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lAbstra
t. We present a new 
ompression format for naturallanguage texts, allowing both exa
t and approximate sear
h withoutde
ompression. This new 
ode {
alled End-Tagged Dense Code{ hassome advantages with respe
t to other 
ompression te
hniques withsimilar features su
h as the Tagged Hu�man Code of [Moura et al., ACMTOIS 2000℄. Our 
ompression method obtains (i) better 
ompressionratios, (ii) a smaller and simpler vo
abulary representation, and (iii)a simpler and faster en
oding. At the same time, it retains the mostinteresting features of the method based on the Tagged Hu�man Code,i.e., exa
t sear
h for words and phrases dire
tly on the 
ompressedtext using any known sequential pattern mat
hing algorithm, eÆ
ientword-based approximate and extended sear
hes without any de
oding,and eÆ
ient de
ompression of arbitrary portions of the text. As a sidee�e
t, our analyti
al results give new upper and lower bounds for theredundan
y of d-ary Hu�man 
odes.Keywords: Text 
ompression, D-ary Hu�man 
oding, text databases.1 Introdu
tionText 
ompression te
hniques are based on exploiting redundan
ies in the textto represent it using less spa
e [3℄. The amount of text 
olle
tions has grown inre
ent years mainly due to the widespread use of digital libraries, do
umentaldatabases, oÆ
e automation systems and the Web. Current text databases
ontain hundreds of gigabytes and the Web is measured in terabytes. Althoughthe 
apa
ity of new devi
es to store data grows fast, while the asso
iated 
ostsde
rease, the size of the text 
olle
tions in
reases also rapidly. Moreover, 
puspeed grows mu
h faster than that of se
ondary memory devi
es and networks,? This work is partially supported by CICYT grant (#TEL99-0335-C04), CYTEDVII.19 RIBIDI Proje
t, and (for the third author) Fonde
yt Grant 1-020831.



so storing data in 
ompressed form redu
es i/o time, whi
h is more and more
onvenient even in ex
hange for some extra 
pu time.Therefore, 
ompression te
hniques have be
ome attra
tive methods to savespa
e and transmission time. However, if the 
ompression s
heme does not allowto sear
h for words dire
tly on the 
ompressed text, the retrieval will be lesseÆ
ient due to the ne
essity of de
ompression before the sear
h.Classi
 
ompression te
hniques, as the well-known algorithms of Ziv andLempel [15, 16℄ or the 
hara
ter oriented 
ode of Hu�man [4℄, are not suitable forlarge textual databases. One important disadvantage of these te
hniques is theineÆ
ien
y of sear
hing for words dire
tly on the 
ompressed text. Compressions
hemes based on Hu�man 
odes are not often used on natural language be
auseof the poor 
ompression ratios a
hieved. On the other hand, Ziv and Lempelalgorithms obtain better 
ompression ratios, but the sear
h for a word on the
ompressed text is ineÆ
ient. Empiri
al results [10℄ showed that sear
hing on aZiv-Lempel 
ompressed text 
an take half the time of de
ompressing that textand then sear
hing it. However, the 
ompressed sear
h is twi
e as slow as justsear
hing the un
ompressed version of the text.In [12℄, Moura et al. present a 
ompression s
heme that uses a semi-stati
 word-based model and a Hu�man 
ode where the 
oding alphabet isbyte-oriented. This 
ompression s
heme allows the sear
h for a word on the
ompressed text without de
ompressing it in su
h a way that the sear
h 
anbe up to eight times faster for 
ertain queries. The key idea of this work (andothers like that of Mo�at and Turpin [7℄) is the 
onsideration of the text wordsas the symbols that 
ompose the text (and therefore the symbols that shouldbe 
ompressed). Sin
e in Information Retrieval (IR) text words are the atoms ofthe sear
h, these 
ompression s
hemes are parti
ularly suitable for IR. This ideahas been 
arried on further up to a full integration between inverted indexesand word-based 
ompression s
hemes, opening the door to a brand new familyof low-overhead indexing methods for natural language texts [13, 8, 17℄.Two basi
 sear
h methods are proposed in [12℄. One handles plain Hu�man
ode (over words) and explores one byte of the 
ompressed text at a time. Thisis quite eÆ
ient, but not as mu
h as the se
ond 
hoi
e, whi
h 
ompresses thepattern and uses any 
lassi
al string mat
hing strategy, su
h as Boyer-Moore [9℄.For this se
ond, faster, 
hoi
e to be of use, one has to ensure that no spuriouso

