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Abstract. This paper presents a structure we call XML Wavelet Tree
(XWT) to represent any XML document in a compressed and self-indexed
form. Therefore, any query or procedure that could be performed over
the original document can be performed more efficiently over the XWT
representation because it is shorter and has some indexing properties. In
fact, XWT permits to answer XPath queries more efficiently than using
the uncompressed version of the documents. XWT is also competitive
when comparing it with inverted indexes over the XML document (if
both structures use the same space).

1 Introduction

XML[1] has long ago become the standard for representing semi-structured docu-
ments and W3C has defined the language XPath[2] for querying XML documents
allowing constraints on both structure and content. Recently, several works have
been devoted to the problem of modelling and querying XML documents and
new query languages or XPath extensions have been proposed [10, 9, 3].

On the other hand, the research in text compression has experimented a big
advance in the last years. Different compression methods have been proposed,
demonstrating beyond doubts that the use of word-based statistical semi-static
compressors, such as Plain and Tagged Hufman, ETDC, (s,c)-DC or RPBC [12,
6, 8], perfectly fulfil IR requirements because those compressors allow querying
the compressed version of the text up to 8 times faster than the uncompressed
version. That is, the text is compressed to about 30%-35% of its original size and
can be kept in that compressed form all the time, because direct search of words
and phrases can be performed over that compressed version. Therefore the text
only need to be uncompressed to be shown to a human user, but any process, for
IR or any other purpose, can be done over the compressed text. In this way, not
only storage space is saved, but also time. Time is the critical factor in efficiency
and processing a compressed version of a document saves time when we need to
access to disk looking for a document, when it is transmitted through a network,
or more importantly, when it is processed.

More recently, compression techniques have become even more sophisticated
allowing not only a compressed representation of the text, but also self-indexed
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representations using the same compressed space (about 35% of the original size).
Those compressed and self-indexed representations of the text successfully com-
pete with the classical inverted indexes, even if they use compression strategies.
Among those compressed and self-indexed document representations, the Word
Suffix Arrays [11, 7] and the Wavelet Trees [4] are some of the most powerful.

In this paper we present a modified wavelet tree, based on a (s,c)-DC com-
pressor, to create a self-indexed and compressed version of XML documents. Our
representation, which we call XML Wavelet Tree (XWT), uses only about 30%-
40% of the space of a XML document and provides some self-indexing properties
that can be successfully used in answering XPath queries.

Notice that any XML document can be represented, using our XWT, in a
compressed and self-indexed form, therefore any processing or query that could
be performed over the original XML document can also be performed over the
XWT representation. Moreover, due to the fact that the XWT representation is
smaller and has some indexing properties, any processing will be more efficient
over the XWT representation than over the original uncompressed document.

2 Previous work

Among the different word-based byte-oriented semi-static statistical compression
methods available in the state of the art, we use (s,c)-DC [5, 6] as basis of our
representation because it provides flexibility to compress with different models
the tags of a XML document and the rest of its words. On the other hand, among
the self-indexing structures available we chose to work with the WT presented
in [4] because it is the only one that could be adapted in order to represent, in a
compact way, the structure of the document (that is, the XML tags) separated
from the rest of the words.

2.1 (s,c)-Dense Code

(s,c)-Dense Code is a word-based semi-static statistical prefix-free encoder. In
a first pass over the source text the different words and their frequencies are
obtained (the model). Then, the vocabulary is sorted by frequency and a code-
word is assigned to each word (shorter codewords to more frequent words). In
a second pass, the compressor replaces each word by its codeword leading to a
compressed representation of the text.

