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Abstract. We present a new compression format for natural
language texts, allowing both exact and approximate search without
decompression. This new code called End-Tagged Dense Code has
some advantages with respect to other compression techniques with
similar features such as the Tagged Huffman Code of [Moura et al., ACM
TOIS 2000]. Our compression method obtains (i) better compression
ratios, (i7) a smaller and simpler vocabulary representation, and (i%i)
a simpler and faster encoding. At the same time, it retains the most
interesting features of the method based on the Tagged Huffman Code,
i.e., exact search for words and phrases directly on the compressed
text using any known sequential pattern matching algorithm, efficient
word-based approximate and extended searches without any decoding,
and efficient decompression of arbitrary portions of the text. As a side
effect, our analytical results give new upper and lower bounds for the
redundancy of d-ary Huffman codes.
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1 Introduction

Text compression techniques are based on exploiting redundancies in the text
to represent it using less space [3]. The amount of text collections has grown in
recent years mainly due to the widespread use of digital libraries, documental
databases, office automation systems and the Web. Current text databases
contain hundreds of gigabytes and the Web is measured in terabytes. Although
the capacity of new devices to store data grows fast, while the associated costs
decrease, the size of the text collections increases also rapidly. Moreover, CPU
speed grows much faster than that of secondary memory devices and networks,

* This work is partially supported by CICYT grant (#TEL99-0335-C04), CYTED
VII.19 RIBIDI Project, and (for the third author) Fondecyt Grant 1-020831.



so storing data in compressed form reduces 1/0 time, which is more and more
convenient even in exchange for some extra CPU time.

Therefore, compression techniques have become attractive methods to save
space and transmission time. However, if the compression scheme does not allow
to search for words directly on the compressed text, the retrieval will be less
efficient due to the necessity of decompression before the search.

Classic compression techniques, as the well-known algorithms of Ziv and
Lempel [15, 16] or the character oriented code of Huffman [4], are not suitable for
large textual databases. One important disadvantage of these techniques is the
inefficiency of searching for words directly on the compressed text. Compression
schemes based on Huffman codes are not often used on natural language because
of the poor compression ratios achieved. On the other hand, Ziv and Lempel
algorithms obtain better compression ratios, but the search for a word on the
compressed text is inefficient. Empirical results [10] showed that searching on a
Ziv-Lempel compressed text can take half the time of decompressing that text
and then searching it. However, the compressed search is twice as slow as just
searching the uncompressed version of the text.

In [12], Moura et al. present a compression scheme that uses a semi-
static word-based model and a Huffman code where the coding alphabet is
byte-oriented. This compression scheme allows the search for a word on the
compressed text without decompressing it in such a way that the search can
be up to eight times faster for certain queries. The key idea of this work (and
others like that of Moffat and Turpin [7]) is the consideration of the text words
as the symbols that compose the text (and therefore the symbols that should
be compressed). Since in Information Retrieval (IR) text words are the atoms of
the search, these compression schemes are particularly suitable for IR. This idea
has been carried on further up to a full integration between inverted indexes
and word-based compression schemes, opening the door to a brand new family
of low-overhead indexing methods for natural language texts [13,8,17].

Two basic search methods are proposed in [12]. One handles plain Huffman
code (over words) and explores one byte of the compressed text at a time. This
is quite efficient, but not as much as the second choice, which compresses the
pattern and uses any classical string matching strategy, such as Boyer-Moore [9].
For this second, faster, choice to be of use, one has to ensure that no spurious
occurrences are found. The problem is that a text occurrence of the code of
a word may correspond to the concatenation of other codes instead of to the
occurrence of the word. Although Plain Huffman Code is a prefix code (that is,
no code is a prefix of the other), it does not ensure that the above problem cannot
occur. Hence Moura et al. propose a so-called Tagged Huffman Code, where a
bit of each byte in the codes is reserved to signal the beginning of a code. The
price is an increase of approximately 8%—10% in the size of the compressed file.

