
A Grammar Compression Algorithm
based on Induced Suffix Sorting

Daniel Saad Nogueira Nunes1,2, Felipe A. Louza3 ∗,
Simon Gog4, Mauricio Ayala-Rincón2 and Gonzalo Navarro5

1Federal Institute of Education, Science and Technology of Braśılia, Brazil
daniel.nunes@ifb.edu.br

2Department of Computer Science, University of Braśılia, Brazil
ayala@unb.br

3Department of Computing and Mathematics, University of São Paulo, Brazil
louza@usp.br

4Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany
gog@kit.edu

5Center for Biotechnology and Bioengineering
Department of Computer Science, University of Chile, Chile

gnavarro@dcc.uchile.cl

Abstract

We introduce GCIS, a grammar compression algorithm based on the induced suffix sorting
algorithm SAIS, presented by Nong et al. in 2009. Our solution builds on the factorization
performed by SAIS during suffix sorting. We construct a context-free grammar on the input
string which can be further reduced into a shorter string by substituting each substring by
its corresponding factor. The resulting grammar is encoded by exploring some redundancies,
such as common prefixes between suffix rules, which are sorted according to SAIS framework.
When compared to well-known compression tools such as Re-Pair and 7-zip under repetitive
sequences, our algorithm is faster at compressing and achieves compression ratio close to
that of Re-Pair, at the cost of being the slowest at decompressing.

Introduction

Text compression consists in transforming an input string into another string whose
bit sequence representation is smaller. Given the suffix array [1, 2] of a string, one can
compute efficiently the Burrows-Wheeler transform (BWT) [3] and the Lempel-Ziv
factorization (LZ77) [4, 5, 6, 7], which are at the heart of the popular data compression
tools 7-zip and GZIP [8].

In 2009, Nong et al. [9] introduced a remarkable algorithm called SAIS, which
runs in linear time and is fast in practice to construct the suffix array. Subsequently,
SAIS was adapted to compute directly the BWT [10], the Φ-array [11, 7], the LCP
array [12], and the suffix array for string collections [13].

In this article we introduce GCIS, a new grammar-based compression algorithm
that builds on SAIS. We construct a context-free grammar based on the string fac-
torization performed by SAIS recursively. The rules are encoded according to the

∗ FAL was supported by the grant #2017/09105-0 from the São Paulo Research Foundation
(FAPESP). GN was funded by Basal Funds FB0001 and Fondecyt Grant 1-170048, Conicyt, Chile.

length of longest common prefixes between consecutive rules, which are sorted lexi-
cographically by SAIS.

Our experiments show that, regarding repetitive strings and compared to Re-
Pair [14] and 7-zip [15], GCIS is an interesting alternative, because it displays the
fastest compression time and reaches a compression ratio close to that of Re-Pair,
although it is the slowest at decoding. GCIS utilizes a novel grammar compression
framework, being the first, as far as we know, based on induced suffix sorting.

Background

Let T be a string of length |T | = n, T = T [1, n] = T [1] · T [2] . . . · T [n], over a fixed
ordered alphabet Σ. A constant alphabet has size σ ∈ O(1) and an integer alphabet
has size σ ∈ nO(1). We denote the concatenation of strings or symbols by the dot
operator (·), which can be omitted. We use the symbol < for the lexicographic order
relation between strings.

For convenience, we assume that T always ends with a special symbol T [n] = $,
which is not present elsewhere in T and lexicographically precedes every symbol in
Σ. Let T [1, j] be the prefix of T that ends at position j, and T [i, n] be the suffix of
T that starts at position i also denoted as Ti by brevity. We denote the length of the
longest common prefix of two strings T1 and T2 in Σ∗ by lcp(T1, T2).

The suffix array (SA) [1, 2] of a string T [1, n] is an array of integers in the range
[1, n] that gives the lexicographic order of all suffixes of T , such that TSA[1] < TSA[2] <
. . . < TSA[n]. The suffixes starting with the same symbol c ∈ Σ form a c-bucket in the
suffix array. The head and the tail of a bucket refer to the first and the last position
of the bucket in SA.