As other compressors, (s,c)-DC distinguishes between bytes1 that do not
end a codeword, called continuers, and bytes that only can appear as the last
byte of a codeword, stoppers. In this case, where s is the number of stoppers
and c indicates the number of continuers (s + c = 256), stoppers are the bytes
between 0 and s − 1 and continuers, are those between s and s + c − 1 = 255.
To minimize compression ratios, optimal values for s and c are computed for the
specific word frequency distribution of the text [5]. Then given source symbols
sorted by decreasing frequencies, the corresponding (s,c)-DC encoding process

1 For simplicity, we focus on the byte oriented version



gives one-byte codewords to the words in positions from 0 to s−1. Words ranked
from s to s+ sc− 1 are sequentially assigned two-byte codewords. The first byte
of each codeword has a value in the range [s, s + c− 1], that is, a continuer. The
second byte, the stopper, has a value in range [0, s − 1]. Words from s + sc to
s + sc + sc2 − 1 are assigned three byte codewords, and so on.

Example 1. The codes assigned to symbols i ∈ 0 . . . 15 by a (2,3)-DC are as
follows: 〈0〉, 〈1〉, 〈2,0〉, 〈2,1〉, 〈3,0〉, 〈3,1〉, 〈4,0〉, 〈4,1〉, 〈2,2,0〉, 〈2,2,1〉, 〈2,3,0〉,
〈2,3,1〉, 〈2,4,0〉, 〈2,4,1〉, 〈3,2,0〉 and 〈3,2,1〉.

2.2 Byte-oriented Wavelet Tree (WT)

In [4] we presented a novel reorganization of the codewords bytes of a text
compressed with any word-based byte-oriented semi-static statistical prefix-free
compression technique. This reorganization, called Wavelet Tree, consists ba-
sically on placing the different bytes of each codeword at different WT nodes
instead of sequentially concatenating them, as in a typical compressed text.

The root of the WT is represented by all the first bytes of the codewords,
following the same order as the words they encode in the original text. That
is, let assume we have the text words 〈w1, w2 . . . wn〉, whose codewords are
cw1, cw2 . . . cwn, respectively, and let us denote the bytes of a codeword cwi

as 〈c1
i ...c

m
i 〉 where m is the size of the codeword cwi in bytes. Then the root

is formed by the sequence of bytes 〈c1
1, c

1
2, c

1
3...c

1
n〉. At position i, we place the

first byte of the codeword that encodes the ith word in the source text, so no-
tice that the root node has as many bytes as words has the text. We consider
the root of the WT as the first level. Therefore, second bytes of the codewords
longer than one byte are placed in nodes of a second level. The root has as many
children as different bytes can be the first byte of a codeword of two or more
bytes. That is, in a (190, 66)-DC encoding scheme, the root will have always 66
children, because there are 66 bytes that are continuers. Each node X in this
second level contains all the second bytes of the codewords whose first byte is
x, following again the same order of the source. That is, the second byte corre-
sponding to the jth occurrence of byte x in the root, is placed at position j in
node X. Formally, let suppose there are t words coded by codewords cwi1 ...cwit

(longer than one byte) whose first byte is x. Then, the second bytes of those
codewords, 〈c2

i1
, c2

i2
, c2

i3
...c2

it
〉, form the node X. The same idea is used to create

the lower levels of the WT. Looking into the example, and supposing that there
are d words whose first byte codewords is x and whose second one is y, then node
XY is a child of node X and it stores the byte sequence 〈c3

j1
, c3

j2
, c3

j3
...c3

jd
〉 given

by all the third bytes of that codewords. Those bytes are again in the original
text order. Therefore, the resulting WT has as many levels as bytes have the
longest codewords.

In Fig. 12, a WT is built from the text MAKE EVERYTHING AS SIMPLE AS
POSSIBLE BUT NOT SIMPLER. Once codewords are assigned to all the different
2 Note that only the shaded byte sequences are stored in tree nodes; the text is shown

only for clarity.
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Fig. 1. Example of WT.

words in the text, their bytes are spread in a WT following the reorganization of
bytes explained. For example, b3 is the 9th byte of the root because it is the first
byte of the codeword assigned to ’SIMPLER’, which is the 9th word in the text.
In turn, its second byte, b1, is placed in the third position of the child node B3
because ’SIMPLER’ is the third word in the root having b3 as first byte. Likewise,
its third byte, b2, is placed at the third level in the child node B3B1, since the
first and second byte of the codeword are b3 and b1, respectively.