In this paper we show that, although Plain Huffman Code gives the shortest
possible output when a source symbol is always substituted by the same code,
Tagged Huffman Code largely underutilizes the representation. We show that,
by signaling the end instead of the beginning of a code, the rest of the bits



can be used in all their combinations and the code is still a prefix code. The
resulting code, which we call End-Tagged Dense Code, becomes much closer to
the compression obtained by the Plain Huffman Code. Not only this code retains
the ability of being searchable with any string matching algorithm, but also it is
extremely simple to build (it is not based on Huffman at all) and permits a more
compact vocabulary representation. So the advantages over Tagged Huffman
Code are (i) better compression ratios, (ii) same searching possibilities, (ii7)
simpler and smaller vocabulary representation, (iv) simpler and faster coding.

2 Related Work

Huffman is a well-known coding method [4]. The idea of Huffman coding is
to compress the text by assigning shorter codes to more frequent symbols. It
has been proven that Huffman algorithm obtains an optimal (i.e., shortest total
length) prefiz code for a given text.

A code is called a prefiz code (or instantaneous code) if no codeword is a
prefix of any other codeword. A prefix code can be decoded without reference
to future codewords, since the end of a codeword is immediately recognizable.

2.1 Word-Based Huffman Compression

The traditional implementations of the Huffman code are character based, i.e.,
they adopt the characters as the symbols of the alphabet. A brilliant idea [6]
uses the words in the text as the symbols to be compressed. This idea joins
the requirements of compression algorithms and of IR systems, as words are the
basic atoms for most IR systems. The basic point is that a text is much easier
to compress when regarded as a sequence of words rather than characters.

In [12,17], a compression scheme is presented that uses this strategy
combined with a Huffman code. From a compression viewpoint, character-based
Huffman methods are able to reduce English texts to approximately 60% of their
original size, while word-based Huffman methods are able to reduce them to 25%
of their original size, because the distribution of words is much more biased than
the distribution of characters.

The compression schemes presented in [12,17] use a semi-static model, that
is, the encoder makes a first pass over the text to obtain the frequency of all
the words in the text and then the text is coded in the second pass. During
the coding phase, original symbols (words) are replaced by codewords. For each
word in the text there is a unique codeword, whose length varies depending on
the frequency of the word in the text. Using the Huffman algorithm, shorter
codewords are assigned to more frequent words.

The set of codewords used to compress a text are arranged as a tree with
edges labeled by bits, such that each path from the root to a leaf spells out
a different code. Since this is a prefix code, no code is represented by an
internal tree node. On the other hand, each tree leaf corresponds to a codeword
that represents a different word of the text. For decompression purposes, the



corresponding original text word is attached to each leaf, and the whole tree is
seen as a representation of the vocabulary of the text. Hence, the compressed
file is formed by the compressed text plus this vocabulary representation. The
Huffman algorithm gives the tree that minimizes the length of the compressed
file. See [4, 3] for a detailed description.

Example 1. Consider a text with vocabulary A, B, C, D, E where the
corresponding frequencies are 0.25, 0.25, 0.20, 0.15, 0.15. A possible Huffman
tree, given by the Huffman algorithm, is shown in Figure 1. Observe that A is
coded with 01, B with 10, C' with 11, D with 000 and E with 001.

O

Fig. 1. Huffman tree

2.2 Byte-Oriented Huffman Coding

The basic method proposed by Huffman is mostly used as a binary code, that
is, each word in the original text is coded as a sequence of bits. Moura et al. [12]
modify the code assignment such that a sequence of whole bytes is associated
with each word in the text.

Experimental results have shown that, on natural language, there is no
significant degradation in the compression ratio by using bytes instead of bits.
In addition, decompression and searching are faster with byte-oriented Huffman
code because no bit manipulations are necessary.

In [12] two codes following this approach are presented. In that article, they
call Plain Huffman Code the one we have already described, that is, a word-based
byte-oriented Huffman code.