Let G = (Σ,Γ, P,XS) be a reduced context-free grammar (does not contain un-
reachable non-terminals). Σ is the terminal alphabet of G; Γ is the set of non-
terminals symbols that is disjoint from Σ; P ⊆ Γ× (Σ ∪ Γ)∗ is the set of production
rules; and XS ∈ Γ is the start symbol. A production rule (Xi, αi) is also denoted by
Xi → αi. We say that αi is derived from Xi. For strings s, t ∈ (Σ ∪ Γ)∗, we say that
t derives from s if it is obtained by application of a production rule in P ; we say that
t is generated from s if t is obtained by a sequence of derivations from s. We define
|G| as the total length of the strings on the right side of all rules.

Given a string T , grammar compression is to find a grammar G which generates
only T such that G can be represented in less space than the original T . Given that
G grammar-compresses T , for (Xi, αi) ∈ P , we define F(Xi) = s as the single string
s ∈ Σ∗ that is generated from αi. The language generated by G is L(G) = F(XS).

Related work

SAIS [9] builds on the induced suffix sorting technique introduced by previous al-
gorithms [16, 17]. Induced suffix sorting consists in deducing the order of unsorted
suffixes from a set of already ordered suffixes.

The next definition classifies suffixes and symbols of strings.

Definition 1 (L-type and S-type) For any string T , Tn = $ has type S. A suffix
Ti is an S-suffix if Ti < Ti+1, otherwise Ti is an L-suffix. T [i] has the type of Ti.

The suffixes can be classified in linear time by scanning T once from right to left.
The type of each suffix is stored in a bitmap of size n.

Note that, in a c-bucket, all L-suffixes precede to the S-suffixes.
Further, the classification of suffixes is refined as below:

Definition 2 (LMS-type) Let T be a string. Ti is an LMS-suffix if Ti is an S-suffix
and Ti−1 is an L-suffix.

Nong et al. [9] showed that the order of the LMS-suffixes is enough to induce the
order of all suffixes.

SAIS works as follows:

SAIS framework:

1. Sort the LMS-suffixes. This step is explained below.

2. Insert the LMS-suffixes into their c-buckets in SA, without changing their order.

3. Induce L-suffixes by scanning SA from left to right: for each suffix SA[i] if
T [SA[i]− 1] is L-type, insert SA[i]− 1 into the head of its bucket.

4. Induce S-suffixes by scanning SA from right to left: for each suffix SA[i] if
T [SA[i]− 1] is S-type, insert SA[i]− 1 into the tail of its bucket.

We say that whenever a value is inserted in the head (or tail) of a bucket,the head
(or tail) is increased (or decreased) by one.

In order to sort the LMS-suffixes in Step 1, T [1, n] is divided (factorized) into
LMS-substrings.

Definition 3 T [i, j] is an LMS-substring if both Ti and Tj are LMS-suffixes, but no
suffix between i and j has LMS-type. The last suffix Tn is an LMS-substring.

Let r11, r
1
2, . . . , r

1
n1 be the n1 LMS-substrings of T read from left-to-right. A mod-

ified version of SAIS is applied to sort the LMS-substrings. Starting from Step 2,
T [1, n] is scanned (right-to-left) and each unsorted LMS-suffix is inserted (bucket-
sorted) regarding its first symbol at the tail of its c-bucket. Steps 3 and 4 work
exactly the same. At the end, all LMS-substrings are sorted and stored in their
corresponding c-buckets in SA.

Naming:

A name v1i is assigned to each LMS-substring r1i according to its lexicographical rank
in [1, σ1], such that v1i < v1j if r1i < r1j , v

1
i = v1j if r1i = r1j and σ1 is the number

of different LMS-substrings in T . In order to compute the names, each consecutive
LMS-substrings in SA, say r1i and r1i+1, are compared to determine if either r1i = r1i+1

or r1i < r1i+1. In the former case v1i+1 is named as v1i , whereas in the latter case v1i+1 is
named as v1i + 1. This procedure may be sped up by comparing the LMS-substrings
first by symbol and then by type, with L-type symbols being smaller than S-type
symbols in case of ties [18].

Recursive call:

A new (reduced) string T 1 = v11 · v11 · · · v1n1 is created, whose length n1 is at most n/2,
and the alphabet size σ1 is integer. If every v1i 6= v1j then all LMS-suffixes are already
sorted. Otherwise, SAIS is recursively applied to sort all the suffixes of T 1. Nong
et al. [9] showed that the relative order of the LMS-suffixes in T is the same as the
order of the respective suffixes in T 1. Therefore, the order of all LMS-suffixes can be
determined by the result of the recursive algorithm.