Original codewords can be rebuilt from the bytes spread along the different
WT nodes using rank and select operations. Let be B a sequence of bytes, b1,
b2. . .bn. Then, rank and select are defined as:

– rankb(B,p) = i if the number of occurrences of the byte b from the beginning
of B up to position p is i.

– selectb(B,j) = p if the jth occurrence of the byte b in the sequence B is at
position p

The two basic procedures using the WT are locating a word in the text and
decoding the word placed at certain position. Both are easily solved using select
and rank operations, respectively.

To find the first occurrence of ’SIMPLER’, we will start at the bottom of
the tree and go up. As we can see in Fig. 1, the codeword of ’SIMPLER’ is
b3b1b2, therefore, we start at node B3B1, in the third level, and search for the
first occurrence of the byte b2 computing selectb2(B3B1, 1) = 1. In this way,
we obtain that the first position of that node (B3B1) corresponds to the first
occurrence of ’SIMPLER’. Now, we need to locate in node B3 the position of
the first occurrence of byte b1. Again, this is obtained by selectb1(B3, 1) = 3,
that newly indicates our codeword is the third one starting by b3 in the root
node. Finally, by calculating selectb3(root, 3) = 9, we can answer that the first
occurrence of ’SIMPLER’ is at 9th position in the source text.

To decode a word we use rank operations. To know which is the 7th word
in the source text we start reading root[7] = b2. According to the encoding
scheme we know that the code is not complete, so we will have to read a second



byte in the second level of the WT, more precisely, in the node B2. To find out
which position of that sequence we have to read, we use rankb2(root, 7) = 2.
Therefore, B2[2] = b3, gives us the second byte of the codeword. Again b3 is not
a stopper, so we need to continue the procedure. In the child node B2B3, that
corresponding to the two first bytes of the codeword we have just read (b2b3), we
have to read the byte which is at position rankb3(B2, 2) = 1. Finally, we obtain
B2B3[1] = b4, which marks the end of the searched codeword. As a result, we
have the codeword b2b3b4, that corresponding to ’BUT’, which is precisely the
7th word in the source text, as expected.

The performance of the WT depends on the implementation of the rank and
select operations, because they are the base for any procedure over this structure.
A detailed description of their implementation can be found in [4]. It is based on
a structure of partial counters to avoid counting the number of occurrences of
a searched byte from the beginning of a WT node. There is a tradeoff between
space and time. If we use more partial counters, we need more space, but rank
and select operations will be more efficient.

3 XML Wavelet Tree (XWT)

Phase I: Parsing the XML document and assigning codewords The
first step to obtain the XWT is to parse the input XML document to create the
vocabulary and compute the frequencies distribution (the model). The parsing
process distinguishes different kind of words depending on whether a word is3:
i) a name of a start-tag or an end-tag, ii) the name of an attribute, iii) an
attribute value, iv) a word appeared inside a comment, v) a word appeared
inside a processing instruction, or vi) a word of the XML document content.

That is, when compressing, a same word will be assigned different codewords
depending on the category it belongs to. For example, if the word book ap-
pears as content (e.g. . . . the great book . . . ), but also as an attribute value (e.g.
category=“book”) and inside a comment (e.g. 〈!−− . . . this book is . . . −−〉) it
will be stored as three different entries in the vocabulary, one for each different
category.

Keeping this difference between same words according to its function in the
XML document structure increases the vocabulary size, however it is translated
into efficiency and flexibility when querying.

It is also in the parsing that some normalization operations take place (all
according to [1]). For instance, empty-element tags are translated into its cor-
responding pair of start-end tag (e.g. 〈tag name/〉 → 〈tag name〉 〈/tag name〉)
and redundant spaces and spaces inside tags are eliminated (e.g. 〈tag name 〉
→ 〈tag name〉), etc.

