximately by 8%{10%.Example 2. We show the di�eren
es among the
odes generated by the PlainHu�man Code and Tagged Hu�man Code. In our example we assume that thetext vo
abulary has 16 words, with uniform distribution in Table 1 and withexponential distribution (pi = 1=2i) in Table 2.For the sake of simpli
ity, from this example on, we will
onsider that our\bytes" are formed by only two bits. Hen
e, Tagged Hu�man Code uses onebit for the
ag and one for the
ode (this makes it look worse than it is). Weunderline the
ag bits. utWord Probab. Plain Hu�man Tagged Hu�manA 1=16 00 00 1�0 0�0 0�0 0�0B 1=16 00 01 1�0 0�0 0�0 0�1C 1=16 00 10 1�0 0�0 0�1 0�0D 1=16 00 11 1�0 0�0 0�1 0�1E 1=16 01 00 1�0 0�1 0�0 0�0F 1=16 01 01 1�0 0�1 0�0 0�1G 1=16 01 10 1�0 0�1 0�1 0�0H 1=16 01 11 1�0 0�1 0�1 0�1I 1=16 10 00 1�1 0�0 0�0 0�0J 1=16 10 01 1�1 0�0 0�0 0�1K 1=16 10 10 1�1 0�0 0�1 0�0L 1=16 10 11 1�1 0�0 0�1 0�1M 1=16 11 00 1�1 0�1 0�0 0�0N 1=16 11 01 1�1 0�1 0�0 0�1O 1=16 11 10 1�1 0�1 0�1 0�0P 1=16 11 11 1�1 0�1 0�1 0�1Table 1. Codes for a uniform distribution.The addition of a tag bit in the Tagged Hu�man Code permits dire
tsear
hing on the
ompressed text with any string mat
hing algorithm, by simply
ompressing the pattern and then resorting to
lassi
al string mat
hing.On Plain Hu�man this does not work, as the pattern
ould o

ur in the textand yet not
orrespond to our
odeword. The problem is that the
on
atenationof parts of two
odewords may form the
odeword of another vo
abulary word.This
annot happen in the Tagged Hu�man Code due to the use of one bitin ea
h byte to determine if the byte is the �rst byte of a
odeword or not.

Word Probab. Plain Hu�man Tagged Hu�manA 1=2 00 1�1B 1=4 01 1�0 0�1C 1=8 10 1�0 0�0 0�1D 1=16 11 00 1�0 0�0 0�0 0�1E 1=32 11 01 1�0 0�0 0�0 0�0 0�1F 1=64 11 10 1�0 0�0 0�0 0�0 0�0 0�1G 1=128 11 11 0�0 1�0 0�0 0�0 0�0 0�0 0�0 0�1H 1=256 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1I 1=512 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1J 1=1024 11 11 11 0�0 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1K 1=2048 11 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1L 1=4096 11 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1M 1=8192 11 11 11 11 00 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1N 1=16384 11 11 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1O 1=32768 11 11 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1P 1=32768 11 11 11 11 11 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1Table 2. Codes for an exponential distribution.For this reason, sear
hing with Plain Hu�man requires inspe
ting all thebytes of the
ompressed text from the beginning, while Boyer-Moore typesear
hing (that is, skipping bytes) is possible over Tagged Hu�man Code.Example 3. Let us suppose that we have to
ompress a text with a vo
abularyformed by the words A, B, C, D and assume that the Hu�man algorithm assignsthe following
odewords to the original words:A 00B 01C 10D 11 00Let us
onsider the following portion of a
ompressed text using the
odeshown above, for the sequen
e ABAD:: : : 00 01 00 11 00 : : :Finally, let us suppose that we sear
h for word A. If we resort to plain patternmat
hing, we �nd two o

urren
es in the text. However, the se
ond does notreally represent an o

urren
e of A in the text, but it is part of D. The programshould have a postpro
essing phase where ea
h potential o

