
PHONI: Streamed Matching Statistics
with Multi-Genome References

Christina Boucher∗, Travis Gagie†, Tomohiro I‡, Dominik Köppl§,
Ben Langmead¶, Giovanni Manzini‖, Gonzalo Navarro∗∗,

Alejandro Pacheco∗∗ and Massimiliano Rossi∗

∗U Florida †Dalhousie U ‡Kyutech § TMDU
Gainesville, USA Halifax, Canada Fukuoka, Japan Tokyo, Japan
{cboucher,rossi} travis.gagie tomohiro koeppl.dsc

@cise.ufl.edu @dal.ca @ai.kyutech.ac.jp @tmd.ac.jp

(corresponding)

¶Johns Hopkins U ‖U Piemonte Orientale ∗∗CeBiB, DCC, U Chile
Baltimore, USA Alessandria, Italy Santiago, Chile

langmea giovanni.manzini {gnavarro,alpachec}

@cs.jhu.edu @uniupo.it @dcc.uchile.cl

Abstract

Computing the matching statistics of patterns with respect to a text is a fundamental task in
bioinformatics, but a formidable one when the text is a highly compressed genomic database.
Bannai et al. gave an efficient solution for this case, which Rossi et al. recently implemented,
but it uses two passes over the patterns and buffers a pointer for each character during the
first pass. In this paper, we simplify their solution and make it streaming, at the cost of
slowing it down slightly. This means that, first, we can compute the matching statistics
of several long patterns (such as whole human chromosomes) in parallel while still using a
reasonable amount of RAM; second, we can compute matching statistics online with low
latency and thus quickly recognize when a pattern becomes incompressible relative to the
database. Our code is available at https://github.com/koeppl/phoni .

1 Introduction

Computing the matching statistics of patterns with respect to a text is a fundamental
and well-studied task in bioinformatics, useful in many applications [1, 2], since they
tell us which substrings of those patterns occur in that text. We consider a slightly
extended definition, which includes some information on where those substrings occur.

Definition 1. The matching statistics MS of a pattern P [0..m− 1] with respect to a
text T [0..n− 1] are an array of (position, length)-pairs MS[0..m− 1] such that

MR, TG, BL and CB are funded National Science Foundation NSF IIBR (Grant No. 2029552)
and National Institutes of Health (NIH) NIAID (Grant No. HG011392). CB is funded by NSF
SCH: INT: (Grant No. 2013998). MR and CB are funded by NSF IIS (Grant No. 1618814) and
NIH NIAID (Grant No. R01AI141810). TG is funded by NSERC Discovery Grant RGPIN-07185-
2020. DK is funded by JSPS KAKENHI Grant JP18F18120. GN funded by Basal Funds FB0001
and Fondecyt Grant 1-200038, ANID, Chile. AP funded by Basal Funds FB0001 and Doctoral
Scholarship grant 21180760, ANID, Chile.

• P [i..i+ MS[i].len− 1] = T [MS[i].pos..MS[i].pos + MS[i].len− 1],
• P [i..i+ MS[i].len] does not occur in T .

That is, MS[i].pos is a pointer to the starting position of a copy in T of the longest
prefix of P [i..m− 1] that occurs in T , and MS[i].len is the length of that prefix.

For example, if T [0..5] = CATTAG and P [0..4] = GTTAC, then MS[0..4] can be
either [(5, 1), (2, 3), (3, 2), (4, 1), (0, 1)] or [(5, 1), (2, 3), (3, 2), (1, 1), (0, 1)]. The pair
MS[1] = (2, 3) tells us that the prefix P [1..3] = TTA of P [1..4] occurs in T at T [2..4]
and P [1..4] does not occur in T .

Despite the importance of computing matching statistics, until recently it was not
known how to index efficiently a compressed representation of a massive and highly
repetitive text, such as a database of genomes of individuals from the same species, so
that later we could quickly compute the matching statistics of a given pattern. Bannai
et al. [3] augmented Gagie et al.’s [4] r-index to support computation of matching
statistics, as we will describe in Section 3, but they did not say how to build their
auxiliary data structure. Rossi et al. [5] recently gave a construction, implemented it,
and used it to find maximal exact matches (MEMs) between a set of DNA reads and
a genomic database. They called their implementation MONI, Finnish for “multi”,
since their ultimate goal is to align reads to a multi-genome reference.