urren
es are found. The problem is that a text o

urren
e of the 
ode ofa word may 
orrespond to the 
on
atenation of other 
odes instead of to theo

urren
e of the word. Although Plain Hu�man Code is a pre�x 
ode (that is,no 
ode is a pre�x of the other), it does not ensure that the above problem 
annoto

ur. Hen
e Moura et al. propose a so-
alled Tagged Hu�man Code, where abit of ea
h byte in the 
odes is reserved to signal the beginning of a 
ode. Thepri
e is an in
rease of approximately 8%{10% in the size of the 
ompressed �le.In this paper we show that, although Plain Hu�man Code gives the shortestpossible output when a sour
e symbol is always substituted by the same 
ode,Tagged Hu�man Code largely underutilizes the representation. We show that,by signaling the end instead of the beginning of a 
ode, the rest of the bits




an be used in all their 
ombinations and the 
ode is still a pre�x 
ode. Theresulting 
ode, whi
h we 
all End-Tagged Dense Code, be
omes mu
h 
loser tothe 
ompression obtained by the Plain Hu�man Code. Not only this 
ode retainsthe ability of being sear
hable with any string mat
hing algorithm, but also it isextremely simple to build (it is not based on Hu�man at all) and permits a more
ompa
t vo
abulary representation. So the advantages over Tagged Hu�manCode are (i) better 
ompression ratios, (ii) same sear
hing possibilities, (iii)simpler and smaller vo
abulary representation, (iv) simpler and faster 
oding.2 Related WorkHu�man is a well-known 
oding method [4℄. The idea of Hu�man 
oding isto 
ompress the text by assigning shorter 
odes to more frequent symbols. Ithas been proven that Hu�man algorithm obtains an optimal (i.e., shortest totallength) pre�x 
ode for a given text.A 
ode is 
alled a pre�x 
ode (or instantaneous 
ode) if no 
odeword is apre�x of any other 
odeword. A pre�x 
ode 
an be de
oded without referen
eto future 
odewords, sin
e the end of a 
odeword is immediately re
ognizable.2.1 Word-Based Hu�man CompressionThe traditional implementations of the Hu�man 
ode are 
hara
ter based, i.e.,they adopt the 
hara
ters as the symbols of the alphabet. A brilliant idea [6℄uses the words in the text as the symbols to be 
ompressed. This idea joinsthe requirements of 
ompression algorithms and of IR systems, as words are thebasi
 atoms for most IR systems. The basi
 point is that a text is mu
h easierto 
ompress when regarded as a sequen
e of words rather than 
hara
ters.In [12, 17℄, a 
ompression s
heme is presented that uses this strategy
ombined with a Hu�man 
ode. From a 
ompression viewpoint, 
hara
ter-basedHu�man methods are able to redu
e English texts to approximately 60% of theiroriginal size, while word-based Hu�man methods are able to redu
e them to 25%of their original size, be
ause the distribution of words is mu
h more biased thanthe distribution of 
hara
ters.The 
ompression s
hemes presented in [12, 17℄ use a semi-stati
 model, thatis, the en
oder makes a �rst pass over the text to obtain the frequen
y of allthe words in the text and then the text is 
oded in the se
ond pass. Duringthe 
oding phase, original symbols (words) are repla
ed by 
odewords. For ea
hword in the text there is a unique 
odeword, whose length varies depending onthe frequen
y of the word in the text. Using the Hu�man algorithm, shorter
odewords are assigned to more frequent words.The set of 
odewords used to 
ompress a text are arranged as a tree withedges labeled by bits, su
h that ea
h path from the root to a leaf spells outa di�erent 
ode. Sin
e this is a pre�x 
ode, no 
ode is represented by aninternal tree node. On the other hand, ea
h tree leaf 
orresponds to a 
odewordthat represents a di�erent word of the text. For de
ompression purposes, the