urren
e is veri�ed,whi
h ruins the simpli
ity and performan
e of the algorithm. utThe algorithm to sear
h for a single word under Tagged Hu�man Codestarts by �nding the word in the vo
abulary to obtain the
odeword that

represents it in the
ompressed text. Then the obtained
odeword is sear
hedfor in the
ompressed text using any
lassi
al string mat
hing algorithm with nomodi�
ations. They
all this te
hnique dire
t sear
hing [12, 17℄.Today's IR systems require also
exibility in the sear
h patterns. Thereis a range of
omplex patterns that are interesting in IR systems, in
ludingregular expressions and \approximate" sear
hing (also known as \sear
h allowingerrors"). See [12, 17℄ for more details.3 A New Compression S
heme: End-Tagged Dense CodesWe start with a seemingly dull
hange to Tagged Hu�man Code. Instead of usingthe
ag bit to signal the beginning of a
odeword, we use it to signal the end ofa
odeword. That is, the bit will be 1 for the last byte of ea
h
odeword.This
hange has surprising
onsequen
es. Now the
ag bit is enough to ensurethat the
ode is a pre�x
ode, no matter what we do with the other 7 bits. Tosee this, noti
e that, given two
odewords X and Y , where jX j < jY j, X
annotbe a pre�x of Y be
ause the last byte of X has its
ag bit in 1, while the jX j-thbyte of Y has its
ag bit in 0.At this point, there is no need at all to use Hu�man
oding over the remaining7 bits. We
an just use all the possible
ombinations of 7 bits in all the bytes,as long as we reserve the
ag bit to signal the end of the
odeword.On
e we are not bound to use a Hu�man
ode, we have the problem of�nding the optimal
ode assignment, that is, the one minimizing the length ofthe output. It is still true that we want to assign shorter
odewords to morefrequent words. Indeed, the optimal assignment is obtained with the followingpro
edure.1. The words in the vo
abulary are ordered by their frequen
y, more frequent�rst.2. Codewords from 1�0000000 to 1�1111111 are assigned sequentially to the �rst128 words of the vo
abulary, using the 27 possibilities.3. Words at positions 128 + 1 to 128 + 1282 are en
oded using twobytes, by exploiting the 214
ombinations from 0�0000000:1�0000000 to0�1111111:1�1111111.4. Words at positions 128+1282+1 to 128+1282+1283 are en
oded using threebytes, by exploiting the 221
ombinations from 0�0000000:0�0000000:1�0000000to 0�1111111:0�1111111:1�1111111. And so on.The assignment is done in a
ompletely sequential fashion, that is, the 130-thword is en
oded as 0�0000000:1�0000001, the 131-th as 0�0000000:1�0000010, andso on, just as if we had a 14-bit number. As it
an be seen, the
omputation of
odes is extremely simple: It is only ne
essary to order the vo
abulary words byfrequen
y and then sequentially assign the
odewords. Hen
e the
oding phasewill be faster be
ause obtaining the
odes is simpler.

Any previous byte Last byte

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

..........