The second code proposed is called Tagged Huffman Code. This is just like
the previous one differing only in that the first bit of each byte is reserved to
flag whether or not the byte is the first byte of a codeword. Hence, only 7 bits of
each byte are used for the Huffman code. Note that the use of a Huffman code



over the remaining 7 bits is mandatory, as the flag is not useful by itself to make
the code a prefix code.

Tagged Huffman Code has a price in terms of compression performance: we
store full bytes but use only 7 bits for coding. Hence the compressed file grows
approximately by 8%-10%.

Ezample 2. We show the differences among the codes generated by the Plain
Huffman Code and Tagged Huffman Code. In our example we assume that the
text vocabulary has 16 words, with uniform distribution in Table 1 and with
exponential distribution (p; = 1/2%) in Table 2.

For the sake of simplicity, from this example on, we will consider that our
“bytes” are formed by only two bits. Hence, Tagged Huffman Code uses one
bit for the flag and one for the code (this makes it look worse than it is). We
underline the flag bits. O

|W0rd Probab.|Plain Huffman|Tagged Huffman|

A 1/16 |00 00 10 00 00 00
B 1/16 |00 01 10 00 00 01
C 1/16 |00 10 10 00 01 00
D 1/16 |00 11 10 00 01 01
E 1/16 |01 00 10 0T 00 00
F 1/16 |01 01 10 01 00 01
G 1/16 |01 10 10 01 01 00
H 1/16 |01 11 10 01 01 01
I 1/16 |10 00 11 00 00 00
J 1/16 |10 01 11 00 00 01
K 1/16 |10 10 11 00 01 00
L 1/16 |10 11 11 00 01 01
M 1/16 |11 00 11 01 00 00
N 1/16 |11 01 11 01 00 01
0 1/16 |11 10 11 01 01 00
P 1/16 |11 11 11 01 01 01

Table 1. Codes for a uniform distribution.

The addition of a tag bit in the Tagged Huffman Code permits direct
searching on the compressed text with any string matching algorithm, by simply
compressing the pattern and then resorting to classical string matching.

On Plain Huffman this does not work, as the pattern could occur in the text
and yet not correspond to our codeword. The problem is that the concatenation
of parts of two codewords may form the codeword of another vocabulary word.

This cannot happen in the Tagged Huffman Code due to the use of one bit
in each byte to determine if the byte is the first byte of a codeword or not.



|W0rd Probab.|Plain Huffman|Tagged Huffman

1/2 100 11

1/4 |01 10 01

1/8 |10 10 00 01

1/16 |11 00 10 00 00 01

1/32 |11 01 10 00 00 00 01

1/64 |11 10 10 00 00 00 00 01
1/128 |11 11 00 10 00 00 00 00 00 01
1/256 |11 11 01 10 00 00 00 00 00 00 01
1/512 |11 11 10 10 00 00 00 00 00 00 00 01

1/1024 |11 11 11 00 10 00 00 00 00 00 00 00 00 01

1/2048 |11 11 11 01 10 00 00 00 00 00 00 00 00 00 01

1/4096 |11 11 11 10 10 00 00 00 00 00 00 00 00 00 00 01

1/8192 |11 11 11 11 00/10 00 00 00 00 00 00 00 00 00 00 00 01
1/16384|11 11 11 11 01|10 00 00 00 00 00 00 00 00 00 00 00 00 01
1/32768(11 11 11 11 10|10 00 00 00 00 00 00 00 00 00 00 00 00 00 01
1/32768(11 11 11 11 11|10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

DO ZIZ| TR = T Q) E e O 0w

Table 2. Codes for an exponential distribution.

For this reason, searching with Plain Huffman requires inspecting all the
bytes of the compressed text from the beginning, while Boyer-Moore type
searching (that is, skipping bytes) is possible over Tagged Huffman Code.

FEzxample 3. Let us suppose that we have to compress a text with a vocabulary
formed by the words A, B, C, D and assume that the Huffman algorithm assigns
the following codewords to the original words:

Aj00
B|01
C|10
D11 00

Let us consider the following portion of a compressed text using the code
shown above, for the sequence ABAD:

...0001001100...