orresponding original text word is atta
hed to ea
h leaf, and the whole tree isseen as a representation of the vo
abulary of the text. Hen
e, the 
ompressed�le is formed by the 
ompressed text plus this vo
abulary representation. TheHu�man algorithm gives the tree that minimizes the length of the 
ompressed�le. See [4, 3℄ for a detailed des
ription.Example 1. Consider a text with vo
abulary A, B, C, D, E where the
orresponding frequen
ies are 0.25, 0.25, 0.20, 0.15, 0.15. A possible Hu�mantree, given by the Hu�man algorithm, is shown in Figure 1. Observe that A is
oded with 01, B with 10, C with 11, D with 000 and E with 001. ut
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Fig. 1. Hu�man tree2.2 Byte-Oriented Hu�man CodingThe basi
 method proposed by Hu�man is mostly used as a binary 
ode, thatis, ea
h word in the original text is 
oded as a sequen
e of bits. Moura et al. [12℄modify the 
ode assignment su
h that a sequen
e of whole bytes is asso
iatedwith ea
h word in the text.Experimental results have shown that, on natural language, there is nosigni�
ant degradation in the 
ompression ratio by using bytes instead of bits.In addition, de
ompression and sear
hing are faster with byte-oriented Hu�man
ode be
ause no bit manipulations are ne
essary.In [12℄ two 
odes following this approa
h are presented. In that arti
le, they
all Plain Hu�man Code the one we have already des
ribed, that is, a word-basedbyte-oriented Hu�man 
ode.The se
ond 
ode proposed is 
alled Tagged Hu�man Code. This is just likethe previous one di�ering only in that the �rst bit of ea
h byte is reserved to
ag whether or not the byte is the �rst byte of a 
odeword. Hen
e, only 7 bits ofea
h byte are used for the Hu�man 
ode. Note that the use of a Hu�man 
ode



over the remaining 7 bits is mandatory, as the 
ag is not useful by itself to makethe 
ode a pre�x 
ode.Tagged Hu�man Code has a pri
e in terms of 
ompression performan
e: westore full bytes but use only 7 bits for 
oding. Hen
e the 
ompressed �le growsapproximately by 8%{10%.Example 2. We show the di�eren
es among the 
odes generated by the PlainHu�man Code and Tagged Hu�man Code. In our example we assume that thetext vo
abulary has 16 words, with uniform distribution in Table 1 and withexponential distribution (pi = 1=2i) in Table 2.For the sake of simpli
ity, from this example on, we will 
onsider that our\bytes" are formed by only two bits. Hen
e, Tagged Hu�man Code uses onebit for the 
ag and one for the 
ode (this makes it look worse than it is). Weunderline the 
ag bits. utWord Probab. Plain Hu�man Tagged Hu�manA 1=16 00 00 1�0 0�0 0�0 0�0B 1=16 00 01 1�0 0�0 0�0 0�1C 1=16 00 10 1�0 0�0 0�1 0�0D 1=16 00 11 1�0 0�0 0�1 0�1E 1=16 01 00 1�0 0�1 0�0 0�0F 1=16 01 01 1�0 0�1 0�0 0�1G 1=16 01 10 1�0 0�1 0�1 0�0H 1=16 01 11 1�0 0�1 0�1 0�1I 1=16 10 00 1�1 0�0 0�0 0�0J 1=16 10 01 1�1 0�0 0�0 0�1K 1=16 10 10 1�1 0�0 0�1 0�0L 1=16 10 11 1�1 0�0 0�1 0�1M 1=16 11 00 1�1 0�1 0�0 0�0N 1=16 11 01 1�1 0�1 0�0 0�1O 1=16 11 10 1�1 0�1 0�1 0�0P 1=16 11 11 1�1 0�1 0�1 0�1Table 1. Codes for a uniform distribution.The addition of a tag bit in the Tagged Hu�man Code permits dire
tsear
hing on the 
ompressed text with any string mat
hing algorithm, by simply
ompressing the pattern and then resorting to 
lassi
al string mat
hing.On Plain Hu�man this does not work, as the pattern 
ould o