Grammar Compression by Induced Suffix Sorting

In this section we introduce the grammar compression by induced sorting (GCIS),
which is based on SAIS.

First, we compute a context-free grammar G = (Σ,Γ, P,XS) that generates only
T [1, n]. To do this we modify SAIS as follows.

Grammar construction:

Considering the j-th recursion level, in Step 1, after the input string T j[1, n] is divided
into the LMS-substrings rj1, r

j
2, . . . , r

j
nj and named into vj1, v

j
2, . . . , v

j
nj , we create a new

rule Xi → αi for each different LMS-substring rji = T j[a, b] in the form r(vji) →
T j[a, b − 1], where r(vji) = vji +

∑j−1
k=1 σ

k. Moreover, we create an additional rule
r(0j)→ T j[1, j1−1] for the prefix of T j that is not included in the first LMS-substring
rj1.

The algorithm is called recursively with the reduced string T j+1 = vj1 · v
j
2 · · · v

j
nj

as input while σj < nj, that is, the LMS-substrings are not pairwise distinct. At the
end, when σj = nj, we create the start symbol of G as being XS, such the production
XS → r(0j) · r(vj1) · r(v

j
2) · · · r(v

j
nj) generates only the original string T [1, n].

The algorithm stops after computing XS, since we are not interested in construct-
ing the suffix array, we do not execute Steps 2, 3 and 4 of SAIS. The recursive calls
return to the top level and we have computed a grammar G that generates only
T [1, n].

Since for each LMS-substring a unique r(vji) exists, there are no cycles in any
derivations, and L(G) = T , we have that G is a grammar that compresses T [19].

Grammar compression:

Consecutive entries in the set of productions P are likely to share a common prefix,
since the LMS-substrings are given lexicographically ordered by SAIS. Therefore,
each rule Xi → αi ∈ P is encoded using two values (`i, s(αi)), such that `i encodes
the length of longest common prefix (lcp) between αi−1 and αi, and the remaining
symbols of αi are given by s(αi) = αi[`i + 1, |αi|]. This technique is known as Front-
coding [20].

The computation of (`i, s(αi)) is performed with no additional cost with a slight
modification in the naming procedure of SAIS. Each consecutive LMS-substring in
SA, say rji−1 and rji are compared first by symbol and then by type to check if either

rji−1 = rji or rji−1 < ri. In order to compute lcp(rji−1, r
j
i) we compare them only by

Table 1: Simple8b possible arrangements [21].

Selector value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Item width 0 0 1 2 3 4 5 6 7 8 10 12 15 20 30 60
Group Size 240 120 60 30 20 15 12 10 8 7 6 5 4 3 2 1
Wasted bits 60 60 0 0 0 0 0 0 4 4 0 0 0 0 0 0

symbol until finding the first mismatch. The resulting order is the same with a small
slowdown in the running time.

Computational cost:

GCIS runs in O(n) time, since each step of the modified SAIS is linear and the
length of the reduced string T j is at most |T j−1|/2.

Implementation details

In this section we discuss implementation details of the GCIS encoding and decoding
processes.

Encoding:

A rule Xi is derived into a pair αi = (`i, s(αi)), where `i equals lcp(αi−1, αi) and s(αi)
corresponds to the remaining αi[`i + 1, |αi|] symbols. The ` values tend to be small
and, considering the j-th recursion value, the sum of such values cannot be greater
than nj, since no two LMS-substrings overlap.

One can encode all ` values into a sequence of computer words L by using Simple8b
encoding [21]. This technique packs a number of small integers in a 64-bit word using
the number of bits required by the largest integer. Basically it identifies a word with
a 4-bit tag called selector, which specifies the number of integers encoded in a single
word and the width of such integers. Simple8b also has specific selectors for a run
consisting of zeroes. If a run of 240 or 120 zeros is encountered, it can be represented
with a single 64-bit word. Table 1 contain all possible selector values, which reflects
the possible arrangements of fixed-width integers storage in a single 64-bit word under
this encoding scheme.

All s(αi) are encoded in a single fixed-width integer array R, consisting of width
blg(σj)c + 1 bits. The length of each s(αi) is also encoded using Simple8b into a
word array S. The same observation of the lcp sum can be done here: the sum of all
|s(αi)| is no larger than nj.