0 1 1 1 1 1 1 1Fig. 2. End-Tagged Dense CodewordsIn fa
t, we do not even need to physi
ally store the results of these
omputations: With a few operations we
an obtain on the
y, given a wordrank i, its `-byte
odeword, in O(`) = O(log i) time.What is perhaps less obvious is that the
ode depends on the rank of thewords, not on their a
tual frequen
y. That is, if we have four words A, B, C,D with frequen
ies 0.27, 0.26, 0.25 and 0.23, respe
tively, the
ode will be thesame as if their frequen
ies were 0.9, 0.09, 0.009 and 0.001.Hen
e, we do not need to store the
odewords (in any form su
h as a tree)nor the frequen
ies in the
ompressed �le. It is enough to store the plain wordssorted by frequen
y. Therefore, the vo
abulary will be smaller than in the
aseof the Hu�man
ode, where either the frequen
ies or the
odewords or the treemust be stored with the vo
abulary.In order to obtain the
odewords of a
ompressed text, the de
oder
an runa simple
omputation to obtain, from the
odeword, the rank of the word, andthen obtain the word from the vo
abulary sorted by frequen
y. An `-byte
oden
an be de
oded in O(`) = O(logn) time.Table 3 shows the
odewords obtained by the End-Tagged Dense Code for theexamples in Tables 1 and 2 (remember that we are using bytes of two bits). Notethat, independently of the distribution, exponential or uniform, the
odi�
ationis the same.It is interesting to point out how our
odes look like on a Hu�man tree.Basi
ally, our
odes
an be regarded as a tree of arity 128 (like that of TaggedHu�man), but in this
ase we
an use also the internal nodes of the tree,while Tagged Hu�man is restri
ted to use only the leaves. This reason showsimmediately that the best tree for us is the most balan
ed one (that is, a dense
ode), as any tree is legal and the balan
ed one minimizes the weighted pathlength.4 Analyti
al ResultsWe try to analyze the
ompression performan
e of our new s
heme. Let us assumea word distribution fpigi=1:::N , where pi is the probability of the i-th mostfrequent word and N is the vo
abulary size. Let us assume that we use symbols

Word Rank CodewordA 1 1�0B 2 1�1C 3 0�0 1�0D 4 0�0 1�1E 5 0�1 1�0F 6 0�1 1�1G 7 0�0 0�0 1�0H 8 0�0 0�0 1�1I 9 0�0 0�1 1�0J 10 0�0 0�1 1�1K 11 0�1 0�0 1�0L 12 0�1 0�0 1�1M 13 0�1 0�1 1�0N 14 0�1 0�1 1�1O 15 0�0 0�0 0�0 1�0P 16 0�0 0�0 0�0 1�1Table 3. Example of End-Tagged Dense Codeof b bits to represent the
odewords, so that ea
h
odeword is a sequen
e of b-bitsymbols. In pra
ti
e we use bytes, so b = 8.It is well known [3℄ that Plain Hu�man
oding produ
es an average symbollength whi
h is at most one extra symbol over the zero-order entropy. That is,if we
all Eb = NXi=1 pi log2b(1=pi) = 1b NXi=1 pi log2(1=pi)the zero-order entropy in base b of the text, then the average number of symbolsto
ode a word using Plain Hu�man isEb � Hb � Eb + 1Tagged Hu�man
ode is also easy to analyze. It is a Hu�man
ode over b� 1bits, but using b bits per symbol, hen
eEb�1 � Tb � Eb�1 + 1Let us now
onsider our new method, with average number of symbols perword Db. It is
lear that Hb � Db � Tb, be
ause ours is a pre�x
ode andHu�man is the best pre�x
ode, and be
ause we use all the b � 1 remainingbit
ombinations and Tagged Hu�man does not. We try now to obtain a morepre
ise
omparison. Let us
all B = 2b�1. Sin
e Bi di�erent words will be
odedusing i symbols, let us de�nesi = iXj=1Bj = BB � 1 (Bi � 1)