ur in the textand yet not 
orrespond to our 
odeword. The problem is that the 
on
atenationof parts of two 
odewords may form the 
odeword of another vo
abulary word.This 
annot happen in the Tagged Hu�man Code due to the use of one bitin ea
h byte to determine if the byte is the �rst byte of a 
odeword or not.



Word Probab. Plain Hu�man Tagged Hu�manA 1=2 00 1�1B 1=4 01 1�0 0�1C 1=8 10 1�0 0�0 0�1D 1=16 11 00 1�0 0�0 0�0 0�1E 1=32 11 01 1�0 0�0 0�0 0�0 0�1F 1=64 11 10 1�0 0�0 0�0 0�0 0�0 0�1G 1=128 11 11 0�0 1�0 0�0 0�0 0�0 0�0 0�0 0�1H 1=256 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1I 1=512 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1J 1=1024 11 11 11 0�0 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1K 1=2048 11 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1L 1=4096 11 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1M 1=8192 11 11 11 11 00 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1N 1=16384 11 11 11 11 01 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1O 1=32768 11 11 11 11 10 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1P 1=32768 11 11 11 11 11 1�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1Table 2. Codes for an exponential distribution.For this reason, sear
hing with Plain Hu�man requires inspe
ting all thebytes of the 
ompressed text from the beginning, while Boyer-Moore typesear
hing (that is, skipping bytes) is possible over Tagged Hu�man Code.Example 3. Let us suppose that we have to 
ompress a text with a vo
abularyformed by the words A, B, C, D and assume that the Hu�man algorithm assignsthe following 
odewords to the original words:A 00B 01C 10D 11 00Let us 
onsider the following portion of a 
ompressed text using the 
odeshown above, for the sequen
e ABAD:: : : 00 01 00 11 00 : : :Finally, let us suppose that we sear
h for word A. If we resort to plain patternmat
hing, we �nd two o

urren
es in the text. However, the se
ond does notreally represent an o

urren
e of A in the text, but it is part of D. The programshould have a postpro
essing phase where ea
h potential o

urren
e is veri�ed,whi
h ruins the simpli
ity and performan
e of the algorithm. utThe algorithm to sear
h for a single word under Tagged Hu�man Codestarts by �nding the word in the vo
abulary to obtain the 
odeword that



