
Compressed Dynamic Range Majority Data Structures

Travis Gagie1,2, Meng He3, and Gonzalo Navarro2,4

1 Diego Portales University 2 CeBiB 3 Dalhousie University 4 DCC, University of Chile
travis.gagie@mail.udp.cl mhe@cs.dal.ca gnavarro@dcc.uchile.cl

Abstract

In the range α-majority query problem, we preprocess a given sequence S[1..n] for a fixed
threshold α ∈ (0, 1], such that given a query range [i..j], the symbols that occur more than
α(j−i+1) times in S[i..j] can be reported efficiently. We design the first compressed solution
to this problem in dynamic settings. Our data structure represents S using nHk + o(n lg σ)
bits for any k = o(logσ n), where σ is the alphabet size and Hk is the k-th order empirical

entropy of S. It answers range α-majority queries in O(lgn
α lg lgn) time, and supports insertions

and deletions in O(lgnα) amortized time. The best previous solution [1] has the same query
and update times, but uses O(n) words.

1 Introduction

Given a threshold α ∈ (0, 1], a symbol c is an α-majority in a sequence S[1..n] if
c occurs more than αn times in S. Thus α-majorities are often used to represent
frequent symbols and, naturally, the problem of finding α-majorities is important in
data mining [2, 3]. Misra and Gries [4] proposed an optimal solution that computes all
α-majorities using O(n lg(1/α)) comparisons, and when implemented in word RAM
for a sequence over an alphabet of size σ, the running time becomes O(n) [3].

In the range α-majority query problem, we further preprocess S such that given a
query range [i..j], the α-majorities of S[i..j], i.e., the symbols that occur more than
α(j− i+1) times in S[i..j], can be reported efficiently. Karpinski and Nekrich [5] first
considered this problem and proposed a solution that uses O(n/α) words to support
queries in O((lg lg n)2/α) time. Durocher et al. [6] presented the first solution that
achieves O(1/α) optimal query time, and their structure occupies O(n/α) words.
Subsequently, much work has been done to make the space cost independent of α [7,
8, 9], and even to achieve compression [7, 9] when S is drawn from a fixed alphabet.
For example, Gagie et al. [9] showed how to represent S using (1 + ε)nH0 + o(n) bits
for any constant σ ∈ (0, 1) to answer range α-majority queries in O(1/α) time, where
H0 is the 0-th order empirical entropy of S. We refer to [9] for a thorough survey.

In dynamic settings, we wish to maintain S to support range α-majority queries
under the following update operations: i) insert(c, i), which inserts symbol c between
A[i− 1] and A[i], shifting the symbols in positions i to n to positions i+ 1 and n+ 1,
respectively; ii) delete(c, i), which deletes A[i], shifting the symbols in positions i to
n to positions i−1 and n−1, respectively. Elmasry et al. [1] considered this problem,

Funded with basal funds FB0001, Conicyt, Chile and by NSERC of Canada.

and they designed an O(n)-word structure that can answer range α-majority queries
in O(lgn

α lg lgn
) time, and supports insertions and deletions in O(lgn

α
) amortized time.1

Previously, no succinct data structures have been designed for dynamic range α-
majorities. We thus design the first compressed data structure for this problem. Our
data structure represents S using nHk + o(n lg σ) bits for any k = o(logσ n), where
σ is the alphabet size and Hk is the k-th order empirical entropy of S. It answers
range α-majority queries in O(lgn

α lg lgn
) time, and supports insertions and deletions in

O(lgn
α

) amortized time. Hence, its query and update times match the best previous
solution by Elmasry et al. [1], while using compressed space.

2 Preliminaries

We first summarize some existing data structures that will be used in our solution.
One such data structure is designed for the problem of maintaining a string S under
insert and delete operations to support the following operations: access(i), which
returns S[i]; rank(c, i), which returns the number of occurrences of character c in
S[1..i]; and select(c, i), which returns the position of the i-th occurrence of c in
S. The following lemma summarizes the currently best compressed solution to this
problem, which also supports the extraction of an arbitrary substring in optimal time:

Lemma 1 ([10]). A string of length n over an alphabet of size σ can be represented
using nHk + o(n lg σ) bits for any k = o(logσ n) to support access, rank, select,
insert and delete in O(lg n/ lg lg n) time. It also supports the extraction of a sub-
string of length l in O(lg n/ lg lg n+ l/ logσ n) time.

