
Indexing Methods for Approximate String MatchingGonzalo Navarro� Ricardo Baeza-Yates� Erkki Sutineny Jorma TarhiozAbstractIndexing for approximate text searching is a novel problem receiving much attention because ofits applications in signal processing, computational biology and text retrieval, to name a few.We classify most indexing methods in a taxonomy that helps understand their essential features.We show that the existing methods, rather than completely di�erent as they are regarded, forma range of solutions whose optimum is usually somewhere in between.1 IntroductionApproximate string matching is about �nding a pattern in a text where one (or both) of them hassu�ered some kind of undesirable corruption. This has a number of applications, such as retrievingmusical passages similar to a sample, �nding DNA subsequences after possible mutations, or searchingtext under the presence of typing or spelling errors.The problem of approximate string matching is formally stated as follows: given a long text T1:::nof length n and a comparatively short pattern P1:::m of length m, both sequences over an alphabet �of size �, �nd the text positions that match the pattern with at most k \errors".Among the many existing error models we focus on the popular Levenshtein or edit distance, wherean error is a character insertion, deletion or substitution. That is, the distance d(x; y) between twostrings x and y is the minimum number of such errors needed to convert one into the other, and weseek for text substrings that are at distance k or less from the pattern. Most of the techniques can beeasily adapted to other error models. We use � = k=m as the error ratio, so 0 < � < 1.There are numerous solutions to the on-line version of the problem, where the pattern is pre-processed but the text is not [14]. They range from the classical O(mn) worst-case time to the optimalO((k+log�m)n=m) average case time. Although very fast on-line algorithms exist, many applicationshandle so large texts that no on-line algorithm can provide acceptable performance.An alternative approach when the text is large and searched frequently is to preprocess it: build adata structure on the text (an index) beforehand and use it to speed up searches. Many such indexingmethods have been developed for exact string matching [1], but only one decade ago doing the samefor approximate string matching was an open problem [2].Copyright 2001 IEEE. Personal use of this material is permitted. However, permissionto reprint/republish this material for advertising or promotional purposes or for creatingnew collective works for resale or redistribution to servers or lists, or to reuse any copy-righted component of this work in other works must be obtained from the IEEE.Bulletin of the IEEE Computer Society Technical Committee on Data Engi-neering�Dept. of Computer Science, University of Chile. Supported in part by Fondecyt grant 1990627.yDept. of Computer Science, University of Joensuu, Finland.zDept. of Computer Science and Engineering, Helsinki University of Technology, Finland.1



During the last decade, several proposals to index a text to speed up approximate searches havebeen presented. No attempt has been done up to now to show them under a common light. This is ourpurpose. We classify the existing approaches along two dimensions: data structure and search method.Four di�erent data structures are used in the literature. They all serve roughly the same purposesbut present di�erent space/time tradeo�s. We mention them from more to less powerful and spacedemanding. Su�x trees permit searching for any substring of the text. Su�x arrays permit the sameoperations but are slightly slower. q-Grams permit searching for any text substring not longer than q.q-Samples permit the same but only for some text substrings.On the other hand, there are three search approaches. Neighborhood generation generates andsearches for, using an index, all the strings that are at distance k or less from the pattern (theirneighborhood). Partitioning into exact searching selects patterns substrings that must appear unalteredin any approximate occurrence, uses the index to search for those substrings, and checks the text areassurrounding them. Assuming that the errors occur in the pattern or in the text leads to radicallydi�erent approaches. Intermediate partitioning extracts substrings from the pattern that are searchedfor allowing fewer errors using neighborhood generation. Again we can consider that errors occur inthe pattern or in the text.Table 1 illustrates this classi�cation and places the existing schemes in context.Search ApproachData Structure Neighborhood Partitioning into IntermediateGeneration Exact Searching PartitioningErrors in Text Errors in Pattern Errors in Text Errors in Pattern[10] Jokinen &Su�x Tree Ukkonen 91 [18] Shi 96[23] Ukkonen 93[5] Cobbs 95Su�x Array [7] Gonnet 88 [16] Navarro &Baeza-Yates 99[10] Jokinen &Q-grams n/a Ukkonen 91 [15] Navarro & Myers 90 [13][9] Holsti & Baeza-Yates 97Sutinen 94Q-samples n/a [20] Sutinen & n/a [17] Navarro n/aTarhio 96 et al. 2000Table 1: Taxonomy of indexes for approximate text searching. A \n/a" means that the data structureis unsuitable to implement that search approach because not enough information is maintained.2 Basic Concepts2.1 Su�x TreesSu�x trees [1] are widely used data structures for text processing. Any position i in a text T de�nesautomatically a su�x of T , namely Ti:::. A su�x trie is a trie data structure built over all the su�xesof T . Each leaf node points to a su�x. Each internal node represents a unique substring of T thatappears more than once. Every substring of T can be found by traversing a path from the root,possibly continuing the search directly in the text if a leaf is reached. In practice a su�x tree, obtained2



by compressing unary trie paths, is preferred because it yields O(n) space and O(n) construction time[12, 24] and o�ers the same functionality. Figure 1 illustrates a su�x trie.