represents it in the 
ompressed text. Then the obtained 
odeword is sear
hedfor in the 
ompressed text using any 
lassi
al string mat
hing algorithm with nomodi�
ations. They 
all this te
hnique dire
t sear
hing [12, 17℄.Today's IR systems require also 
exibility in the sear
h patterns. Thereis a range of 
omplex patterns that are interesting in IR systems, in
ludingregular expressions and \approximate" sear
hing (also known as \sear
h allowingerrors"). See [12, 17℄ for more details.3 A New Compression S
heme: End-Tagged Dense CodesWe start with a seemingly dull 
hange to Tagged Hu�man Code. Instead of usingthe 
ag bit to signal the beginning of a 
odeword, we use it to signal the end ofa 
odeword. That is, the bit will be 1 for the last byte of ea
h 
odeword.This 
hange has surprising 
onsequen
es. Now the 
ag bit is enough to ensurethat the 
ode is a pre�x 
ode, no matter what we do with the other 7 bits. Tosee this, noti
e that, given two 
odewords X and Y , where jX j < jY j, X 
annotbe a pre�x of Y be
ause the last byte of X has its 
ag bit in 1, while the jX j-thbyte of Y has its 
ag bit in 0.At this point, there is no need at all to use Hu�man 
oding over the remaining7 bits. We 
an just use all the possible 
ombinations of 7 bits in all the bytes,as long as we reserve the 
ag bit to signal the end of the 
odeword.On
e we are not bound to use a Hu�man 
ode, we have the problem of�nding the optimal 
ode assignment, that is, the one minimizing the length ofthe output. It is still true that we want to assign shorter 
odewords to morefrequent words. Indeed, the optimal assignment is obtained with the followingpro
edure.1. The words in the vo
abulary are ordered by their frequen
y, more frequent�rst.2. Codewords from 1�0000000 to 1�1111111 are assigned sequentially to the �rst128 words of the vo
abulary, using the 27 possibilities.3. Words at positions 128 + 1 to 128 + 1282 are en
oded using twobytes, by exploiting the 214 
ombinations from 0�0000000:1�0000000 to0�1111111:1�1111111.4. Words at positions 128+1282+1 to 128+1282+1283 are en
oded using threebytes, by exploiting the 221 
ombinations from 0�0000000:0�0000000:1�0000000to 0�1111111:0�1111111:1�1111111. And so on.The assignment is done in a 
ompletely sequential fashion, that is, the 130-thword is en
oded as 0�0000000:1�0000001, the 131-th as 0�0000000:1�0000010, andso on, just as if we had a 14-bit number. As it 
an be seen, the 
omputation of
odes is extremely simple: It is only ne
essary to order the vo
abulary words byfrequen
y and then sequentially assign the 
odewords. Hen
e the 
oding phasewill be faster be
ause obtaining the 
odes is simpler.



Any previous byte Last byte

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

..........

0 1 1 1 1 1 1 1Fig. 2. End-Tagged Dense CodewordsIn fa
t, we do not even need to physi
ally store the results of these
omputations: With a few operations we 
an obtain on the 
y, given a wordrank i, its `-byte 
odeword, in O(`) = O(log i) time.What is perhaps less obvious is that the 
ode depends on the rank of thewords, not on their a
tual frequen
y. That is, if we have four words A, B, C,D with frequen
ies 0.27, 0.26, 0.25 and 0.23, respe
tively, the 
ode will be thesame as if their frequen
ies were 0.9, 0.09, 0.009 and 0.001.Hen
e, we do not need to store the 
odewords (in any form su
h as a tree)nor the frequen
ies in the 
ompressed �le. It is enough to store the plain wordssorted by frequen
y. Therefore, the vo
abulary will be smaller than in the 
aseof the Hu�man 
ode, where either the frequen
ies or the 
odewords or the treemust be stored with the vo
abulary.In order to obtain the 
odewords of a 
ompressed text, the de
oder 
an runa simple 
omputation to obtain, from the 
odeword, the rank of the word, andthen obtain the word from the vo
abulary sorted by frequen
y. An `-byte 
oden 
an be de
oded in O(`) = O(logn) time.Table 3 shows the 
odewords obtained by the End-Tagged Dense Code for theexamples in Tables 1 and 2 (remember that we are using bytes of two bits). Notethat, independently of the distribution, exponential or uniform, the 
odi�
ationis the same.It is interesting to point out how our 
odes look like on a Hu�man tree.Basi
ally, our 
odes 
an be regarded as a tree of arity 128 (like that of TaggedHu�man), but in this 
ase we 
an use also the internal nodes of the tree,while Tagged Hu�man is restri
ted to use only the leaves. This reason showsimmediately that the best tree for us is the most balan
ed one (that is, a dense
ode), as any tree is legal and the balan
ed one minimizes the weighted pathlength.4 Analyti
al ResultsWe try to analyze the 
ompression performan
e of our new s
heme. Let us assumea word distribution fpigi=1:::N , where pi is the probability of the i-th mostfrequent word and N is the vo
abulary size. Let us assume that we use symbols