Raman et al. [11] considered the problem of representing a dynamic integer se-
quence Q to support the following operations: sum(Q, i), which computes

∑i
j=1Q[j];

search(Q, x), which returns the smallest i with sum(Q, i) ≥ x; and update(Q, i, δ),
which setsQ[i] toQ[i]+δ. One building component of their solution is a data structure
for small sequences, which will also be used in our data structures:

Lemma 2 ([11]). A sequence, Q, of O(lgε n) nonnegative integers of O(lg n) bits each,
where 0 ≤ ε < 1, can be represented using O(lg1+ε n) bits to support sum, search, and
update(Q, i, δ) where |δ| ≤ lg n, in O(1) time. This data structure can be constructed
in O(lgε n) time, and requires a precomputed universal table occupying O(nε

′
) bits for

any fixed ε′ > 0.

3 Compressed Dynamic Range Majority Data Structures

In this section we design compressed dynamic data structures for range α-majority
queries. We define three different types of queries as follows. Given an α-majority

1Karpinski and Nekrich [5] also considered the dynamic case, though they defined the data set
as a set of colored points in 1D. With a reduction developed in [1], the solutions by Karpinski and
Nekrich can also be used to encode dynamic sequences, though the results are inferior to those of
Elmasry et al. [1].

query with range [i..j], we compute the size, r, of the query range as j − i + 1. If
r ≥ L, where L = d 1

α
(d lgn

lg lgn
e)2e, then we say that this query is a large-sized query.

The query is called a medium-sized query if L′ < r < L, where L′ = d 1
α
d lgn
lg lgn
ee. If

r ≤ L′, then it is a small-sized query.
We represent the input sequence S using Lemma 1. This supports small-sized

queries immediately: By Lemma 1, we can compute the content of the subsequence
S[i..j], where [i..j] is the query range, in O(lgn

lg lgn
+ j−i+1

logσ n
) = O(lgn

α lg lgn
) time. We

can then compute the α-majorities in S[i..j] in O(j − i + 1) = O(lgn
α lg lgn

) time using

the algorithm of Misra and Gries [4]. Thus it suffices to construct additional data
structures for large-sized and medium-sized queries.

3.1 Supporting Large-Sized Range α-Majority Queries

To support large-sized queries, we construct a weight-balanced B-tree [12] T with
branching parameter 8 and leaf parameter L. We augment T by adding, for each
node, a pointer to the node immediately to its left at the same level, and another
pointer to the node immediately to its right. These pointers can be maintained easily
under updates, and will not affect the space cost of T asymptotically. Each leaf of T
represents a contiguous subsequence, or block, of S, and the entire sequence S can be
obtained by concatenating all the blocks represented by the leaves of T from left to
right. Each internal node of T then represents a block that is the concatenation of all
the blocks represented by its leaf descendants. We number the levels of T by 0, 1, 2, . . .
from the leaf level to the root level. Thus level a is higher than level b if a > b. Let
v be a node at the l-th level of T , and let B(v) denote the block it represents. Then,
by the properties of weight-balanced B-trees, if v is a leaf, the length of its block,
denoted by |B(v)|, is at least L and at most 2L − 1. If v is an internal node, then
1
2
· 8l ·L < |B(v)| < 2 · 8l ·L. We also have that each internal node has at least 2 and

at most 32 children.
We do not store the actual content of a block in the corresponding node of T .