Bannai et al.’s solution makes two passes over the pattern: during the first, it
works from right to left and computes and buffers the pos values; during the second,
it works from left to right and uses the pos values and random access to the text to
compute the len values. This means the working space grows linearly with the length
of the pattern. This is not a serious concern when the patterns are short reads or even
long reads, which are generally hundreds or thousands of characters, respectively, but
it could limit how many extremely long patterns we can process in parallel.

A human chromosome 1 is a quarter of a billion base pairs, so assuming a pos
values takes 8 bytes, we could need 2 GB of RAM to buffer the pos values, on top of
the RAM occupied by Bannai et al.’s index. If we have dozens of cores and want to
process a chromosome 1 from a different haplotype on each core in parallel, the RAM
needed to buffer the pos values could easily dwarf that needed for the index. Bannai
et al. themselves proposed computing the matching statistics of whole genomes with
respect to genomic databases, in order to identify regions of novel DNA — where the
len values are small, meaning the region is incompressible relative to the database —
for rare-disease diagnosis. Such whole-genome matching statistics could also be useful
in estimating genetic diversity in a population, tracking how pathogens mutate, etc.

Another potential concern with Bannai et al.’s solution is that, if a pattern is
being given to us online, character by character, then the maximum latency, from
the time we receive a character to the time we return the corresponding pair in the
matching statistics, also grows linearly with the length of the pattern. This means we
cannot use Bannai et al.’s solution for applications in which we want the matching
statistics in real time.

On the other hand, if we can stream the matching statistics in real time then,
among other things, we can use the results in applications of DNA sequencing that
require rapid computational feedback. For example, when the sequencing process

in Oxford Nanopore MinION DNA sequencers starts to degrade in accuracy, their
output continues but it no longer contains useful information [6]. With streamed
matching statistics, we can stop the sequencing process when the output becomes
incompressible relative to the database. Even when the MinION is still producing
valid output, it may be sequencing DNA that is irrelevant for our purposes. Real-time
computation of matching statistics also allows us to reject such DNA rapidly, and thus
target the sequencer to specific genomes or genes of interest [7, 8]. Finally, we may
want to stop sequencing once the MinION has found a long enough match to confirm
the presence of a pathogen, for example [9]. For all these applications, reducing
latency optimizes throughput, and reducing the memory usage allows decisions to be
made “close to” the sequencer using embedded or other non-server processors.

In this paper, we simplify Bannai et al.’s solution by using longest-common-
extension (LCE) queries to compute the len values at the same time that we compute
the pos values. This means we process patterns using a single pass, reading them
and writing the matching statistics as streams, without buffering — so our solu-
tion can be applied to the tasks described above. (To stream patterns from left to
right we should really index the reversed texts, but we ignore that in this version of
this paper.) Our experiments show that our implementation, which we call PHONI,
needs significantly less time and memory to build than MONI; is significantly smaller
once built; and uses less extra RAM to compute the matching statistics of long pat-
terns. For the full version of this paper we will test the maximum latency and the
RAM usage when the solutions process queries in parallel. Our code is available at
https://github.com/koeppl/phoni .

2 MS, Random Access and LCE

2.1 Computing and Using MS

There are practical O(n log σ)-bit data structures with which we can compute MS in
O(m log σ) time, where σ is the size of the alphabet of T [10]. Once we have MS
we can easily compute in O(m) time the maximal exact matches (MEMs) of P with
respect to T , for example, which play a key role in short- and long-read alignment [11].
In fact, with additional practical O(n log σ)-bit data structures we can quickly list the
starting positions of all the copies in T of any substring P [i..j] of P .