While parsing the XML document, two vocabularies are created. One stores
the different start- and end-tags and therefore the structure of the document.
The other stores the rest of the words. We call them, tag words and text words
vocabulary, respectively (see Fig. 2).
3 Division implicitly given by the different kind of XPath queries[2].
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Fig. 2. Example of XWT.

As it was explained in Section 2, (s,c)-Dense Code uses different bytes for
continuers and for stoppers. So it is easy to see how reserving a continuer to
be the first byte of the codewords assigned to tag words (in Fig. 2, see the
bytes shaded in the CODE column of the tag words vocabulary) it is possible to
keep them all located in the same branch of the XWT (see the branch B4 in
Fig. 2). Remember that they follow the document order and hence maintain
their relationships like in the original XML document. But what is even more
striking is that this feature implicitly provides an efficient way to solve structural
queries. To do this, we only need to deal with those nodes of the XWT storing
the structure of the document, and omit the rest of the compressed text.

Therefore, all the words of the text words vocabulary are assigned a codeword
following a (s,c)-Dense Code encoding scheme, keeping aside one continuer. In



Fig. 2, where a (3, 3)-DC encoding scheme is used to encode text words, the first
of the continuers, b4, has been selected as the one reserved. Notice that it is not
used as a first byte of any of the codewords assigned to the text words.

Because of this, compression could be affected, so to minimize this loss, tag
words are also coded according to another optimal values of s and c. That is, on
the one hand we keep the selected continuer as the first byte of the tag codewords
to store the XML structure isolated. On the other hand, the remaining bytes
of the tag codewords will be given following their own (s,c)-DC scheme. In the
example of the Fig. 2, codewords assigned to tags follow a (5, 1)-DC encoding
scheme, after the first byte, that is always the continuer b4 (shaded column).

Phase II: Compressing and creating the XWT Once codewords are as-
signed to words, we do a second pass over the text replacing each word by its
codeword and storing these codeword bytes along the different nodes of the XWT
(it is possible to precalculate the number of nodes as well as their sizes in ad-
vance). So, by keeping an array of markers indicating the next writing position
for each node, they are filled sequentially following the order of the words in the
text.

4 Using XWT

4.1 Decompression

To decompress from a random text word j (random decompression), we follow
the procedure explained in Section 2.2. But now, we take into account the use
of two vocabularies with different encoding schemes. That is, we first access to
the jth byte of the root node of the XWT to get the first byte of the codeword
and then we check if the byte read, bi, matches or not with the continuer used
to mark tag words. Depending on this, going down in the XWT to obtain the
remaining bytes is done by using the corresponding s and c values.

If we want to decompress the whole text from the beginning (full decom-
pression), we can follow a more efficient procedure. Given that the sequences of
bytes of all the XWT nodes follow the original order of the words in the source
text, full decompression can be efficiently implemented using pointers to the
next positions to be read in each node. That is, when going to a child node to
read the following byte of an uncomplete codeword, we do not need to compute
any rank operation to find out what byte of this child node sequence we have to
read. It always will be the next one to process in that child node.

4.2 Answering XPath queries

Since the XWT structure is an exact representation of the XML document, any
operation over the original text can be done over such representation. Therefore,
all XPath queries can be answered using our representation. Indeed, some of
them take benefit of the implicit indexing properties provided by the own XWT
structure and are efficiently answered.



Counting To count() the number of occurrences of a word (e.g. tag, name of
an attribute, attribute value, word inside a comment or node content, etc.) we
just compute how many times the last byte of the codeword assigned to that
word appears in its corresponding XWT node. Therefore, if a word is encoded
with a codeword xyz (being x and y, continuers and z, a stopper), it is only
necessary to count the number of bytes z in the node XY . That is, we only do
rankz(nodeXY , i), where i is the size of the node XY . In turn, if the codeword
has just one byte, z, we will do rankz(root,n), where n is the number of words
in the text, that is, the number of bytes in the root.