Instead, for each v, we store the size of the block that it represents, and in addition,
compute and store information in a structure C(v) called candidate list about symbols
that can possibly be the α-majorities of subsequences that meet certain conditions.
More precisely, let l be the level of v, u be the parent of v, and SB(v) be the
concatenation of the blocks represented by the node immediately to the left of u at
level l + 1, the node u, and the node immediately to the right of u at level l + 1.
Then C(v) contains each symbol that appears more than αbl times in SB(v), where
bl = 1

2
·8l·L is the minimum size of a block at level l. Since the maximum length of each

block at level l+1 is 4bl+1 = 32bl, we have |SB(v)| ≤ 96bl, and thus |C(v)| = O(1/α).
To show the idea behind the candidate lists, we say that two subsequences touch each
other if their corresponding sets of indices in S are not disjoint. We then observe
that, since the size of any block at level l + 1 is greater than 8bl, any subsequence
S[i..j] touching B(v) is completely contained in SB(v) if r = j − i + 1 is within
(bl, 8bl). Since each α-majority in S[i..j] appears at least αr > αbl times, it is also
contained in C(v). Therefore, to find the α-majority in S[i..j], it suffices to verify

whether each element in C(v) is indeed an answer; more details are to be given in
our query algorithm later.

Even though it only requires O(|SB(v)|) time to construct C(v) [4], it would be
costly to reconstruct it every time an update operation is performed on SB(v). To
make the cost of maintaining C(v) acceptable, we only rebuild it periodically by
adopting a strategy by Karpinski and Nekrich [5]. More precisely, when we construct
C(v), we store symbols that occur more than αbl/2 times in SB(v). We also keep a
counter U(v) that we increment whenever we perform insert or delete in SB(v).
Only when U(v) reaches αbl/2 do we reconstruct CB, and then we reset U(v) to 0.
Since at most αbl/2 updates can be performed to |SB(v)| between two consecutive
reconstructions, any symbol that becomes an α-majority in |SB(v)| any time during
these updates must have at least αbl/2 occurrences in SB(v) before these updates
are performed. Thus we can guarantee that any symbol that appears more than αbl
times in SB(v) is always contained in C(v) during updates. The size of C(v) is still
O(bl/α), and, as to be shown later, it only requires O((lg n)/α) amortized time per
update to S to maintain all the candidate lists.

We also construct data structures to speed up a top-down traversal in T . These
data structures are defined for the marked levels of T , where the k-th marked level is
level kd(1/6) lg lg ne of T for k = 0, 1, Given a node v at the k-th marked level, the
number of its descendants at the (k − 1)-st marked level is at most 32d(1/6) lg lgne−1 ≤
32(1/6) lg lgn = lg5/6 n. Thus, the sizes of the blocks represented by these descendants,
when listed from left to right, form an integer sequence, Q(v), of at most lg5/6 n
entries. We represent Q(v) using Lemma 2, and store a sequence of pointers P (v), in
which P (v)[i] points to the i-th leftmost descendant at the (k − 1)-st marked level.

We next prove the following key lemma regarding an arbitrary subsequence S[i..j]
of length greater than L, which will be used in our query algorithm:

Lemma 3. If r = j− i+ 1 > L, then each α-majority element in S[i..j] is contained
in C(v) for any node v at level l = d1

3
lg 2r

L
− 1e whose block touches S[i..j].

Proof. Let u be v’s parent. Then S[i..j] also touches u, and u is at level l+ 1. Let u1
and u2 be the nodes immediately to the left and right of u at level l+ 1, respectively.

Let bl and bl+1 denote the minimum block size represented by nodes at level l and
l + 1 of T , respectively. Then, by the properties of weight-balanced B-trees, if l > 0,
bl = 1

2
·8l ·L = 1

2
·8d 13 lg 2r

L
−1e ·L < 1

2
·8 1

3
lg 2r

L ·L = r. When l = 0, bl = L < r. Thus, we
always have bl < r. Therefore, any α-majority of S[i..j] occurs more than αr > αbl
times in S[i..j].