Finally, let us suppose that we search for word A. If we resort to plain pattern
matching, we find two occurrences in the text. However, the second does not
really represent an occurrence of A in the text, but it is part of D. The program
should have a postprocessing phase where each potential occurrence is verified,
which ruins the simplicity and performance of the algorithm. O

The algorithm to search for a single word under Tagged Huffman Code
starts by finding the word in the vocabulary to obtain the codeword that



represents it in the compressed text. Then the obtained codeword is searched
for in the compressed text using any classical string matching algorithm with no
modifications. They call this technique direct searching [12,17].

Today’s IR systems require also flexibility in the search patterns. There
is a range of complex patterns that are interesting in IR systems, including
regular expressions and “approximate” searching (also known as “search allowing
errors”). See [12,17] for more details.

3 A New Compression Scheme: End-Tagged Dense Codes

We start with a seemingly dull change to Tagged Huffman Code. Instead of using
the flag bit to signal the beginning of a codeword, we use it to signal the end of
a codeword. That is, the bit will be 1 for the last byte of each codeword.

This change has surprising consequences. Now the flag bit is enough to ensure
that the code is a prefix code, no matter what we do with the other 7 bits. To
see this, notice that, given two codewords X and Y, where | X| < |Y|, X cannot
be a prefix of Y because the last byte of X has its flag bit in 1, while the | X |-th
byte of Y has its flag bit in 0.

At this point, there is no need at all to use Huffman coding over the remaining
7 bits. We can just use all the possible combinations of 7 bits in all the bytes,
as long as we reserve the flag bit to signal the end of the codeword.

Once we are not bound to use a Huffman code, we have the problem of
finding the optimal code assignment, that is, the one minimizing the length of
the output. It is still true that we want to assign shorter codewords to more
frequent words. Indeed, the optimal assignment is obtained with the following
procedure.

1. The words in the vocabulary are ordered by their frequency, more frequent
first.

2. Codewords from 10000000 to 11111111 are assigned sequentially to the first
128 words of the vocabulary, using the 27 possibilities.

3. Words at positions 128 + 1 to 128 + 1282 are encoded using two
bytes, by exploiting the 2'# combinations from 00000000:10000000 to
01111111:11111111.

4. Words at positions 1284128241 to 128 +1282 4128 are encoded using three
bytes, by exploiting the 22! combinations from 00000000:00000000:10000000
to 01111111:01111111:11111111. And so on.

The assignment is done in a completely sequential fashion, that is, the 130-th
word is encoded as 00000000:10000001, the 131-th as 00000000:10000010, and
so on, just as if we had a 14-bit number. As it can be seen, the computation of
codes is extremely simple: It is only necessary to order the vocabulary words by
frequency and then sequentially assign the codewords. Hence the coding phase
will be faster because obtaining the codes is simpler.



Any previousbyte Last byte

00000000 10000000

01111111 11111111

Fig. 2. End-Tagged Dense Codewords

In fact, we do not even need to physically store the results of these
computations: With a few operations we can obtain on the fly, given a word
rank i, its £-byte codeword, in O(¢) = O(logi) time.

What is perhaps less obvious is that the code depends on the rank of the
words, not on their actual frequency. That is, if we have four words A, B, C,
D with frequencies 0.27, 0.26, 0.25 and 0.23, respectively, the code will be the
same as if their frequencies were 0.9, 0.09, 0.009 and 0.001.

Hence, we do not need to store the codewords (in any form such as a tree)
nor the frequencies in the compressed file. It is enough to store the plain words
sorted by frequency. Therefore, the vocabulary will be smaller than in the case
of the Huffman code, where either the frequencies or the codewords or the tree
must be stored with the vocabulary.

In order to obtain the codewords of a compressed text, the decoder can run
a simple computation to obtain, from the codeword, the rank of the word, and
then obtain the word from the vocabulary sorted by frequency. An £-byte code
n can be decoded in O(f) = O(logn) time.