(where s0 = 0) the number of words that
an be
oded with up to i symbols.Let us also
all fi = siXj=si�1+1 pjthe overall probability of words
oded with i symbols.Then, the average length of a
odeword under our new method isDb = SXi=1 ifiwhere S = logB �B�1B N + 1�.The most interesting parti
ular
ase is a distribution typi
al of naturallanguage texts. It is well known [3℄ that, in natural language texts, the vo
abularydistribution
losely follows a generalized Zipf's law [14℄, that is, pi = A=i� andN =1, for suitable
onstants A and �. In pra
ti
e � is between 1.4 and 1.8 anddepends on the text [1, 2℄, whileA = 1Pi�1 1=i� = 1�(�)makes sure that the distribution adds up 11. Under this distribution the entropyisEb = 1b Xi�1 pi log2 1pi = A�b Xi�1 � log2 ii� � log2 A� = ��� 0(�)=�(�) + ln �(�)b ln 2On the other hand, we haveDb = A Xi�1 i siXj=si�1+1 1=j� = 1+A Xi�1 i si+1Xj=si+1 1=j� = 1+A Xi�1 Xj�si+1 1=j�At this point we resort to integration to get lower and upper bounds. Sin
e1=j� de
reases with j, we have that the above summation is upper bounded asfollowsDb � 1 +A Xi�1 Z 1si 1=x�dx = 1 + A(B � 1)��1(� � 1)B��1 Xi�1 1(Bi � 1)��1� 1 + A(B � 1)��1(� � 1)B��1 B1��1�B1�� (1� 1=B)1�� = 1 + 1(� � 1)�(�)(B��1 � 1)A lower bound
an be obtained similarly, as followsDb � 1 +A Xi�1 Z 1si+1 1=x�dx = 1 + A(B � 1)��1� � 1 Xi�1 1(Bi+1 � 1)��1� 1 + A(B � 1)��1(� � 1) B2(1��)1�B1�� = 1 + (1� 1=B)��1(� � 1)�(�)(B��1 � 1)1 We are using the Zeta fun
tion �(x) =Pi>0 1=ix. We will also use �0(x) = ��(x)=�x.

This gives us the length of the
ode with a pre
ision fa
tor of (1� 1=B)��1,whi
h in our
ase (B = 128, � =1.4 to 1.8) is around 0.5%. This shows that thenew
ode is also simpler to analyze than Hu�man, as the existing bounds forHu�man are mu
h looser.In fa
t, the lower bound Eb for the performan
e of Hu�man is quite uselessfor our
ase: For b = 8 bits, Eb < 1 for � > 1:3, where 1 symbol is an obviouslower bound. The same happens when using Eb�1 to bound Tagged Hu�man.We have
onsidered tighter estimates [5, 11℄ but none was useful for this
ase.In order to
ompare our results with Plain Hu�man and Tagged Hu�man,we resort to our own analysis. If we take b = 9 bits, then B = 256 and we obtainthe length of a dense
ode where all the 8 bits are used in the optimal form. Thisis ne
essarily better than Hu�man (on 8 bits), as not all the 8-bit
ombinationsare legal for Hu�man. On the other hand,
onsider b = 7. In this
ase our new
ode is a 7-bit pre�x
ode, ne
essarily inferior to Tagged Hu�man (over 8 bits).Hen
e we have the following inequalitiesDb+1 � Hb � Db � Tb � Db�1These results give us usable bounds to
ompare our performan
e. In
identally,the analysis of our new
ode turns out to give new upper and lower bounds for theredundan
y of d-ary Hu�man
odes. Figure 3 illustrates our analyti
al estimatesas a fun
tion of �. Our lower and upper bounds are rather
lose. Plain Hu�manmust lie between its lower bound and our upper bound. Tagged Hu�man mustlie between our lower bound and its upper bound.5 Experimental ResultsWe show some experimental results now. We have used some large text
olle
tions from tre
-4 (Congressional Re
ord 1993, Finan
ial Times 1991 and1992); and some smaller from the Calgary Corpus (Book1, Book2, Paper1 toPaper6, Bib). We have
ompressed them using Plain Hu�man Code, TaggedHu�man Code, and our End-Tagged Dense Code. We have ex
luded the sizeof the vo
abulary in the results (this size is almost equal in the three
ases,although a bit smaller in our
ase). Separators (that is, maximal strings betweentwo
onse
utive words) were treated as words as well. Sin
e words and separatorsstri
tly alternate, we used separate di
tionaries for words and separators, as one
an
ompress and de
ompress using one after the other.Table 4 shows the results. It
an be seen that, in all
ases, our End-TaggedDense Codes are superior to Tagged Hu�man Codes. In parti
ular, on the largenatural language
olle
tions, we are 5%{6% better than Tagged Hu�man andjust less than 2% over the optimal Plain Hu�man. The results
hange a bit onthe smaller
olle
tions of the Calgary Corpus, but essentially the results are thesame. Note that the separators are so biased (�
lose to 2.0) that they permitan almost optimal
oding (1 byte per separator), while words have a smaller �(1.4{1.6), whi
h makes their
ode longer (1.5{1.7 bytes per word). Observe thatthe � values for the smaller �les of the Calgary
orpus strongly deviate from