In the worst-case we cannot store a text of length n over an alphabet of size σ
in fewer than n lg σ bits, and for a single genome using 2n bits is reasonable. Due
to the high speed and low cost of next-generation sequencing, however, we now have
massive genomic databases to index, which are far more compressible than even what
their high-order empirical entropies would indicate.

A consensus is emerging that if T is such a text then compressed indexes for
it should take space bounded in terms the number r of runs in its Burrows-Wheeler
Transform (BWT), where a run is a maximal non-empty unary substring. Within O(r)
space, we can efficiently support several powerful queries, but not yet computing MS.
Indeed, MS can be easily computed with suffix trees, but suffix-tree functionality has
been achieved only with O(r log(n/r))-space data structures [4], which is significantly

Algorithm 1: Lists the starting positions of all the copies of P [i..j] in T for
given MS, i and j, by using φ, φ−1 and PLCP.

1 if MS[i].len < j − i+ 1 then return
2 p← MS[i].pos
3 output p
4 while PLCP[p] ≥ j − i+ 1 do
5 p← φ(p)
6 output p

7 p← φ−1(MS[i].pos)
8 while p 6= NULL and PLCP[p] ≥ j − i+ 1 do
9 output p

10 p← φ−1(p)

larger than O(r) both in theory and in practice [12].
Bannai et al. recently presented their two-pass algorithm for quickly computing

MS using only an O(r)-space data structure during the first pass, from right to left
in O(m log log n) time, and then random access to T during the second pass, from
left to right. We do not know how to support efficient random access to T using only
O(r) space, however.

Once we have MS, we can use the r-index [4], which also takes O(r) words of
space, to list the starting positions of all the copies in T of any substring P [i..j] of P ,
in O(log log n) time per copy. Specifically, we use Theorem 2 below with Algorithm 1,
where

• φ(p) = SA[ISA[p]− 1] (or NULL if ISA[p] = 0),
• φ−1(p) = SA[ISA[p] + 1] (or NULL if ISA[p] = n− 1),
• PLCP[p] = LCP[ISA[p]] (or 0 if ISA[p] = 0),

and SA, ISA, LCP and PLCP are the suffix array, inverse suffix array, longest-common-
prefix array and permuted longest-common-prefix array of T , respectively.

Theorem 2 (Gagie, Navarro and Prezza, 2020). We can store T in O(r) space such
that, given a text position p ∈ [0..n − 1], we can compute φ(p), φ−1(p) and PLCP[p]
in O(log log n) time.

2.2 Random Access in Compressed Space

There are many data structures supporting logarithmic-time random access to com-
pressed repetitive texts. For example, one can build a balanced grammar of size
O(z log(n/z)) that supports access to any symbol in time O(log(n/z)) [13, 14], where z
is the number of phrases in the LZ77 parse of T . In practice, heuristics like RePair [15]
yield smaller balanced grammars.

Gagie et al. [16] recently showed how to scale up RePair to handle genomic
databases in reasonable time, using as a preprocessing step prefix-free parsing (PFP),
a technique Boucher et al. [17, 18] introduced to ease the construction of BWTs of

genomic database sequences. PFP parses T by passing a sliding window over it, in-
serting a phrase break when the Karp-Rabin hash of the contents of the window is 0
modulo a parameter. PFP outputs a dictionary of phrases, and a parse: a sequence of
dictionary symbols that when replaced by the corresponding phrases yields the orig-
inal text T . PFP produces mostly locally consistent parsings in practice, meaning
that long repeated substrings in T tend to be parsed roughly the same way, so the
sum of the total lengths of the phrases in the dictionary and the number of phrases
in the parse is usually significantly less than n.

To get an SLP for T , Gagie et al. [16] run RePair on the concatenation of the
phrases in the dictionary, separated by unique symbols, to obtain an SLP containing a
non-terminal for each phrase, whose expansion is that phrase. Then, they run RePair
on the parse, treating it as a string of phrase identifiers, to obtain an SLP whose
terminals are the phrase identifiers. By replacing the terminals in the latter SLP by
the corresponding non-terminals in the former SLP, they obtain an SLP for T . Since
the dictionary and the parse are significantly smaller than T , running RePair on them
is usually much faster and uses much less memory than running RePair (directly) on
T , but the resulting SLP is usually only negligibly larger (and much smaller than
Bannai et al.’s [3] data structure, anyway).