Table 3 shows the codewords obtained by the End-Tagged Dense Code for the
examples in Tables 1 and 2 (remember that we are using bytes of two bits). Note
that, independently of the distribution, exponential or uniform, the codification
is the same.

It is interesting to point out how our codes look like on a Huffman tree.
Basically, our codes can be regarded as a tree of arity 128 (like that of Tagged
Huffman), but in this case we can use also the internal nodes of the tree,
while Tagged Huffman is restricted to use only the leaves. This reason shows
immediately that the best tree for us is the most balanced one (that is, a dense
code), as any tree is legal and the balanced one minimizes the weighted path
length.

4 Analytical Results

We try to analyze the compression performance of our new scheme. Let us assume
a word distribution {p;};—1..n, where p; is the probability of the i-th most
frequent word and N is the vocabulary size. Let us assume that we use symbols



|W0rd R.ank|Codeword |

A 1 10

B 2 11

C 3 10010

D 4 10011

E 5 (0110

F 6 (0111

G 7 |00 00 10

H 8 (000011

I 9 (000110

J 10 |00 01 11

K 11 |01 00 10

L 12 |01 00 11

M 13 |01 01 10

N 14 |01 01 11

O 15 |00 00 00 10
P 16 |00 00 00 11

Table 3. Example of End-Tagged Dense Code

of b bits to represent the codewords, so that each codeword is a sequence of b-bit
symbols. In practice we use bytes, so b = 8.

It is well known [3] that Plain Huffman coding produces an average symbol
length which is at most one extra symbol over the zero-order entropy. That is,
if we call

S =

N
Zpl logye (1/pi) = Z i 10g, (1/pi)
the zero-order entropy in baqe b of the text, then ‘rhe average number of symbols
to code a word using Plain Huffman is

E, < H, < FEy+1

Tagged Huffman code is also easy to analyze. It is a Huffman code over b — 1
bits, but using b bits per symbol, hence

Ey,w < Ty < Eypa+1

Let us now consider our new method, with average number of symbols per
word Dy. It is clear that H, < D, < T,, because ours is a prefix code and
Huffman is the best prefix code, and because we use all the b — 1 remaining
bit combinations and Tagged Huffman does not. We try now to obtain a more
precise comparison. Let us call B = 2°~!. Since B’ different words will be coded
using i symbols, let us define

1
. B .
B = i
Z BT (B' —1)
Jj=1



(where sp = 0) the number of words that can be coded with up to i symbols.

Let us also call N
fi = >
j=si—1+1

the overall probability of words coded with i symbaols.
Then, the average length of a codeword under our new method is

S

D, = Z ifi
i=1
where S = logy (252N +1).

The most interesting particular case is a distribution typical of natural
language texts. It is well known [3] that, in natural language texts, the vocabulary
distribution closely follows a generalized Zipf’s law [14], that is, p; = A/i® and
N = oo, for suitable constants A and 6. In practice 8 is between 1.4 and 1.8 and
depends on the text [1,2], while

| v b
Y i ((0)

makes sure that the distribution adds up 1'. Under this distribution the entropy
is

A =

1 1 Al log, i —0¢'(0)/¢(0) +1n ()
b= 3 sz 08 - = < o~ log, > 5
i>1 i>1
On the other hand, we have
Si Sit1
Dy = A> i > 1/ = 14A) i Y 1/ = 144> > 1y
i>1 j=si_1+1 i>1 j=sit] i>1 j>si+1

At this point we resort to integration to get lower and upper bounds. Since
1/7% decreases with j, we have that the above summation is upper bounded as
follows

© A(B —1)01 1
Dy <1+ A 1/2%dz = 1 :
b= 1+ Z/S [z dz +(9,1)3971 2(31,1)071
i>1 : i>1
14 A(B_l)o—l B170
- (f—1)B?~1' 1—-B'-¢

1

B -0 _
LUB = e D

A lower bound can be obtained similarly, as follows

© A(B —1)1 1
Z _
Dy>1+4+A E / 1/z%dz = 1+ 71 E (B 1)

i>1 7 sitl i>1
.14 A(B . 1)071 B2(170) - (1 _ 1/8)071
- -1 1-B'-* (60 —1)¢O)(BIT —1)

! We are using the Zeta function ¢(z) = Y iso 1/i%. We will also use ¢'(z) = 9¢(z) /0.