Locating We can locate the position in the text of any occurrence of a word
(typical XPath queries as //book, //@title, etc.) searching its last byte in the
corresponding XWT node and performing consecutive select operations up to the
root. If we want to locate all the occurrences of a word, this process is repeated
for each one. Since the traversed XWT nodes are the same for each occurrence
and these will be processed consecutively, select operations and thus the whole
process, can be sped up by using pointers to the already found positions in the
WT nodes.

<
b

o
o

k

… b4 …b5 … b4 … b5 … b5 … b5 …b5 …b4…b5 …b4… b4… b4 …b4…b5 … b4 ...

...

...

... ...

B4 B5

<
b

o
o

k

…b2 b3 … b2…b3 …b2 b3 …b2 b3…

<
/b

o
o
k
>

<
b

o
o

k

<
/b

o
o

k
>

<
b

o
o

k

<
/b

o
o

k
>

<
b

o
o

k

<
/b

o
o

k
>

… b1 b1 b1 … b1 b1 b1 ... b1...

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r

B5B4

QUERY: //book [contains(., river)]

... ...

... ... ... ...

<
/b

o
o

k
>

<
b

o
o

k

<
/b

o
o

k
>

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r

ri
v
e

r
... ... ...... <

b
o
o

k

<
/b

o
o

k
>

<
b

o
o

k

<
/b

o
o

k
>

ri
v
e

r

... ... ... ... ... ... ... ... ... ...

... ... ... ... ......
b4b2

b4b3

b5b4b1

SYMBOL CODE

<book

</book>

river

Fig. 3. Example of searching pairs of start-end tags containing a word.

Locating phrases To locate a phrase pattern we start locating the first occur-
rence of the least frequent word of the pattern in the root node. Then we check
if all the first bytes of the codewords of each word of the phrase pattern match
with the previous and next bytes of the root node. If those matches happen, we
follow validating the rest of the bytes of the corresponding codewords. But if it
is not the case, we save going down into the XWT and we simply locate the next
occurrence of the least frequent word to be processed in a same way.

Searching pairs of start-end tags containing a word In XPath, a predicate
is a filter applied to a set of XML nodes. For simplicity, here we have chosen



predicates over text: //tag name [contains(.,wordtext)]. That is, we are inter-
ested in reporting the pairs of start-end tags that fulfill 〈tag name〉 . . . wordtext

. . . 〈/tag name〉. For example: //book [contains(., river)] (see Fig. 3).
We begin locating the first occurrence of the desired word (river, in the

example) in the root node. Then, by counting the number of occurrences of the
desired start-tag (〈book in Fig. 3) placed before that position and that of the
desired end-tag (〈/book〉) we will know how many of the element nodes we are
looking for contain that occurrence of the word. We can easily figure out those
number of occurrences dealing only with the branches of the XWT storing the
tags. In the example, we locate the first occurrence of river which is surrounded
by the first occurrences of 〈book and 〈/book〉. Therefore they are reported as a
hit.

Now, instead of performing the same process with the next occurrence of
the word (in the example, the 2nd occurrence of river), we can skip some text
looking for the first occurrence of the desired start-tag placed after the position
of the just located occurrence of the word. That is, in the example, we locate the
second occurrence of 〈book and its corresponding end-tag, and then we look for an
occurrence of river between their positions. Given that there is one occurrence
(the 6th occurrence of river), the 2nd occurrence of the element node book is
also reported as a hit. By doing this we skip the occurrences of river that could
be before the second occurrence of 〈book, and which are not interesting for the
search (those occurrences of river surrounded by a striped rectangle in Fig. 3).
After that, we proceed in one of the two ways. If the XML element node we
are searching allows self nesting, we take the first occurrence of the word placed
after the position of the desired start-tag just located (the 2nd occurrence of
〈book). If not, we take the next occurrence of the word after its corresponding
end-tag (it is the case of the example, so we take the 7th occurrence of river).
In both cases, we repeat the whole procedure. Again, this allows skipping those
occurrences of the element node that could not contain any occurrence of the
word searched (in Fig. 3 we skip the 3th occurrence of book).