The näıve way to augment an SLP to support fast random access is to store with
each non-terminal the size of its expansion. Very recently Gagie et al. [19] gave a
more space-efficient way to encode SLPs while still supporting fast random access.
Rossi et al. [5] use this space-efficient SLP to support random access to T in their
implementation of Bannai et al.’s algorithm.

2.3 LCE Queries

24 26 28 30
24
26
28
30
32
34

file size [lg B]

m
em

or
y

[l
g

B
]

Memory Peak

[19]
[20]

Figure 1: Memory needed for LCE
queries on Chromosome 19 samples
of various sizes (x-axis).

The longest common extension (LCE) query [21]
asks, given two text positions i, j, for the length
of the longest common prefix between T [i..n− 1]
and T [j..n − 1]. We make use of LCE queries
to avoid the second pass in Bannai et al.’s algo-
rithm [3].

Although there are many LCE data structures
in the literature, we are not aware of any that
in practice can handle genomic databases, which
can range from tens of gigabytes to petabytes,
while achieving compression comparable to Ban-
nai et al.’s [3] or Gagie et al.’s [19] data structures
and supporting reasonably fast queries. For ex-
ample, Dinklage et al. [20] recently presented an

LCE data structure based on sampling. Since its space usage grows linearly with the
size of the dataset, this approach is impractical when dealing with genomic databases;
see Figure 1 for a comparison of the memory usage between sss256 of [20] and the SLP
representation of Gagie et al. [19].

We now describe a practical algorithm for LCE queries that uses the same SLP

compressed text representation [19] that Rossi et al. [5] used to random-access the
input text. Because PFP produces mostly locally consistent parsings in practice, if we
are extracting and comparing two suffixes of T that have a long common prefix then
usually we will quickly reach a phrase boundary simultaneously in both suffixes. At
that point we can start comparing the suffixes phrase by phrase instead of character by
character, without expanding the non-terminals representing those phrases. Once we
reach phrases that do not match, we can expand their non-terminals and once again
compare the suffixes character by character, knowing that we will find characters that
do not match within those phrases.

We need not augment the SLP with information about which non-terminals’ ex-
pansions are phrases: to extract and compare suffixes of T starting at T [i] and T [j],
conceptually we descend to the ith and jth leaves of the parse tree for T ; starting
from those leaves, we then perform synchronized traversals of the parse tree, moving
from left to right until we simultaneously arrive at two leaves labelled with different
characters; if during the traversals we simultaneously arrive at nodes labelled with
the same non-terminal then we need not explore those nodes’ subtrees — whether
or not that non-terminal’s expansion is a phrase — since they are guaranteed to be
equal. This technique is described in detail with a similar parsing in Fischer et al. [22,
Sect. 3.3]; see also Nishimoto et al. [23].

3 Simplifying Bannai et al.’s Algorithm

Bannai et al. developed their algorithm starting from Algorithm 2, with which we
can compute MS in m logO(1) n time with O(n log σ)-bit data structures. (The pre-
cise complexity depends on the auxiliary data structures used.) In this algorithm,
BWT.rankx(y) returns the number of copies of x in BWT[0..y], BWT.selectx(y) re-
turns the position of the yth copy of x in BWT, and LF(x) returns the position in
BWT of the character that precedes BWT[x] in T . We refer the reader to Navarro’s
text book [24] for descriptions of O(n log σ)-bit data structures with which we can
implement rank, select, SA, LF and LCE queries efficiently. For example, we can im-
plement LCE queries using a (2n+o(n))-bit position-only range-minimum-query data
structure over LCP, and simulating LCP using random access to SA and PLCP.