This gives us the length of the code with a precision factor of (1 —1/B)%1,
which in our case (B = 128, § =1.4 to 1.8) is around 0.5%. This shows that the
new code is also simpler to analyze than Huffman, as the existing bounds for
Huffman are much looser.

In fact, the lower bound Ej; for the performance of Huffman is quite useless
for our case: For b = 8 bits, E; < 1 for # > 1.3, where 1 symbol is an obvious
lower bound. The same happens when using Ej_; to bound Tagged Huffman.
We have considered tighter estimates [5, 11] but none was useful for this case.

In order to compare our results with Plain Huffman and Tagged Huffman,
we resort to our own analysis. If we take b = 9 bits, then B = 256 and we obtain
the length of a dense code where all the 8 bits are used in the optimal form. This
is necessarily better than Huffman (on 8 bits), as not all the 8-bit combinations
are legal for Huffman. On the other hand, consider b = 7. In this case our new
code is a 7-bit prefix code, necessarily inferior to Tagged Huffman (over 8 bits).
Hence we have the following inequalities

Dyyw < Hy < Dy < Ty, < Dy

These results give us usable bounds to compare our performance. Incidentally,
the analysis of our new code turns out to give new upper and lower bounds for the
redundancy of d-ary Huffman codes. Figure 3 illustrates our analytical estimates
as a function of . Our lower and upper bounds are rather close. Plain Huffman
must, lie between its lower bound and our upper bound. Tagged Huffman must
lie between our lower bound and its upper bound.

5 Experimental Results

We show some experimental results now. We have used some large text
collections from TREC-4 (Congressional Record 1993, Financial Times 1991 and
1992); and some smaller from the Calgary Corpus (Bookl, Book2, Paperl to
Paper6, Bib). We have compressed them using Plain Huffman Code, Tagged
Huffman Code, and our End-Tagged Dense Code. We have excluded the size
of the vocabulary in the results (this size is almost equal in the three cases,
although a bit smaller in our case). Separators (that is, maximal strings between
two consecutive words) were treated as words as well. Since words and separators
strictly alternate, we used separate dictionaries for words and separators, as one
can compress and decompress using one after the other.

Table 4 shows the results. It can be seen that, in all cases, our End-Tagged
Dense Codes are superior to Tagged Huffman Codes. In particular, on the large
natural language collections, we are 5%—6% better than Tagged Huffman and
just less than 2% over the optimal Plain Huffman. The results change a bit on
the smaller collections of the Calgary Corpus, but essentially the results are the
same. Note that the separators are so biased (f close to 2.0) that they permit
an almost optimal coding (1 byte per separator), while words have a smaller 6
(1.4-1.6), which makes their code longer (1.5-1.7 bytes per word). Observe that
the 6 values for the smaller files of the Calgary corpus strongly deviate from



Compression bounds
1.35 . .

Ours - lower bound ——
13 | Ours - upper bound —<—
' Plain Huffman - lower bound ——
Tagged Huffman - upper bound —=—

1.25
1.2

1.15

Bytes per Symbol

11

1.05

Fig. 3. Analytical bounds on the average code length for byte-oriented Plain Huffman,
Tagged Huffman, and our new method. We assume a Zipf distribution with parameter
6 (which is the z axis).

these lines and from previous results on other large collections [1], which shows
that this kind of analysis applies well to large collections only.

6 Conclusions

We have presented a new compression code useful for text databases. The code
inherits from previous work, where byte-oriented word-based Huffman codes
were shown to be an excellent choice. To permit fast searching over that code,
Tagged Huffman codes were introduced, which in exchange produced an output
about 7% 8% larger.