On the other hand, bl+1 = 1
2
· 8d 13 lg 2r

L
e · L ≥ 1

2
· 8 1

3
lg 2r

L · L = r. Since S[i..j]
touches B(u), this inequality means that S[i..j] is entirely contained in either the
concatenation of B(u1) and B(u), or the concatenation of B(u) and B(u2). In either
case, S[i..j] is contained in SB(v). Since any α-majority of S[i..j] occurs more than
αbl times in S[i..j], it also occurs more than αbl times in SB(v). As C(v) includes
any symbol that appears more than αbl times in SB(v), any α-majority of S[i..j] is
contained in C(v).

We now describe our query and update algorithms, and analyze space cost.

Lemma 4. Large-sized range α-majority queries can be supported in O(lgn
α lg lgn

) time.

Proof. Let [i..j] be the query range, r = j − i + 1 and l = d1
3

lg 2r
L
− 1e. We first

look for a node v at level l whose block touches S[i..j]. The obvious approach is to
perform a top-down traversal of T to look for a node at level l whose block contains
position i. During the traversal, we make use of the information about the lengths of
the blocks represented by the nodes of T to decide which node at the next level to
descend to, and to keep track of the starting position in S of the block represented by
the node that is currently being visited. More precisely, suppose that we visit node
u at the current level as we have determined previously that B(u) contains S[i]. We
also know that the first element in B(u) is S[p]. Let u1, u2, . . . , ud denote the children
of u, where d ≤ 32. To decide which child of u represents a block that contains
S[i], we retrieve the lengths of all |B(uk)|’s, and look for the smallest q such that∑q

k=1 |B(uk)| ≥ i. Node uq is then the node at the level below whose block contains
S[i], and the starting position of its block in S is p +

∑q−1
k=1 |B(uk)|. As d ≤ 32 and

we store the length of the block that each node represents, these steps use O(1) time.
If we follow the approach described in the previous paragraph, we will use O(lg n)

time in total, as T has O(lg n) levels. Thus we make use of the additional data
structures stored at marked levels to speed up this process. If there is no marked
level between the root level and l, then the top down traversal only descends O(lg lg n)
levels, requiring O(lg lg n) time only. Otherwise, we perform the top-down traversal
until we reach the highest marked level. Let x be the node that we visit at the
highest marked level. As Q(x) stores the lengths of the blocks at the next marked
level, we can perform a search operation in Q(x) and then follow an appropriate
pointer in P (x) to look for the node y at the second highest level that contains S[i],
and perform a sum operation in Q(x) to determine the starting position of B(y) in S.
These operations require O(1) time. We repeat this process until we reach the lowest
marked level above level l, and then we descend level by level until we find node v. As
there are O(lg n/ lg lg n) marked levels, the whole process takes O(lg n/ lg lg n) time.

By Lemma 3, we know that the α-majorities of S[i..j] are contained in C(v).
We then verify, for each symbol, c, in C(v), whether it is indeed an α-majority by
computing its number, m, of occurrences in S[i..j] and comparing m to αr. As m =
rank(c, j)− rank(c, i− 1), m can be computed in O(lg n/ lg lg n) time by Lemma 1.
As |C(v)| = O(1/α), it requires O(lgn

α lg lgn
) time in total to find out which of these

symbols should be included in the answer to the query. Therefore, the total query
time is O(lgn

lg lgn
+ lgn

α lg lgn
) = O(lgn

α lg lgn
).

Lemma 5. The data structures described in Section 3.1 can be maintained in O(lgn
α

)
amortized time under update operations.

Proof. We only show how to support insert; the support for delete is similar.
To perform insert(c, i), we first perform a top down traversal to look for the

node v at level 0 whose block contains S[i]. During this traversal, we descend level
by level as in Lemma 4, but we do not use the marked levels to speed up the process.
For each node u that we visit, we increment the recorded length of B(u). In addition,
we update the counters U stored in the children of u and in the children of the two

nodes that surround u. There are a constant number of these nodes, and they can all
be located in O(1) time by following either the edges of T , or the pointers between
two nodes that are next to each other at the same level where we augment T .