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This severely restricted index is attractive for its low space requirements, and it still permits searchingfor long strings, as we see later.A q-grams or q-samples index can be built in linear time, although for large texts a more practicalO(n log(n=M)) time algorithm can be used. Depending on q the index takes from 0:5 to 3 times thetext size for reasonable retrieval performance.2.4 Computing Edit DistanceThe basic algorithm to compute the edit distance between two strings x and y is based on dynamicprogramming (see [14]). To compute d(x; y) a matrix C0:::jxj;0:::jyj is �lled, where Cj;i = d(x1:::j ; y1:::i).This is computed as C0;0 = 0 andCj;i = min(Cj�1;i�1 + �(xj ; yi); Cj�1;i+ 1; Cj;i�1+ 1)where �(a; b) is zero for a = b and 1 otherwise, and C�1;i = Cj;�1 =1. The minimization accounts forthe three allowed operations: substitutions, deletions and insertions. At the end, Cjxj;jyj = d(x; y). Thematrix is �lled, e.g., column-wise to guarantee that necessary cells are already computed. The table inFigure 2 (left) illustrates this algorithm to compute d("survey", "surgery").The algorithm is O(jxjjyj) time in the worst and average case. The space required is only O(jxj) ina column-wise processing because only the previous column must be stored to compute the new one.3 Neighborhood Generation3.1 The Neighborhood of the PatternThe number of strings that match a pattern P with at most k errors is �nite, as the length of anysuch string cannot exceed m+ k. We call this set of strings the \k-neighborhood" of P , and denote itUk(P ) = fx 2 ��; d(x; P ) � kg.The idea of this approach is, in essence, to generate all the strings in Uk(P ) and use an index tosearch for their text occurrences (without errors). Each such string can be searched for separately, asin [13], or a more sophisticated technique can be used (see next).The main problem with this approach is that Uk(P ) is quite large. Good bounds [22, 13] show anexponential growth in k, e.g. jUk(P )j = O(mk�k) [22]. So this approach works well for smallm and k.3.2 BacktrackingThe su�x tree or array can be used to �nd all the strings in Uk(P ) that are present in the text [7, 23].Since every substring of the text (i.e. every potential occurrence) can be found by traversing the su�xtree from the root, it is su�cient to explore every path starting at the root, descending by every branchup to where it can be seen that that branch cannot start a string in Uk(P ).We explain the algorithm on a su�x trie. We compute the edit distance between our pattern x = Pand every text string y that labels a path from the root to a trie node N . We start at the root with theinitial column Cj;root = j (Section 2.4 with i = 0) and recursively descend by every branch of the trie.For each edge traversed we compute a new column from the previous assuming that the new characterof y is that labeling the edge just traversed.Two cases may occur at node N : (a) We may �nd that Cm;N � k, which means that y 2 Uk(P ),and hence we report all the leaves of the current subtree as answers. (b) We may �nd that Cj;N > kfor every j, which means that y is not a pre�x of any string in Uk(P ) and hence we can abandon this4



branch of the trie. If none of these two cases occur, we continue descending by every branch. If wearrive at a leaf node, we continue the algorithm of Section 2.4 over the text su�x pointed to.Figure 2 illustrates the process over the path that spells out the string "surgery". The matrixcan be seen now as a stack (that grows to the right). With k = 2 the backtracking ends indeed afterreading "surge" since that string matches the pattern (case (a)). If we had instead k = 1 the searchwould have been pruned (case (b)) after considering "surger", and in the alternative path shown, afterconsidering "surga", since in both cases no entry of the matrix is � 1.