A greedy strategy was employed to stop the recursion when the dictionary size
of the (j + 1)-th level plus the size in bits of T j+1 is bigger than the size in bits of
T j. In this situation, the computation done on the j-th level is discarded and the
algorithm stops. When this condition is met, σj < nj, but this does not interfere on
the decoding algorithm.

Decoding:

The decoding process is done level-wise, starting from the last level, by decoding the
right side of each rule. In the j-th level, the values (x, y, z) from L, R and S are
decoded in a sequential way. In order to compute αk+1 from αk, the first x symbols
of αk are copied to αk+1 and the z symbols from R, which correspond to the string
y, are copied to αk+1 as well. A bitmap D is built to contain the length of all αi by
using Rice-coding. With two select1 operations it is possible to query the starting
point of each αi in this array and the length |αi| in constant time using 2nj + o(nj)
bits, where j corresponds to the j-th recursive step of the grammar construction.

Once all rules are expanded into a fixed-width integer array of blg(σj)c + 1 bits,
T j−1 can be decoded from T j. First, the right side of r(0j) is copied into T j−1.
Then, T j is scanned in a left-to-right fashion and for each T j[i] the algorithm copies
a substring to T j−1 which equals the right side of r(T j[i]) and can be easily found
with the bitmap D support.

Experiments

We compared GCIS with Re-Pair1 and 7-zip2 regarding Pizza&Chili Repetitive
Corpus3 under the subjects of compression ratio, compression and decompression
running time. In particular, we used a space-efficient implementation of Re-Pair
by Wan [22], which encodes each rule with one integer plus few bits. GCIS was
implemented in C++11 using the Succinct Data Structure Library (SDSL) [23].

All experiments were conducted on machine with 2x Intel(R) Xeon(R) CPU

E5-2407 v2 @ 2.40GHz CPUs and 256GB of RAM memory. The operating system
used was based on the Debian GNU/Linux O.S. The input size of each experiment is
given in the second column of Tables 2, 3 and 4. The source code of GCIS is publicly
available at https://github.com/danielsaad/gcis.

Experimental results show that our algorithm is effective at handling repetitive
strings. Regarding 7-zip and Re-Pair, it shows to be faster at compressing, having
a slightly worse compression ratio (but comparable) and slower at decoding.

Compression and decompression:

Table 2 comprises the compression Ratio (%), corresponding to the size of the com-
pressed text over the original input size. 7-zip presents the best compression ratio,
except for coreutils, fib41, rs and tm29, where Re-Pair outperforms it. Note
that GCIS obtains slightly worse compression ratio than Re-Pair.

Table 3 shows the compression time of each algorithm. GCIS is the fastest al-
gorithm, except for einstein.de, einstein.en and proteins, where 7-zip was the
fastest. GCIS outperforms Re-Pair and 7-zip by a large margin in most cases,
being up to 6.5 times faster than Re-Pair (tm29) and up to 6.9 times faster than
7-zip (cere).

1https://github.com/rwanwork/Re-Pair
2http://p7zip.sourceforge.net/
3http://pizzachili.dcc.uchile.cl/repcorpus.html

Table 2: Compression ratio regarding Pizza&Chili repetitive corpus.

Pizza&Chili Repetitive Corpus Compression Ratio (%)
Experiment Input Size (MB) GCIS Re-Pair 7-zip
cere 461.29 3.76 1.86 1.82
coreutils 205.28 5.39 2.54 11.63
dblp.xml.00001.1 104.86 0.43 0.19 0.16
dblp.xml.00001.2 104.86 0.43 0.18 0.16
dblp.xml.0001.1 104.86 0.84 0.46 0.20
dblp.xml.0001.2 104.86 0.77 0.39 0.19
dna.001.1 104.86 3.55 2.43 0.51
einstein.de.txt 92.76 0.31 0.16 0.11
einstein.en.txt 467.63 0.20 0.10 0.07
english.001.2 104.86 4.17 2.41 0.55
escherichiacoli 112.69 14.14 9.60 6.56
fib41 267.91 0.03 0.00 0.36
influenza 154.81 4.76 3.26 1.65
kernel 257.96 2.37 1.10 0.82
para 429.27 4.98 2.74 2.39
proteins.001.1 104.86 4.13 2.64 0.59
rs.13 216.75 0.02 0.00 0.16
sources.001.2 104.86 4.10 2.34 0.45
tm29 268.44 0.02 0.00 0.72
world leaders 46.97 3.38 1.79 1.39

Table 4 presents the decompression time of each algorithm. 7-zip outperforms
Re-Pair and GCIS, except for fib41, rs and tm29, where Re-Pair was the fastest.
GCIS is up to 20 times slower than Re-Pair and 7-zip (einstein.en), whereas
Re-Pair is up to 6.6 times slower than 7-zip (cere).