When incrementing the counter U of each node, we find out whether the candidate
list of this node has to be rebuilt. To reconstruct the candidate list of a node x at
level l, we first compute the starting and ending positions of SB(x) in S. This can
be computed in O(1) time because, during the top down traversal, we have already
computed the starting and ending positions of B(v) in S, and the three nodes whose
blocks form SB(x), as well as the sizes of these three blocks, can be retrieved by
following a constant number of pointers starting from v. We then extract the content
of SB(x). As |SB(x)| ≤ 96bl (see discussions earlier in this section) and bl ≥ L, by
Lemma 1, SB(x) can be extracted from S in O(bl) time. We next compute all the
symbols that appear in SB(x) more than αbl/2 times in O(bl) time [4], and these are
the elements in the reconstructed C(x). Since the counter U(x) has to reach αbl/2
before C(x) has to be rebuilt, the amortized cost per update is O(1/α).

If u is at a marked level, we perform a search operation in O(1) time to locate
the entry of Q(u) that corresponds to the node at the next lower marked level whose
block contains i, and perform an update, again in O(1) time, to increment the value
stored in this entry. So far we have used O(1/α) amortized time for each node we
visit during the top-down traversal. Since T has O(lg n) levels, the overall cost we
have calculated up to this point is O((lg n)/α) amortized time.

When a node, z, at level l of T splits, we reconstruct C(z) in O(bl) time. If l is a
marked level, but it is not the lowest marked level, we also rebuild Q(z) and P (z) in
O(lg1/6 n) = o(bl) time. By the properties of a weight-balanced B-tree, after a node at
level l has been split, it requires at least 1

2
· 8l ·L = bl insertions before it can be split

again. Therefore, we can amortize the cost of reconstructing these data structures
over the insertions between reconstructions, and each insert is thus charged with
O(1) amortized cost. As each insert may cause one node at each level of T to split,
the overall cost charged to an insert operation is thus O(lg n).

Finally, update operations may cause the value of L to change, but then the value
of d lgn

lg lgn
e must change, after Ω(n) updates. It is clear that our data structures can

be constructed in O(n lg n) time, incurring O(lg n) amortized time for each update.
To summarize, insert can be supported in O((lg n)/α) amortized time.

Lemma 6. The data structures described in Section 3.1 occupy o(n lg σ) bits.

Proof. As T has O(n/L) nodes, the structure of T , pointers between nodes at the
same level, as well as counters and block lengths stored with the nodes, occupy

O(n/L × lg n) = O(αn(lg lgn)
2

lgn
) bits in total. Each candidate list can be stored in

O((lg σ)/α) bits, so the candidate lists stored in all the nodes use O(n/L×(lg σ)/α) =

O(n lg σ(lg lgn)2

lg2 n
) bits in total. The size of the structures Q(v) and P (v) can be charged

to the pointed nodes, so there are O(n/L) entries to store. As each entry of Q(v)

uses O(lg n) bits, all the Q(v)’s occupy O(n/L× lg n) = O(αn(lg lgn)
2

lgn
) bits. The same

analysis applies to P (v). Therefore, the data structures described in this section use

O(αn(lg lgn)
2

lgn
+ n lg σ(lg lgn)2

lg2 n
) = o(n lg σ) bits.

3.2 Supporting Medium-Sized Range α-Majority Queries

We could use the same structures designed in Section 3.1 to support medium-sized
queries if we simply set the leaf parameter of T to be L′ instead of L, but then
the resulting data structures would not be succinct. To save space, we build a data
structure D(v) for each leaf node v of T . Our idea for supporting medium-sized
queries is similar to that for large-sized queries, but since the block represented by
a leaf node of T is small, we are able to simplify the idea and the data structures.
Such simplifications allow us to maintain a multi-level decomposition of B(v) in a
hierarchy of lists instead of in a tree, which are further laid out in one contiguous
chunk of memory for each leaf node of T , to avoid using too much space for pointers.