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extra requirement on relative distances follows by considering that k edit operations cannot producemisalignments larger than k.Two main branches of algorithms based on the lemma exist, di�ering essentially in whether theerrors are assumed to occur in the pattern or in the text.4.1 Errors in the PatternThis technique is based on the application of Lemma 1 under the setting P = A, xi = ". That is, thepattern is split in k+ s pieces, and hence s of the pieces must appear inside any occurrence. Therefore,the k + s pieces are searched for in the text and the text areas where s of those pieces appear underthe stated distance requirements are veri�ed for a complete match.Using the data structures of Section 2 the time to search for the pieces in the index is O(m) orO(m logn), but the checking time dominates. The case s = 1, proposed in [15], shows an average timeto check the candidates of O(m2kn=�m=(k+1)). The case s > 1 is proposed in [18] without any analysis.It is not clear which is better. If s grows, the pieces get shorter and hence there are more matches tocheck, but on the other hand, forcing s pieces to match makes the �lter stricter [18].Note that, since we cannot know where the pattern pieces can be found in the text, all the textpositions must be searchable. The technique described next, instead, works on a q-samples index. Theprice of this smaller index is that in it tolerates lower error ratios.4.2 Errors in the TextAssume now that the errors occur in the text, i.e. A is an occurrence of P in T . We extract substringsof length q at �xed text intervals of length h � q.Those q-samples correspond to the Ai's of Lemma 1, and the space between q-samples to the xi's.What the lemma ensures is that, inside any occurrence of P containing k+ s text q-samples, at least sof them appear in P at about the same positions (�k). Now, for the lemma to hold, we need to ensurethat any occurrence of P in T contains at least k+ s text q-samples, i.e. h � b(m�k� q+1)=(k+ s)c.At search time, all them�q+1 (overlapping) pattern q-grams are extracted and searched for in theindex of text q-samples. When s pattern q-grams match in the text at the proper distances, the textarea is veri�ed for a complete match. This idea is presented in [20], and earlier versions in [10, 9, 21].Let us discuss the best value of q. We want it to be small to avoid a very large set of di�erentq-samples. We want it to be large to minimize the amount of veri�cation. Some analyses [19] showthat q = �(log� n) is the optimal value. On the other hand, little has been said about the best s value,except that a larger s may trigger less veri�cations.5 Intermediate PartitioningWe present now an approach that lies between the two previous. We �lter the search by looking forpattern pieces, but those pieces are large and still may appear with errors in the occurrences. However,they appear with less errors, and therefore we use neighborhood generation to search for them. A newlemma is useful here.Lemma 2: Let A and B be two strings such that d(A;B) � k. Let A = A1x1A2x2:::xj�1Aj , for stringsAi and xi and for any j � 1. Let ki be any set of nonnegative numbers such that Pji=1 ki � k � j + 1.Then, at least one string Ai appears with at most ki errors in B.Proof is easy: if every Ai needs more than ki errors to match in B, then the total distance cannotbe less than (k � j + 1) + j = k + 1. Note that in particular we can choose ki = bk=jc for every i.6



5.1 Errors in the PatternSearch approaches based on this method have been proposed in [13, 16]. Split the pattern in j pieces,for some j that we discuss soon. Use neighborhood generation to �nd the text positions where thosepieces appear, allowing bk=jc errors. Then, for each such text position, check with an on-line algorithmthe surrounding text. The main question is now which j value to use.In [13], the pattern is partitioned because they use a q-gram index, so they use the minimum jthat gives short enough pieces (they are of length m=j). In [16] the index can search for pieces of anylength, and the partitioning is done in order to optimize the search time.Consider the evolution of the search time as j moves from 1 (neighborhood generation) to k + 1(partitioning into exact search). We search for j pieces of length m=j with k=j errors, so the error level� stays about the same for the subpatterns. As j moves to 1, the cost to search for the neighborhoodof the pieces grows exponentially with their length, as shown in Section 3.1. As j moves to k + 1 thiscost decreases, reaching even O(m) when j = k + 1. So, to �nd the pieces, a larger j is better.There is, however, the cost to verify the occurrences too. Consider a pattern that is split in jpieces, for increasing j. Start with j = 2. Lemma 2 states that every occurrence of the pattern involvesan occurrence of at least one of its two halves (with k=2 errors), although there may be occurrencesof the halves that yield no occurrences of the pattern. Consider now halving the halves (j = 4), sowe have four pieces now (call them \quarters"). Each occurrence of one of the halves involves anoccurrence of at least one quarter (with k=4 errors), but there may be many quarter occurrences thatyield no occurrences of a pattern half. This shows that, as we partition the pattern in more pieces,more occurrences are triggered. Hence, the veri�cation cost grows from zero at j = 1 to its maximumat j = k + 1. The tradeo� is illustrated in Figure 3.