In this paper we have introduced End-Tagged Dense Codes, which is a prefix
code retaining all the searchability properties of Tagged Huffman code while
improving it on several aspects: (i) codes are shorter: 5%—6% shorter than Tagged
Huffman and just less than 2% over Huffman; (ii) coding is much simpler and
faster; (iii) the vocabulary representation is simpler and shorter.

We have shown analytically and experimentally the advantages of End-
Tagged Dense Codes in terms of output size. An Information Retrieval system
based on this new technique should also benefit from the other advantages.
For example, (i7i) means that we just need to store the vocabulary sorted by
frequency, without any additional information, which has an important impact



Corpus Tot. Words|Voc. Words| Plain |End-Tagged| Tagged | Theta
Tot. Sep. | Voc. Sep. |Huffman Dense Huffman

Congressional Record| 7,765,434 112,850(1.543411 1.586550(1.709030(1.623903
1993 7,765,481 1,320{1.000506 1.001422|1.001595|2.319811
Financial Times 2,426,418 74,351(1.539468 1.581893|1.702489|1.438503
1991 2,426,433 1,245|1.000843 1.001705|1.001870(2,003911
Financial Times 28,882,888 279,330{1.552060 1.591722|1.721922|1.627602
1992 28,883,064 5,564|1.001234 1.002280(1.002726|1.775175
Calgary: Bookl 31,722 5,565|1.381281 1.460280(1.511727/0.969072
31,723 317|1.001954 1.007313|1.007439|1.531933

Calgary: Book2 105,962 7,907(1.410222 1.491638|1.564929(1.271044
105,963 1,114(1.014467 1.027028(1.028444|1.521758

Calgary: Paperl 9,157 1,791(1.300426 1.415420(1.435514(1.004143
9,158 316|1.006661 1.028281|1.028936|1.426831

Calgary: Paper2 14,266 2,468|1.326090 1.427309|1.453175(1.035512
14,267 184(1.000000 1.003925(1.003995|1.632045

Calgary: Paper3 7,364 2,087|1.381586 1.483568|1.502308|0.835870
7,365 125(0.999999 0.999999(0.999999(1.667132

Calgary: Paper4 2,219 751(1,248422 1,385933(1,392696|0.809930
2,218 75(0.999999 0.999999(0.999999(1.582207

Calgary: Paperb 2,207 613|1.166289 1.299048|1.304486|0.914670
2,208 190{0.999999 1.028080(1.028533|1.134055

Calgary: Paper6 7,246 1,163|1.213497 1.341844|1.355921|1.098575
7,247 373|1.016283 1.044708|1.045361|1.263650

Calgary: Bib 20,519 3,667|1.295287 1.365953|1.393391|0.922653
20,520 56(1.000000 1.000000|1.000000|2.735627

Calgary: News 62,794 9,912|1.511116 1.581616|1.701739|1.025764
62,795 2,060(1.045242 1.062107|1.065690|1.107732

Table 4. Compression results on different text collections. The compression is
expressed in terms of bytes per symbol.

when coding short collections; (ii) means that we do not have to build Huffman
code, but can just encode and decode on the fly with a program of a few lines.

As a side effect, our analysis has given new upper and lower bounds on the
average code length when using d-ary Huffman coding. These bounds are of
different nature from those we are aware of, and they could be better on some
distribution. This was the case on natural language distributions.

For the final version we will improve the experimental results and their
agreement with the analytical predictions. There are different valid ways to
compute the 6 value for a distribution (we used plain least squares on the model
y = ¢/x?), and we would like to find one where the @ value is useful to predict the
compression obtained according to the analysis. Right now, a smaller 8 does not
guarantee better compression, as it would if the real distribution fitted perfectly
a Zipf distribution. This does not alter the fact that our End-Tagged Dense
codes are strictly better than Tagged Huffman codes and that in practice the



improvement is of 5% 6%, but it would be interesting to be able to predict the
improvement just from a suitable 6 value for the collection.
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