We now describe this multi-level decomposition of B(v), which will be used to
define the data structure components of D(v). As we define one set of data structure
components in D(v) for each level of this decomposition, we use D(v) to refer to
both the data structure that we build for B(v) and the decomposition of B(v). To
distinguish a level of D(v) from a level of T , we number each level of D(v) using a non-
positive integer. At level −l, for l = 0, 1, 2, . . . , dlg(L/L′)−1e, B(v) is partitioned into
mini-blocks of length between L/2l and L/2l−1. Note that the level 0 decomposition
contains simply one mini-block, which is B(v) itself, as the length of any leaf block in
T is between L and 2L already. We define ml = L/2l, which is the minimum length
of a mini-block at level −l. As L′ < mdlg(L/L′)−1e ≤ 2L′, the minimum length of a
mini-block at the lowest level, i.e., level −dlg(L/L′)− 1e, is between L′ and 2L′.

For each mini-block M at level −l of D(v), we define its predecessor, pred(M), as
follows: If M is not the leftmost mini-block at level −l of D(v), then pred(M) is the
mini-block immediately to its left at the same level. Otherwise, if v is not the leftmost
leaf (pred(M) is null otherwise), let v1 be the leaf immediately to the left of v in T ,
and pred(M) is defined to be the rightmost mini-block at level −l of D(v1). Similarly,
we define the successor, succ(M), of M as the mini-block immediately to the right of
M at level −l of D(v) if such a mini-block exists. Otherwise, succ(M) is the leftmost
mini-block at level −l of D(v2) where v2 is the leaf immediately to the right of v in
T if v2 exists, or null otherwise. Then, the candidate list, C(M), of M contains each
symbol that occurs more than αml/2 times in the concatenation of M , pred(M) and
succ(M). To maintain C(M) during updates, we use the same strategy in Section 3.1
that is used to maintain C(v). More specifically, we store a counter U(M) so that
we can rebuild C(M) after exactly αml/4 update operations have been performed to
M , pred(M) and succ(M). Whenever we perform the reconstruction, we include in
C(M) each symbol that occurs more than αml/4 times in the concatenation of M ,
pred(M) and succ(M). Since |pred(M)| + |M | + |succ(M)| ≤ 6ml, the number of
symbols included in C(M) is at most 24/α.

The precomputed information for each mini-block M includes |M |, C(M), and
U(M). These data for mini-blocks at the same level, −l, of D(v) are chained together
in a doubly linked list Ll(v). D(v) then contains these O(lg(L/L′)) = O(lg lg n) lists.
We however cannot afford storing each list in the standard way using pointers of
O(lg n) bits each, as this would use too much space. Instead, we lay them out in a
contiguous chunk of memory as follows. We first observe that the number of mini-

blocks at level −l of D(v) is less than 2L/(L/2l) = 2l+1. Thus, the total number
of mini-blocks across all levels is less than 2 · 2dlg(L/L′)−1e+1 − 1 < 4L/L′. We then
use an array A(v) of d4L/L′e fix-sized slots to store D(v), and each slot stores the
precomputed information of a mini-block.

To determine the size of a slot, we compute the maximum number of bits needed
to encode the precomputed information for each mini-block M . C(M) can be stored
in dlg σe · d24/αe bits. As M has less than 2L elements, its length can be encoded
in dlg(2L)e bits. The counter U(M) can be encoded in dlg(αml/4)e < dlg(αL/2)e ≤
dlg(L/2)e bits. The two pointers to the neighbours of M in the linked list can be
encoded as the indices of these mini-blocks in the memory chunk. Since there are
d4L/L′e slots, each pointer can be encoded in dlgd4L/L′ee bits. Therefore, we set the
size of each slot to be dlg σe · d24/αe+ 2dlgLe+ 2dlgd4L/L′ee bits.