Peak memory:

We evaluated the peak memory consumption of Re-Pair and GCIS in compression
and decompression procedures. 7-zip and was not evaluated since it require negligible
amount of space when compressing or decompressing.

Figure 1a shows that GCIS requires five times less the space needed by Re-
Pair during compression. Since GCIS is based on SAIS, it requires ≈ 5 × n bytes,
for inputs with n < 4GB, whereas Re-Pair requires ≈ 30 × n bytes, becoming
prohibitive when the input is large. In decompression, illustrated by 1b, Re-Pair
has a lower peak memory usage than GCIS, making the former more appealing when
memory is limited.

Table 3: Compression time regarding Pizza&Chili repetitive corpus.

Pizza&Chili Repetitive Corpus Compression Time (s)
Experiment Input Size (MB) GCIS Re-Pair 7-zip
cere 461.29 100.61 464.62 693.10
coreutils 205.28 44.48 210.21 85.19
dblp.xml.00001.1 104.86 21.34 71.85 25.63
dblp.xml.00001.2 104.86 21.59 72.31 25.60
dblp.xml.0001.1 104.86 21.21 72.35 25.79
dblp.xml.0001.2 104.86 21.76 73.70 27.16
dna.001.1 104.86 19.48 73.83 63.56
einstein.de.txt 92.76 22.48 62.17 16.26
einstein.en.txt 467.63 135.19 338.30 85.02
english.001.2 104.86 27.79 93.61 41.36
escherichiacoli 112.69 22.42 138.06 143.05
fib41 267.91 15.58 77.35 29.36
influenza 154.81 26.64 108.98 46.14
kernel 257.96 60.26 223.52 120.18
para 429.27 95.93 512.93 583.92
proteins.001.1 104.86 29.05 82.86 21.27
rs.13 216.75 12.04 69.58 22.88
sources.001.2 104.86 23.56 85.69 31.16
tm29 268.44 14.33 92.70 39.11
world leaders 46.97 5.98 23.57 9.26

Conclusions

In the article we introduced a new grammar-based compression algorithm, called
GCIS, which is based on the induced suffix sorting framework of SAIS [9]. Our
experiments show that GCIS is faster than Re-Pair and 7-zip at compressing,
while obtaining a compression ratio close to that of Re-Pair. In exchange, Re-Pair
is faster at decompressing.

Future work: As a future work, one can think of a GCIS/Re-Pair hybrid ap-
proach The key idea is to encode the first recursive levels using GCIS and then shift
to Re-Pair. While making the compression a little slower, this approach can make
decompression faster while preserving a good compression ratio.

We remark that GCIS, as well as Re-Pair, can support extract random sub-
strings T [l, r] without decompressing the complete string T [1, n], by storing additional
data structures [24], whereas such operation is not possible for LZ77 based compres-
sors [25]. We intend to implement this operation aiming at reducing its memory
footprint. Also, an efficient way to search for a pattern in the compressed text is
desirable.

Table 4: Decompression time regarding Pizza&Chili repetitive corpus.

Pizza&Chili Repetitive Corpus Decompression Time (s)
Experiment Input Size (MB) GCIS Re-Pair 7-zip
cere 461.29 18.88 13.31 2.01
coreutils 205.28 13.53 3.95 2.37
dblp.xml.00001.1 104.86 5.61 0.82 0.34
dblp.xml.00001.2 104.86 5.62 0.85 0.34
dblp.xml.0001.1 104.86 5.58 0.85 0.34
dblp.xml.0001.2 104.86 5.65 1.04 0.34
dna.001.1 104.86 6.31 1.75 0.37
einstein.de.txt 92.76 5.57 0.45 0.29
einstein.en.txt 467.63 29.40 2.70 1.43
english.001.2 104.86 7.48 3.76 0.37
escherichiacoli 112.69 7.49 3.36 0.87
fib41 267.91 11.55 0.53 1.09
influenza 154.81 9.16 1.09 0.67
kernel 257.96 16.50 5.96 0.94
para 429.27 19.18 12.88 2.16
proteins.001.1 104.86 7.69 2.45 0.38
rs.13 216.75 9.19 0.43 0.71
sources.001.2 104.86 6.93 3.21 0.36
tm29 268.44 10.26 0.53 1.16
world leaders 46.97 1.66 0.45 0.20