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.3 1.4 1.5 1.6 1.7 1.8 1.9

B
yt

es
 p

er
 S

ym
bo

l

Theta

Compression bounds

Ours - lower bound
Ours - upper bound

Plain Huffman - lower bound
Tagged Huffman - upper bound

Fig. 3. Analyti
al bounds on the average
ode length for byte-oriented Plain Hu�man,Tagged Hu�man, and our new method. We assume a Zipf distribution with parameter� (whi
h is the x axis).these lines and from previous results on other large
olle
tions [1℄, whi
h showsthat this kind of analysis applies well to large
olle
tions only.6 Con
lusionsWe have presented a new
ompression
ode useful for text databases. The
odeinherits from previous work, where byte-oriented word-based Hu�man
odeswere shown to be an ex
ellent
hoi
e. To permit fast sear
hing over that
ode,Tagged Hu�man
odes were introdu
ed, whi
h in ex
hange produ
ed an outputabout 7%{8% larger.In this paper we have introdu
ed End-Tagged Dense Codes, whi
h is a pre�x
ode retaining all the sear
hability properties of Tagged Hu�man
ode whileimproving it on several aspe
ts: (i)
odes are shorter: 5%{6% shorter than TaggedHu�man and just less than 2% over Hu�man; (ii)
oding is mu
h simpler andfaster; (iii) the vo
abulary representation is simpler and shorter.We have shown analyti
ally and experimentally the advantages of End-Tagged Dense Codes in terms of output size. An Information Retrieval systembased on this new te
hnique should also bene�t from the other advantages.For example, (iii) means that we just need to store the vo
abulary sorted byfrequen
y, without any additional information, whi
h has an important impa
t

Corpus Tot. Words Vo
. Words Plain End-Tagged Tagged ThetaTot. Sep. Vo
. Sep. Hu�man Dense Hu�manCongressional Re
ord 7,765,434 112,850 1.543411 1.586550 1.709030 1.6239031993 7,765,481 1,320 1.000506 1.001422 1.001595 2.319811Finan
ial Times 2,426,418 74,351 1.539468 1.581893 1.702489 1.4385031991 2,426,433 1,245 1.000843 1.001705 1.001870 2,003911Finan
ial Times 28,882,888 279,330 1.552060 1.591722 1.721922 1.6276021992 28,883,064 5,564 1.001234 1.002280 1.002726 1.775175Calgary: Book1 31,722 5,565 1.381281 1.460280 1.511727 0.96907231,723 317 1.001954 1.007313 1.007439 1.531933Calgary: Book2 105,962 7,907 1.410222 1.491638 1.564929 1.271044105,963 1,114 1.014467 1.027028 1.028444 1.521758Calgary: Paper1 9,157 1,791 1.300426 1.415420 1.435514 1.0041439,158 316 1.006661 1.028281 1.028936 1.426831Calgary: Paper2 14,266 2,468 1.326090 1.427309 1.453175 1.03551214,267 184 1.000000 1.003925 1.003995 1.632045Calgary: Paper3 7,364 2,087 1.381586 1.483568 1.502308 0.8358707,365 125 0.999999 0.999999 0.999999 1.667132Calgary: Paper4 2,219 751 1,248422 1,385933 1,392696 0.8099302,218 75 0.999999 0.999999 0.999999 1.582207Calgary: Paper5 2,207 613 1.166289 1.299048 1.304486 0.9146702,208 190 0.999999 1.028080 1.028533 1.134055Calgary: Paper6 7,246 1,163 1.213497 1.341844 1.355921 1.0985757,247 373 1.016283 1.044708 1.045361 1.263650Calgary: Bib 20,519 3,667 1.295287 1.365953 1.393391 0.92265320,520 56 1.000000 1.000000 1.000000 2.735627Calgary: News 62,794 9,912 1.511116 1.581616 1.701739 1.02576462,795 2,060 1.045242 1.062107 1.065690 1.107732Table 4. Compression results on di�erent text
olle
tions. The
ompression isexpressed in terms of bytes per symbol.when
oding short
olle
tions; (ii) means that we do not have to build Hu�man
ode, but
an just en
ode and de
ode on the
y with a program of a few lines.As a side e�e
t, our analysis has given new upper and lower bounds on theaverage
ode length when using d-ary Hu�man
oding. These bounds are ofdi�erent nature from those we are aware of, and they
ould be better on somedistribution. This was the
ase on natural language distributions.For the �nal version we will improve the experimental results and theiragreement with the analyti
al predi
tions. There are di�erent valid ways to
ompute the � value for a distribution (we used plain least squares on the modely =
=x�), and we would like to �nd one where the � value is useful to predi
t the
ompression obtained a