The crucial observation behind this algorithm is that when we know MS[i + 1]
(both pos and len components):

• if T [MS[i+1].pos−1] = P [i] then MS[i].pos = MS[i+1].pos−1 and MS[i].len =
MS[i+ 1].len + 1 (Line 5 in Algo. 2);

• otherwise (Line 8 in Algo. 2), a copy of the longest prefix of P [i..m − 1] that
occurs in T starts at either T [p′ − 1] or T [p′′ − 1], where p′ and p′′ are the
starting positions of the lexicographically preceding and succeeding suffixes of
T [MS[i+ 1].pos..n− 1], respectively.

In the latter case, by knowing the lexicographic rank (q in Algo. 2) of T [MS[i +
1].pos..n − 1] among the suffixes of T , we can tell whether to set MS[i].pos to p′ − 1
or to p′′ − 1 by comparing LCE(p′,MS[i + 1].pos) to LCE(p′′,MS[i + 1].pos) (Line 14
in Algorithm 2).

Algorithm 2: Computes MS using O(m) rank, select, SA, LF and LCE
queries. For simplicity we ignore the cases where q, q′ or q′′ are undefined.

1 q ← BWT.selectP [m−1](1) . Assume that P [m− 1] occurs in T
2 MS[m− 1]← (pos : SA[q]− 1, len: 1)
3 q ← LF(q) . Invariant: T [SA[q]] = P [m− 1]
4 for i = m− 2 down to 0 do
5 if BWT[q] = P [i] then
6 MS[i]← (pos : MS[i+ 1].pos− 1, len : MS[i+ 1].len + 1)
7 q ← LF(q)

8 else
9 c← BWT.rankP [i](q)

10 q′ ← BWT.selectP [i](c)
11 q′′ ← BWT.selectP [i](c+ 1)
12 `′ ← min(MS[i+ 1].len, LCE(SA[q′],MS[i+ 1].pos))
13 `′′ ← min(MS[i+ 1].len, LCE(SA[q′′],MS[i+ 1].pos))
14 if `′ ≥ `′′ then
15 MS[i]← (pos : SA[q′]− 1, len : `′ + 1)
16 q ← LF(q′)

17 else
18 MS[i]← (pos : SA[q′′]− 1, len : `′′ + 1)
19 q ← LF(q′′)

Bannai et al. observed that most of the operations in this algorithm can be sup-
ported quickly using O(r)-space data structures. For example, we need access to SA
entries only at positions corresponding to the starting or ending positions of runs in
BWT, and we can store those entries in O(r) space. The only exceptions are the LCE
queries: the standard approach of solving LCE queries using range-minimum-query
data structures over LCP cannot be applied since we have no fast O(r)-space range-
minimum-query data structures and, even if we did, we do not know how to support
random access to SA in order to use PLCP to simulate LCP.

To avoid using LCE queries, Bannai et al. observed that during the execution of
the algorithm it holds

LCE(p′,MS[i+ 1].pos) ≥ LCE(p′′,MS[i+ 1].pos) (1)

if and only if there is a copy of min(LCP[q′ + 1], · · · , LCP[q′′]) in LCP[q + 1..q′′].
Therefore, if we store the position of the first minimum in LCP[q′ + 1..q′′], for each
choice of q′ and q′′ as the ending position of a run in BWT and the starting position of
the next run of the same character, then we can compute the pos components of the
MS array: MS[m − 1].pos,MS[m − 2].pos, . . . ,MS[0].pos in this order. These values
can be computed in overall O(m log log n) time, since the cost is dominated by rank
and select queries.

|T | |SLP| r LF%
[GB] [MB] [M]

16 0.96 36.11 32.40 78.88
32 1.92 37.86 32.83 79.11
64 3.85 39.49 33.34 79.36

100 6.01 41.02 33.78 79.56
256 15.39 47.38 35.62 80.34
512 30.78 57.98 39.24 81.96

1000 60.11 80.64 45.93 84.61

Table 1: Characteristics of the obtained match-
ing statistics. The column # is the number of
chr19 sequences stored in T , |SLP| the sizes of
PHONIstd’s SLP grammar, and r the runs in
BWT (in million). The column LF% is the per-
centage of how often Line 5 in Algo. 2 is true.
This percentage increases with the number of
samples since it becomes likelier for matches the
longer the indexed text becomes. The average
and maximum value of len in MS are roughly
81,558 and 3,100,685 for all instances.