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Neighborhood generation Intermediate partitioning Partitioning into exact searchFigure 3: Intermediate partitioning can be seen as a tradeo� between neighborhood generation andpartitioning into exact search.In [16] it is shown that the optimal j is �(m= log� n), yielding a time complexity of O(n�), for0 � � � 1. This is sublinear (� < 1) for � < 1� e=p�, a well known limit for any �ltration approach[14] (although the e is pessimistic and is replaced by 1 in practice). Interestingly, the same resultsare obtained in [13] by setting q = �(log� n). The experiments in [16] show that this intermediateapproach is by far superior to both extremes.5.2 Errors in the TextThis time we consider an occurrence containing a sequence of j q-samples, which must be chosen atsteps of h � b(m� k � q + 1)=jc. By Lemma 2, one of the q-samples must appear in the pattern withbk=jc errors at most. Moreover, if every q-sample i appears in the pattern block Qi = Phi�k::hi+q�1+kwith ki errors, then it must hold P ki � k.This method [20, 17] searches every block Qi in the index of q-samples using backtracking, so as to�nd the least number of errors to match each text q-sample inside Qi, using a slight modi�cation to7



the algorithm of Section 3.2. If a zone of consecutive samples is found whose errors add up at most k,the area is veri�ed with an on-line algorithm.To permit e�cient neighborhood searching, we need to limit the maximum error level to permit.Permitting q errors may be too expensive, as every text q-sample will be considered. Rather, we chooseq > e � bk=jc and assume that every text q-sample indeed matches with e+ 1 errors. We search thepattern blocks permitting only e errors. Every q-sample found with ki � e errors changes its estimationfrom e + 1 to ki, otherwise it stays at the optimistic bound e + 1.There is a tradeo� here. If we use a small e value, then the search of the e-neighborhoods will becheaper, but as we have to assume that the text q-samples not found have e+1 errors, some unnecessaryveri�cations will be carried out. On the other hand, using larger e values gives more exact estimatesof the actual number of errors of each text q-sample and hence reduces unnecessary veri�cations inexchange for a higher cost to search the e-environments.Not enough work has been done on obtaining the optimal e. In [17] it is mentioned that, as thecost of the search grows exponentially with e, the minimal e = bk=jc can be a good choice. It is alsoshown experimentally that the scheme tolerates higher error levels than the corresponding partitioninginto exact search.6 ConclusionsWe have considered indexing mechanisms for approximate string matching, a novel and di�cult problemarising in several areas. We have classi�ed the di�erent approaches using two coordinates: the sup-porting data structure and the search approach. We have shown that the most promising alternativesare those that look for an optimum balance point between exhaustively searching for neighborhoods ofpattern pieces and the strictness of the �ltration produced by splitting the pattern into pieces.A separate issue not covered in this paper is indexing schemes for approximate word matching onnatural language text. This is a much more mature problem with well established solutions.An approach that is totally di�erent from the existing ones and that has only rarely been attempted(e.g. in [4]) is to use the edit distance to give the text the structure of a metric space. It is not clearhow competitive could be the results of such an index, nor which are the elements that could form themetric space. Radically innovative ideas are welcome in this area.References[1] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag, 1985.[2] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress,volume I, pages 465{476. Elsevier Science, 1992.[3] R. Baeza-Yates and G. Gonnet. A fast algorithm on average for all-against-all sequence matching.In Proc. 6th Symp. on String Processing and Information Retrieval (SPIRE'99). IEEE CS Press,1999. Previous version unpublished, Dept. of Computer Science, Univ. of Chile, 1990.[4] E. Bugnion, T. Roos, F. Shi, P. Widmayer, and F. Widmer. Approximate multiple string matchingusing spatial indexes. In Proc. 1st South American Workshop on String Processing (WSP'93),pages 43{54, 1993.[5] A. Cobbs. Fast approximatematching using su�x trees. In Proc. 6th Ann. Symp. on CombinatorialPattern Matching (CPM'95), LNCS 807, pages 41{54, 1995.8
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