We prepend this memory chunk with a header. This header encodes the indices
of the slots that store the head of each Ll(v). As there are dlg(L/L′)e levels and each
index can be encoded in dlgd4L/L′ee bits, the header uses dlg(L/L′)e · dlgd4L/L′ee
bits. Clearly our memory management scheme allows us to traverse each doubly
linked list Ll(v) easily. When mini-blocks merge or split during updates, we need
to perform insertions and deletions in the doubly linked lists. To facilitate these
updates, we always store the precomputed information for all mini-blocks in D(v)
in a prefix of A(v), and keep track of the number of used slots of A(v). When we
perform an insertion into a list Ll(v), we use the first unused slot of A to store the new
information, and update the header if the newly inserted list element becomes the
head. When we perform a deletion, we copy the content of the last used slot (let M ′

be the mini-block that corresponds to it) into the slot corresponding to the deleted
element of Ll(v). We also follow the pointers encoded in the slot for M ′ to locate the
neighbours of M ′ in its doubly linked list, and update pointers in these neighbours
that point to M ′. If M ′ is the head of a doubly linked list (we can determine which
list it is using |M ′|), we update the header as well. The following lemma shows that
our memory management strategy indeed saves space:

Lemma 7. The data structures described in Section 3.2 occupy o(n lg σ) bits.

Proof. We first analyze the size of the memory chunk storing D(v) for each leaf v of
T . By our analysis in previous paragraphs, we observe that the header of this chunk
uses O((lg lg n)2) bits. Each slot of A(v) uses O(lg σ/α + lg lg n) bits, and A(v) has
O(lg n/ lg lg n) entries. Therefore, A(v) occupies O(lg σ lgn

α lg lgn
+ lg n) bits. Hence the

total size of the memory chunk of each leaf of T is O(lg σ lgn
α lg lgn

+ lg n) bits. As there are

O(n/L) leaves in T , the data structures described in this section uses O(n lg σ lg lgn
lgn

+
αn(lg lgn)2

lgn
) = o(n lg σ) bits.

We now show how to support query and update operations.

Lemma 8. Medium-sized range α-majority queries can be supported in O(lgn
α lg lgn

)
time.

Proof. Let [i..j] be the query range and let r = j− i+1. We first perform a top down
traversal in T to locate the leaf, v, that represents a block containing S[i] in O(lgn

lg lgn
)

time using the approach described in the proof of Lemma 4. In this process, we can
also find the starting position of B(v) in S.

We next make use of D(v) to answer the query as follows. Let l = dlg(L/r)− 1e.
As ml = L/2dlg(L/r)−1e, we have ml/2 ≤ r < ml. We then scan the list Ll(v) to look
for a mini-block, M , that contains S[i] at level −l. This can be done by first locating
the head of Ll(v) from the header of the memory chunk that stores D(v), and then
perform a linear scan, computing the starting position of each mini-block in Ll(v)
along the way. As Ll(v) has at most O(L/L′) = O(lgn

lg lgn
) entries, we can locate M in

O(lgn
lg lgn

) time. Since ml > r, S[i..j] is either entirely contained in the concatenation

of pred(M) and M , or the concatenation of M and succ(M). Thus each α-majority
of S[i..j] must occur more than αr > αml/2 times in the concatenation of pred(M),
M and succ(M). Therefore, each α-majority of S[i..j] is contained in C(M). We
can then perform rank operations in S to verify whether each symbol in C(M) is
indeed an α-majority of S[i..j]. As C(M) has O(1/α) symbols, this process requires
O(lgn

α lg lgn
) time.

Lemma 9. The data structures described in Section 3.2 can be maintained in O(lgn
lg lgn

+
lg lgn
α

) amortized time under update operations.

Proof. We only show how to support insert; the support for delete is similar.
To perform insert(c, i), we first perform a top down traversal in T to locate the

leaf, v, that represents a block containing S[i] in O(lgn
lg lgn

) time. We then increment

the recorded lengths of all the mini-blocks that contain S[i]. We also increment the
counters U of these mini-blocks, as well as the counters of their predecessors and
successors. All the mini-blocks whose counters should be incremented are located in
D(v), D(v1) and D(v2), where v1 and v2 are the leaves immediately to the left and
right of v in T . We scan each doubly linked list Ll(v), Ll(v1) and Ll(v2) to locate
these mini-blocks. Since D(v), D(v1) and D(v2) have O(lgn

lg lgn
) mini-blocks in total

over all levels, it requires O(lgn
lg lgn

) to find these mini-blocks and update them.
The above process can find all these mini-blocks, as well as their starting and

ending positions in S. It may be necessary to reconstruct the candidate list of these
mini-blocks. Similarly to the analysis in the proof of Lemma 5, the candidate list of
each of these mini-blocks can be maintained in O(1/α) amortized time. Since there
are O(lg lg n) levels in D(v), D(v1) and D(v2) and only a constant number of mini-
blocks at each level may need to be rebuilt, it requires O((lg lg n)/α) amortized time
to reconstruct all of them.