Although we have explained the algorithm for the particular case of XML el-
ement nodes and words being part of their content, it can be generalized to pred-
icates over other element nodes. That is, queries like //tag name1[//tag name2]
but also //tag name1//tag name2.

Searching attributes values Another important query in XPath is to find all
the occurrences of an attribute having a given value, being it a simple word or
a phrase. That is, queries like @att name = “att value”.

Whatever the case of the value, the algorithm to find out those attributes
is that aimed at searching phrase patterns. That is, we will find all the phrase
patterns given by the phrase built from the name of the attribute and its value:
att_name="att_value".

Other queries We have just explained a common subset of the XPath queries.
However, any other one can be answered using the representation we have pre-
sented. Some other queries like, for example, //tag name [position() = i] or



//tag name [position() <= n] can be solved by simple locating the ith occur-
rence or the n-first occurrences of the tag, respectively, instead of locating all
as we have seen. If we want to cope with queries involving parent XPath axis,
/, it is not hard to imagine how to incorporate it from the discussion about
//tag name1[//tag name2].

5 Experimental results

An isolated Intel R©Pentium R©Core 2 Duo 2.13 GHz system, with 2 GB dual-
channel DDR-667Mhz RAM was used in our tests. It ran Ubuntu 8.04 GNU/Linux
(kernel version 2.6.24.23). The compiler used was gcc version 4.2.4 and -O9 com-
piler optimizations were set. Time results measure cpu user time in seconds.

The four different XML documents used to run our experiments are:

– 0.5d and 9d : files generated with xmlgen, an XML data generator developed
inside XMark Project (http://monetdb.cwi.nl/xml/).

– dblp : file corresponding to the revision of April 16, 2008.
– psd7003 : file of the public proteins database, Integrated Protein Informatics

Resource for Genomic and Proteomic Research (http://pir.georgetown.edu/).

Table 1. Description of the documents used and compression properties.

XML doc. size EN MD VT VNT #T #NT R1 R2 CT DT

0.5d 55,32 832 12 148 85 1,665 9,468 31.82 29.06 4.16 0.66
dblp 282,42 6,928 6 70 1,750 13,856 61,649 41.50 37.32 28.84 3.68
psd7003 683,64 21,305 7 128 3,142 42,611 106,621 41.29 40.35 60.43 6.84
9d 1007,12 15,040 12 148 743 30,080 171,595 31.28 28.57 69.61 12.24

On the one hand, Table 1 presents the name of the XML documents used,
their size in MBytes, their number of XML element nodes (EN)(x103), their
maximum depth level (MD), the number of different words in tag words (VT)
and text words (VNT)(x103) vocabularies, and the number of tag words (#T)
and text words (#NT) that compose each document (x103). On the other hand,
the last four columns of Table 1 also show, respectively, the compression ratios
(in %) obtained by XWT (R1) and the (s,c)-DC compressor (R2) over each XML
document, as well as the compression (CT) and decompression (DT) times (in
seconds) using XWT. Notice that XWT represents each XML file using about
30%-40% of its original size and, which is more striking, XWT only uses 3%
more space than the needed to compress the documents with (s,c)-DC. That is,
the powerful indexing capabilities of XWT only need 3% of extra space over the
compressed text.

In Table 2 we can see the times obtained to answer the different common
XPath operations explained in Section 4.2. The results presented are obtained
using a XWT implementation with a waste of 3% of extra space for the struc-
tures of the partial counters used to speed up rank and select operations. From
column 1 through column 12 we present the times obtained for count all the



Table 2. Searching operations.