Word Rank CodewordA 1 1�0B 2 1�1C 3 0�0 1�0D 4 0�0 1�1E 5 0�1 1�0F 6 0�1 1�1G 7 0�0 0�0 1�0H 8 0�0 0�0 1�1I 9 0�0 0�1 1�0J 10 0�0 0�1 1�1K 11 0�1 0�0 1�0L 12 0�1 0�0 1�1M 13 0�1 0�1 1�0N 14 0�1 0�1 1�1O 15 0�0 0�0 0�0 1�0P 16 0�0 0�0 0�0 1�1Table 3. Example of End-Tagged Dense Codeof b bits to represent the 
odewords, so that ea
h 
odeword is a sequen
e of b-bitsymbols. In pra
ti
e we use bytes, so b = 8.It is well known [3℄ that Plain Hu�man 
oding produ
es an average symbollength whi
h is at most one extra symbol over the zero-order entropy. That is,if we 
all Eb = NXi=1 pi log2b(1=pi) = 1b NXi=1 pi log2(1=pi)the zero-order entropy in base b of the text, then the average number of symbolsto 
ode a word using Plain Hu�man isEb � Hb � Eb + 1Tagged Hu�man 
ode is also easy to analyze. It is a Hu�man 
ode over b� 1bits, but using b bits per symbol, hen
eEb�1 � Tb � Eb�1 + 1Let us now 
onsider our new method, with average number of symbols perword Db. It is 
lear that Hb � Db � Tb, be
ause ours is a pre�x 
ode andHu�man is the best pre�x 
ode, and be
ause we use all the b � 1 remainingbit 
ombinations and Tagged Hu�man does not. We try now to obtain a morepre
ise 
omparison. Let us 
all B = 2b�1. Sin
e Bi di�erent words will be 
odedusing i symbols, let us de�nesi = iXj=1Bj = BB � 1 (Bi � 1)



(where s0 = 0) the number of words that 
an be 
oded with up to i symbols.Let us also 
all fi = siXj=si�1+1 pjthe overall probability of words 
oded with i symbols.Then, the average length of a 
odeword under our new method isDb = SXi=1 ifiwhere S = logB �B�1B N + 1�.The most interesting parti
ular 
ase is a distribution typi
al of naturallanguage texts. It is well known [3℄ that, in natural language texts, the vo
abularydistribution 
losely follows a generalized Zipf's law [14℄, that is, pi = A=i� andN =1, for suitable 
onstants A and �. In pra
ti
e � is between 1.4 and 1.8 anddepends on the text [1, 2℄, whileA = 1Pi�1 1=i� = 1�(�)makes sure that the distribution adds up 11. Under this distribution the entropyisEb = 1b Xi�1 pi log2 1pi = A�b Xi�1 � log2 ii� � log2 A� = ��� 0(�)=�(�) + ln �(�)b ln 2On the other hand, we haveDb = A Xi�1 i siXj=si�1+1 1=j� = 1+A Xi�1 i si+1Xj=si+1 1=j� = 1+A Xi�1 Xj�si+1 1=j�At this point we resort to integration to get lower and upper bounds. Sin
e1=j� de
reases with j, we have that the above summation is upper bounded asfollowsDb � 1 +A Xi�1 Z 1si 1=x�dx = 1 + A(B � 1)��1(� � 1)B��1 Xi�1 1(Bi � 1)��1� 1 + A(B � 1)��1(� � 1)B��1 B1��1�B1�� (1� 1=B)1�� = 1 + 1(� � 1)�(�)(B��1 � 1)A lower bound 
an be obtained similarly, as followsDb � 1 +A Xi�1 Z 1si+1 1=x�dx = 1 + A(B � 1)��1� � 1 Xi�1 1(Bi+1 � 1)��1� 1 + A(B � 1)��1(� � 1) B2(1��)1�B1�� = 1 + (1� 1=B)��1(� � 1)�(�)(B��1 � 1)1 We are using the Zeta fun
tion �(x) =Pi>0 1=ix. We will also use �0(x) = ��(x)=�x.