An insertion may also cause a mini-block to split. As in the proof of Lemma 5, we
compute the candidate list and other required information for the mini-block created
as a result of the merge, and amortize the cost to the insertions that lead to the
merge. The amortized cost is again O(1). As there can possibly be a merge at each
level of D(v), it requires O(lg lg n) amortized time to handle them. Finally, when
the value of L′ changes, we rebuild all the data structures designed in this section,

incurring O(lg lg n) amortized time. Therefore, the total time required to support
insert is O(lgn

lg lgn
+ lg lgn

α
).

Combining Lemma 1 and Lemmas 4-9, we have our main result:

Theorem 10. A sequence of length n over an alphabet of size σ can be represented
using nHk + o(n lg σ) bits for any k = o(logσ n) to answer range alpha-majority
queries in O(lgn

α lg lgn
) time, and to support insert and delete in O(lgn

α
) amortized

time.

4 Concluding Remarks

We have described the first compressed data structure for dynamic range α-majority.
We perform a multi-level decomposition of the sequence S and, for each block of S,
precompute a candidate set which includes all the α-majorities of any query range of
the right size that touches that block. Thus, when answering a query, we need not
find a set of blocks whose union forms the query range, as Elmasry et al. [1] do. We
note we can generalize our solution to support β-majority queries for any β ∈ [α, 1] in
O(lgn

β lg lgn
) time with the same space and update time, where β is given as part of the

query and only α is fixed and given beforehand. This type of query is more general
than range α-majority queries and was only studied in the static case before [7, 9].
The details are deferred to the full version.

References

[1] A. Elmasry, M. He, J. I. Munro, and P. K. Nicholson, “Dynamic range majority data
structures,” Theoretical Comp. Sci., vol. 647, pp. 59–73, 2016.

[2] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman, “Com-
puting iceberg queries efficiently,” in Proc. VLDB, 1998, pp. 299–310.

[3] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency estimation of internet
packet streams with limited space,” in Proc. ESA, 2002, pp. 348–360.

[4] J. Misra and D. Gries, “Finding repeated elements,” Sci. Comp. Prog., vol. 2, pp.
143–152, 1982.

[5] M. Karpinski and Y. Nekrich, “Searching for frequent colors in rectangles,” in Proc.
CCCG, 2008, pp. 11–14.

[6] S. Durocher, M. He, J. I. Munro, P. K. Nicholson, and M. Skala, “Range majority in
constant time and linear space,” Inf. Comp., vol. 222, pp. 169–179, 2013.

[7] T. Gagie, M. He, J. I. Munro, and P. K. Nicholson, “Finding frequent elements in
compressed 2d arrays and strings,” in Proc. SPIRE, 2011, pp. 295–300.

[8] T. M. Chan, S. Durocher, M. Skala, and B. T. Wilkinson, “Linear-space data structures
for range minority query in arrays,” Algorithmica, vol. 72, pp. 901–913, 2015.

[9] D. Belazzougui, T. Gagie, J. Ian Munro, G. Navarro, and Y. Nekrich, “Range majorities
and minorities in arrays,” CoRR, vol. abs/1606.04495, 2016.

[10] J. I. Munro and Y. Nekrich, “Compressed data structures for dynamic sequences,” in
Proc. ESA, 2015, pp. 891–902.

[11] R. Raman, V. Raman, and S. S. Rao, “Succinct dynamic data structures,” in Proc.
WADS, 2001, pp. 426–437.

[12] L. Arge and J. S. Vitter, “Optimal external memory interval management,” SIAM J.
Comp., vol. 32, pp. 1488–1508, 2003.