ording to the analysis. Right now, a smaller � does notguarantee better
ompression, as it would if the real distribution �tted perfe
tlya Zipf distribution. This does not alter the fa
t that our End-Tagged Dense
odes are stri
tly better than Tagged Hu�man
odes and that in pra
ti
e the

improvement is of 5%{6%, but it would be interesting to be able to predi
t theimprovement just from a suitable � value for the
olle
tion.Referen
es1. M. D. Ara�ujo, G. Navarro, and N. Ziviani. Large text sear
hing allowing errors. InR. Baeza-Yates, editor, Pro
. 4th South Ameri
an Workshop on String Pro
essing(WSP'97), pages 2{20. Carleton University Press, 1997.2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.3. T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prenti
e Hall, 1990.4. D. A. Hu�man. A method for the
onstru
tion of minimum-redundan
y
odes.Pro
. Inst. Radio Eng., 40(9):1098{1101, September 1952.5. D. Manstetten. Tight bounds on the redundan
y of Hu�man
odes. IEEE Trans.on Information Theory, 38(1):144{151, January 1992.6. A. Mo�at. Word-based text
ompression. Software - Pra
ti
e and Experien
e,19(2):185{198, 1989.7. A. Mo�at and A. Turpin. On the implementation of minimum-redundan
y pre�x
odes. In Pro
. Data Compression Conferen
e, pages 170{179, 1996.8. G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.Adding
ompression to blo
k addressing inverted indexes. Information Retrieval,3(1):49{77, 2000.9. G. Navarro and M. RaÆnot. Flexible Pattern Mat
hing in Strings { Pra
ti
alon-line sear
h algorithms for texts and biologi
al sequen
es. Cambridge UniversityPress, 2002.10. G. Navarro and J. Tarhio. Boyer-moore string mat
hing over ziv-lempel
ompressedtext. In Pro
. 11th Annual Symposium on Combinatorial Pattern Mat
hing(CPM'2000), LNCS 1848, pages 166{180, 2000.11. R. De Pris
o and A. De Santis. On lower bounds for the redundan
y of optimal
odes. Designs, Codes and Cryptography, 15(1):29{45, 1998.12. E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and
exibleword sear
hing on
ompressed text. ACM Transa
tions on Information Systems,18(2):113{139, April 2000.13. I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan KaufmannPublishers, se
ond edition, 1999.14. G. Zipf. Human Behaviour and the Prin
iple of Least E�ort. Addison-Wesley,1949.15. J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression.IEEE Transa
tions on Information Theory, 23(3):337{343, 1977.16. J. Ziv and A. Lempel. Compression of individual sequen
es via variable-rate
oding.IEEE Transa
tions on Information Theory, 24(5):530{536, 1978.17. N. Ziviani, E. Silva de Moura, G. Navarro, and R. Baeza-Yates. Compression:A key for next-generation text retrieval systems. IEEE Computer, 33(11):37{44,2000.