References

[1] U. Manber and E. W. Myers, “Suffix arrays: A new method for on-line string searches,”
SIAM J. Comput., vol. 22, no. 5, pp. 935–948, 1993.

[2] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider, “New indices for text: Pat trees and
pat arrays,” in Information Retrieval. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1992, pp. 66–82.

[3] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,”
Digital SRC Research Report, Tech. Rep., 1994.

[4] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[5] E. Ohlebusch and S. Gog, “Lempel-ziv factorization revisited,” in Proc. CPM, 2011,
pp. 15–26.

[6] J. Kärkkäinen, D. Kempa, and S. J. Puglisi, “Linear time lempel-ziv factorization:
Simple, fast, small,” in Proc. CPM, 2013, pp. 189–200.

[7] K. Goto and H. Bannai, “Space efficient linear time Lempel-Ziv factorization for small
alphabets,” in Proc. DCC, 2014, pp. 163–172.

[8] G. Navarro, Compact Data Structures – A practical approach. Cambridge University
Press, 2016.

[9] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array construction by almost pure
induced-sorting,” in Proc. DCC, 2009, pp. 193–202.

(a) Memory Peak during compression. (b) Memory Peak during decompression.

Figure 1: Peak memory (in MB) of GCIS and Re-Pair.

[10] D. Okanohara and K. Sadakane, “A linear-time Burrows-Wheeler transform using in-
duced sorting,” in Proc. SPIRE, 2009, pp. 90–101.

[11] J. Kärkkäinen, G. Manzini, and S. J. Puglisi, “Permuted longest-common-prefix array,”
in Proc. CPM, 2009, pp. 181–192.

[12] J. Fischer, “Inducing the LCP-Array,” in Proc. WADS, 2011, pp. 374–385.
[13] F. A. Louza, S. Gog, and G. P. Telles, “Inducing enhanced suffix arrays for string

collections,” Theor. Comput. Sci., vol. 678, pp. 22–39, 2017.
[14] N. J. Larsson and A. Moffat, “Offline dictionary-based compression,” in Proc. DCC,

1999, pp. 296–305.
[15] I. Pavlov, “The 7zip home page,” http://www.7-zip.org/, accessed: 10/2017.
[16] H. Itoh and H. Tanaka, “An efficient method for in memory construction of suffix

arrays,” in Proc. SPIRE, 1999, pp. 81–88.
[17] P. Ko and S. Aluru, “Space efficient linear time construction of suffix arrays,” in Proc.

CPM, 2003, pp. 200–210.
[18] G. Nong, S. Zhang, and W. H. Chan, “Two efficient algorithms for linear time suffix

array construction,” IEEE Trans. Comput., vol. 60, no. 10, pp. 1471–1484, 2011.
[19] J. Arpe and R. Reischuk, “On the complexity of optimal grammar-based compression,”

in Proc. DCC, 2006, pp. 173–182.
[20] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and Index-

ing Documents and Images, Second Edition. Morgan Kaufmann, 1999.
[21] V. N. Anh and A. Moffat, “Index compression using 64-bit words,” Softw., Pract.

Exper., vol. 40, no. 2, pp. 131–147, 2010.
[22] R. Wan, “Browsing and searching compressed documents,” Ph.D. dissertation, Uni-

versity of Melbourne, Australia, Dec. 2003.
[23] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug and play

with succinct data structures,” in Proc. SEA, 2014, pp. 326–337.
[24] F. Claude and G. Navarro, “Improved grammar-based compressed indexes,” in Proc.

SPIRE, 2012, pp. 180–192.
[25] S. Kreft and G. Navarro, “LZ77-like compression with fast random access,” in Proc.

DCC, 2010, pp. 239–248.