This gives us the length of the 
ode with a pre
ision fa
tor of (1� 1=B)��1,whi
h in our 
ase (B = 128, � =1.4 to 1.8) is around 0.5%. This shows that thenew 
ode is also simpler to analyze than Hu�man, as the existing bounds forHu�man are mu
h looser.In fa
t, the lower bound Eb for the performan
e of Hu�man is quite uselessfor our 
ase: For b = 8 bits, Eb < 1 for � > 1:3, where 1 symbol is an obviouslower bound. The same happens when using Eb�1 to bound Tagged Hu�man.We have 
onsidered tighter estimates [5, 11℄ but none was useful for this 
ase.In order to 
ompare our results with Plain Hu�man and Tagged Hu�man,we resort to our own analysis. If we take b = 9 bits, then B = 256 and we obtainthe length of a dense 
ode where all the 8 bits are used in the optimal form. Thisis ne
essarily better than Hu�man (on 8 bits), as not all the 8-bit 
ombinationsare legal for Hu�man. On the other hand, 
onsider b = 7. In this 
ase our new
ode is a 7-bit pre�x 
ode, ne
essarily inferior to Tagged Hu�man (over 8 bits).Hen
e we have the following inequalitiesDb+1 � Hb � Db � Tb � Db�1These results give us usable bounds to 
ompare our performan
e. In
identally,the analysis of our new 
ode turns out to give new upper and lower bounds for theredundan
y of d-ary Hu�man 
odes. Figure 3 illustrates our analyti
al estimatesas a fun
tion of �. Our lower and upper bounds are rather 
lose. Plain Hu�manmust lie between its lower bound and our upper bound. Tagged Hu�man mustlie between our lower bound and its upper bound.5 Experimental ResultsWe show some experimental results now. We have used some large text
olle
tions from tre
-4 (Congressional Re
ord 1993, Finan
ial Times 1991 and1992); and some smaller from the Calgary Corpus (Book1, Book2, Paper1 toPaper6, Bib). We have 
ompressed them using Plain Hu�man Code, TaggedHu�man Code, and our End-Tagged Dense Code. We have ex
luded the sizeof the vo
abulary in the results (this size is almost equal in the three 
ases,although a bit smaller in our 
ase). Separators (that is, maximal strings betweentwo 
onse
utive words) were treated as words as well. Sin
e words and separatorsstri
tly alternate, we used separate di
tionaries for words and separators, as one
an 
ompress and de
ompress using one after the other.Table 4 shows the results. It 
an be seen that, in all 
ases, our End-TaggedDense Codes are superior to Tagged Hu�man Codes. In parti
ular, on the largenatural language 
olle
tions, we are 5%{6% better than Tagged Hu�man andjust less than 2% over the optimal Plain Hu�man. The results 
hange a bit onthe smaller 
olle
tions of the Calgary Corpus, but essentially the results are thesame. Note that the separators are so biased (� 
lose to 2.0) that they permitan almost optimal 
oding (1 byte per separator), while words have a smaller �(1.4{1.6), whi
h makes their 
ode longer (1.5{1.7 bytes per word). Observe thatthe � values for the smaller �les of the Calgary 
orpus strongly deviate from
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Fig. 3. Analyti
al bounds on the average 
ode length for byte-oriented Plain Hu�man,Tagged Hu�man, and our new method. We assume a Zipf distribution with parameter� (whi
h is the x axis).these lines and from previous results on other large 
olle
tions [1℄, whi
h showsthat this kind of analysis applies well to large 
olle
tions only.6 Con
lusionsWe have presented a new 
ompression 
ode useful for text databases. The 
odeinherits from previous work, where byte-oriented word-based Hu�man 
odeswere shown to be an ex
ellent 
hoi
e. To permit fast sear
hing over that 
ode,Tagged Hu�man 
odes were introdu
ed, whi
h in ex
hange produ
ed an outputabout 7%{8% larger.In this paper we have introdu
ed End-Tagged Dense Codes, whi
h is a pre�x
ode retaining all the sear
hability properties of Tagged Hu�man 
ode whileimproving it on several aspe
ts: (i) 
odes are shorter: 5%{6% shorter than TaggedHu�man and just less than 2% over Hu�man; (ii) 
oding is mu
h simpler andfaster; (iii) the vo
abulary representation is simpler and shorter.We have shown analyti
ally and experimentally the advantages of End-Tagged Dense Codes in terms of output size. An Information Retrieval systembased on this new te
hnique should also bene�t from the other advantages.For example, (iii) means that we just need to store the vo
abulary sorted byfrequen
y, without any additional information, whi
h has an important impa
t