Without LCE queries it is not possible to compute the len components together
with the pos components in an efficient way, so they are computed with a second, left
to right, pass over the pattern P . Since MS[i + 1].len ≥ MS[i].len− 1, once we know
MS[i].len we can find MS[i+ 1].len without looking at T [MS[i+ 1].pos..MS[i+ 1].pos+
MS[i].len−2]. The total number of random accesses to T we need forms a telescoping
sum, MS[0].len +

∑m−1
i=1 (MS[i].len−MS[i− 1].len) +O(m), which collapses to O(m).

Rossi et al. [5] described an implementation of the resulting two-pass algorithm
providing also the missing step of the actual computation of the minima, called thresh-
olds in [3], required to indirectly perform the comparison of Equation (1).

4 Experiments

We compared the time and memory needed for building and querying MONI, two
versions of PHONI and Belazzougui et al.’s msfast with the parameters -lazy wl 1

-double rank 1 -rank fail 1 leading to the fastest execution. PHONIstd is what
we have described in previous sections, while PHONInäıve performs LCE queries via
character-by-character extraction, without skipping equal non-terminals as described
in Subsection 2.3. We built the data structures for datasets consisting of chromosome
19s from human haplotypes, from 16 to 1000, and queried them with prefixes of 10
different chromosome 19s. Table 4 gives some characteristics of the used data and
the resulting matching statistics. We ran our experiments on a machine with an
Intel Xeon CPU E5-2620 and 64 GiB RAM running Ubuntu 16.04.7. We executed
all programs single threaded.

Figure 4(a) shows the construction times and 4(b) the query times, with the
average time to compute MS for a whole chromosome 19 depending on the size of the
dataset on the left, and to compute MS for a prefix of a chromosome 19 on the right.
We stopped constructions that took more than 200 minutes, and PHONInäıve is not
shown in Figure 4(a) because its construction is the same as PHONIstd. PHONIstd is
faster to build than MONI because it does not need the thresholds, but it is slower at
answering queries for relatively small |T | (although it speeds up as the dataset grows,
because the fraction of the time we use LF mappings increases).

Figures 4(c) and (d) show the peak RAM (the maximum resident set size) used
to build the data structures and their final sizes. PHONIstd also takes less memory

(a) Construction Time (b) Average Query Time

16 32 64 10
0

25
6

51
2

10
00

0

100

200

seq. in T

to
ta

l
ti

m
e

[m
in

]

16 32 64 10
0

25
6

51
2

10
00

0

5

10

15

seq. in T

1
1
0

2
5

5
0

7
5

1
0
0

0

5

10

pattern prefix (%)

(c) Construction Memory Peak (d) Final Disk Space

16 32 64

0

20

40

60

seq. in T

m
em

or
y

[G
B

]

64 10
0

25
6

51
2

10
00

10

20

seq. in T
16 32 64

0

2

4

6

8

seq. in T

64 10
0

25
6

51
2

10
00

0.4

0.6

0.8

1

seq. in T

(e) Maximum Requested Memory During Query

16 32 64

0

2

4

seq. in T

m
em

or
y

[G
B

]

64 10
0

25
6

51
2

10
00

1

2

seq. in T

1
1
0

2
5

5
0

7
5

1
0
0

0

2

4

pattern prefix (%)

PHONInäıve

PHONIstd
msfast
MONI

Figure 2: The time (a) and memory (c) needed to build PHONInäıve, PHONIstd, MONI
and msfast, and their final sizes (d); the query times (b) as a function of dataset size and
pattern length; and the memory used for queries (e). The dataset used for testing prefixes
of queries consisted of 64 chromosome 19s.

that MONI because, again, it does not need thresholds. Finally, Fig. 4(e) shows the
maximum amount of memory requested for allocation during a query (including the
indexing data structures).