1000 < f ≤ 10000 100 < f ≤ 1000 1 ≤ f ≤ 100

count first all snip. count first all snip. count first all snip. TCW ATT
(µs) (µs) (ms) (ms) (µs) (µs) (ms) (ms) (µs) (µs) (ms) (ms) (ms) (ms)

0.5d 3.33 4.44 3.39 65.39 3.59 4.16 3.30 19.77 0.74 8.19 0.04 0.23 8.78 0.04
dblp 3.55 5.42 5.09 68.31 2.92 10.84 2.58 11.04 0.22 20.71 0.03 0.06 21.83 0.13
psd7003 3.04 6.64 6.06 55.65 3.40 6.33 2.06 7.27 0.41 15.80 0.04 0.10 62.08 0.02
9d 3.47 4.41 13.84 214.94 3.19 8.26 2.97 11.38 0.52 8.98 0.04 0.12 80.13 0.04

occurrences, locate the first position, locate all the positions, and extract all the
10-words snippets of a word. We distinguish 3 groups of words depending on their
frequency f : i) 1000 < f ≤ 10000, ii) 100 < f ≤ 1000 and iii) 1 ≤ f ≤ 100 and
show the average time of searching for 100 distinct words (skipping stopwords)
randomly chosen from the two vocabularies in each group.

In turn, columns 13 and 14 of Table 2 show, respectively, the average times ob-
tained to locate all the occurrences of a certain pair of start-end tags containing
a word (TCW) and to locate all the occurrences of an att name = “att value”
pattern (ATT). In the first case, we have randomly chosen 100 tags and 100
text words from their respective vocabularies and have performed the algorithm.
For the second operation, we used 100 randomly chosen pairs of the different
att name = “att value” pairs with frequency between 1 and 100 existing in
each XML document. Notice that here the search times of locate all the occur-
rences of a certain att name = “att value” pattern depend also on the number
of words that form the “att value”. The greater the number of words, the fewer
the number of false positives we find in the root of the XWT that will spend time
being processed down in the XWT. Moreover, it also depends on the frequency
of the least frequent word of the att name = “att value” pattern. The greater
the frequency, the greater the number of possible candidates we will check.

To properly valuate these data we need to take into account that, long ago
[12], it has been clearly established beyond doubts that any kind of word or
phrase search over the uncompressed text takes up to 8 times more time than
to perform the same search over the compressed text, due to the fact that pro-
cessing the uncompressed text imply to process around three times more bytes.
Therefore, it only makes sense to compare our data, about searches to answer the
different XPath queries, with those that could be obtained using a compressed
version of the text. But in [4] it was experimental tested the performance of WT
against compressed text. Different compressors were used to create the com-
pressed text and to obtain the codewords for the WT. In all the cases the WT
was dramatically faster to perform any kind of search, thanks to the self-indexing
properties.

As consequence, it is more interesting to compare our results against those
that can be obtained using a compressed and indexed version of the XML docu-
ments. In [4] the performance of WT was compared against inverted indexes to
blocks of text (not to individual words occurrences). Different block sizes in the
inverted index and different number of partial counters in the WT were used in
order to compare the efficiency of both approaches when using different amounts



of space. Results clearly proved the superior efficiency of the WT in searching
words and phrases. The WT was superior even in recovering snippets when the
amount of used space was inferior to the 40% of the original text size.

In our case, where not only we need to find a word, but also to process the
text around it to know if that word is between some specific pair of start-end
tags, or if it is an attribute value, etc. the use of our XWT will be even more
advantageous.

6 Conclusions and future work

In this paper we introduce a strategy for compressing XML documents to about
35% of their size giving them, furthermore, self-indexing properties. This strategy
is based on the use of a data structure we called XML Wavelet Tree (XWT).
XWT is a new approach to the problem of storing, processing and querying
XML documents in a time and space efficient way. Although our results are
promising, more research must be done to improve the self-indexing properties.
This is especially important for the tags representation, because most XPath
queries imply the use of the document structure that the tags provide. On the
other hand a systematic experimental evaluation of our XWT must be done
comparing its performance with some of the other efficient XML representations.
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