Corpus Tot. Words Vo
. Words Plain End-Tagged Tagged ThetaTot. Sep. Vo
. Sep. Hu�man Dense Hu�manCongressional Re
ord 7,765,434 112,850 1.543411 1.586550 1.709030 1.6239031993 7,765,481 1,320 1.000506 1.001422 1.001595 2.319811Finan
ial Times 2,426,418 74,351 1.539468 1.581893 1.702489 1.4385031991 2,426,433 1,245 1.000843 1.001705 1.001870 2,003911Finan
ial Times 28,882,888 279,330 1.552060 1.591722 1.721922 1.6276021992 28,883,064 5,564 1.001234 1.002280 1.002726 1.775175Calgary: Book1 31,722 5,565 1.381281 1.460280 1.511727 0.96907231,723 317 1.001954 1.007313 1.007439 1.531933Calgary: Book2 105,962 7,907 1.410222 1.491638 1.564929 1.271044105,963 1,114 1.014467 1.027028 1.028444 1.521758Calgary: Paper1 9,157 1,791 1.300426 1.415420 1.435514 1.0041439,158 316 1.006661 1.028281 1.028936 1.426831Calgary: Paper2 14,266 2,468 1.326090 1.427309 1.453175 1.03551214,267 184 1.000000 1.003925 1.003995 1.632045Calgary: Paper3 7,364 2,087 1.381586 1.483568 1.502308 0.8358707,365 125 0.999999 0.999999 0.999999 1.667132Calgary: Paper4 2,219 751 1,248422 1,385933 1,392696 0.8099302,218 75 0.999999 0.999999 0.999999 1.582207Calgary: Paper5 2,207 613 1.166289 1.299048 1.304486 0.9146702,208 190 0.999999 1.028080 1.028533 1.134055Calgary: Paper6 7,246 1,163 1.213497 1.341844 1.355921 1.0985757,247 373 1.016283 1.044708 1.045361 1.263650Calgary: Bib 20,519 3,667 1.295287 1.365953 1.393391 0.92265320,520 56 1.000000 1.000000 1.000000 2.735627Calgary: News 62,794 9,912 1.511116 1.581616 1.701739 1.02576462,795 2,060 1.045242 1.062107 1.065690 1.107732Table 4. Compression results on di�erent text 
olle
tions. The 
ompression isexpressed in terms of bytes per symbol.when 
oding short 
olle
tions; (ii) means that we do not have to build Hu�man
ode, but 
an just en
ode and de
ode on the 
y with a program of a few lines.As a side e�e
t, our analysis has given new upper and lower bounds on theaverage 
ode length when using d-ary Hu�man 
oding. These bounds are ofdi�erent nature from those we are aware of, and they 
ould be better on somedistribution. This was the 
ase on natural language distributions.For the �nal version we will improve the experimental results and theiragreement with the analyti
al predi
tions. There are di�erent valid ways to
ompute the � value for a distribution (we used plain least squares on the modely = 
=x�), and we would like to �nd one where the � value is useful to predi
t the
ompression obtained a

ording to the analysis. Right now, a smaller � does notguarantee better 
ompression, as it would if the real distribution �tted perfe
tlya Zipf distribution. This does not alter the fa
t that our End-Tagged Dense
odes are stri
tly better than Tagged Hu�man 
odes and that in pra
ti
e the



improvement is of 5%{6%, but it would be interesting to be able to predi
t theimprovement just from a suitable � value for the 
olle
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