For the larger datasets, MONI and PHONIstd seem to be the most practical solu-
tions, with MONI being faster for small datasets but somewhat harder to build and
needing more RAM when computing the matching statistics for long patterns. As
stated in Section 1, for the full version of this paper we will test the maximum latency
and the RAM usage when the solutions process queries in parallel.

References

[1] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu, Genome-Scale Algorithm
Design, Cambridge University Press, 2015.

[2] E. Ohlebusch, Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction, Oldenbusch Verlag, 2013.

[3] H. Bannai et al., “Refining the r-index,” Th. Comp. Sci., vol. 812, pp. 96–108, 2020.
[4] T. Gagie, G. Navarro, and N. Prezza, “Fully functional suffix trees and optimal text

searching in BWT-runs bounded space,” J. ACM, vol. 67, pp. 1–54, 2020.
[5] M. Rossi et al., “MONI: A pangenomics index for finding MEMs,” in Proc. RECOMB,

2021, to appear.
[6] M. Oliva et al., “Portable nanopore analytics: Are we there yet?,” Bioinformatics,

vol. 36, pp. 4399–4405, 2020.
[7] H. S. Edwards et al., “Real-time selective sequencing with RUBRIC: Read until with

basecall and reference-informed criteria,” Sci. Rep, vol. 9, pp. 1–11, 2019.
[8] S. Kovaka, Y. Fan, B. Ni, W. Timp, and M. C. Schatz, “Targeted nanopore sequencing

by real-time mapping of raw electrical signal with UNCALLED,” Nat. Biotech., 2020.
[9] A. M. Taxt et al., “Rapid identification of pathogens, antibiotic resistance genes and

plasmids in blood cultures by nanopore sequencing,” Sci. Rep, vol. 10, pp. 1–11, 2020.
[10] D. Belazzougui, F. Cunial, and O. Denas, “Fast matching statistics in small space,”

in Proc. SEA, 2018, pp. 17:1–17:14.
[11] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM,” arXiv:1303.3997, 2013.
[12] G. Navarro and A. Ordóñez, “Faster compressed suffix trees for repetitive text collec-

tions,” ACM J. Exp. Algorithmics, vol. 21, pp. article 1.8, 2016.
[13] W. Rytter, “Application of Lempel–Ziv factorization to the approximation of grammar-

based compression,” Theor. Comput. Sci., vol. 302, pp. 211–222, 2003.
[14] M. Charikar et al., “The smallest grammar problem,” IEEE Trans. Inf. Theory, vol.

51, pp. 2554–2576, 2005.
[15] N. J. Larsson and A. Moffat, “Offline dictionary-based compression,” in Proc. DCC,

1999, pp. 296–305.
[16] T. Gagie et al., “Rpair: Rescaling RePair with rsync,” in Proc. SPIRE, 2019, pp.

35–44.
[17] C. Boucher et al., “Prefix-free parsing for building big BWTs,” Algorithms Mol. Biol.,

vol. 14, pp. 13, 2019.
[18] A. Kuhnle et al., “Efficient construction of a complete index for pan-genomics read

alignment,” J Comput. Biol., vol. 27, pp. 500–513, 2020.
[19] T. Gagie et al., “Practical random access to SLP-compressed texts,” in Proc. SPIRE,

2020, pp. 221–231.
[20] P. Dinklage et al., “Practical performance of space efficient data structures for longest

common extensions,” in Proc. ESA, 2020, pp. 39:1–39:20.
[21] L. Ilie, G. Navarro, and L. Tinta, “The longest common extension problem revisited

and applications to approximate string searching,” J Discrete Algorithms, vol. 8, pp.
418–428, 2010.

[22] J. Fischer, T. I, and D. Köppl, “Deterministic sparse suffix sorting in the restore
model,” ACM Trans. Algorithms, vol. 16, pp. 50:1–50:53, 2020.

[23] T. Nishimoto et al., “Fully dynamic data structure for LCE queries in compressed
space,” in Proc. MFCS, 2016.

[24] G. Navarro, Compact data structures: A practical approach, Cambridge University
Press, 2016.

