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Abstract

A naive storage of a Huffman model on a text of length n over an alpha-
bet of size o requires O(clogn) bits. This can be reduced to ologo + O(0)
bits using canonical codes. This overhead over the entropy can be significant
when o is comparable to n, and it also dictates the amount of main memory
required to compress or decompress. We design an encoding scheme that re-
quires o loglogn+ O(o + log? n) bits in the worst case, and typically less, while
supporting encoding and decoding of symbols in O(loglogn) time. We show
that our technique reduces the storage size of the model of state-of-the-art tech-
niques to around 15% in various real-life sequences over large alphabets, while
still offering reasonable compression/decompression times.

1 Introduction

Huffman coding [11] is a landmark in data compression, and used as a backend in a
huge number of compression algorithms and formats, including the popular PKZIP,
JPEG and MP3. Its speed and simplicity, as well as its ability to provide random
access, makes it attractive in many scenarios, including compressed text databases
and compressed data structures, which must operate without decompressing the data.

A Huffman encoder must maintain a data structure that, given a source symbol,
returns its code. The decoder must, inversely, return the source symbol corresponding
to a code. In both cases, the size of the data structure is proportional to that of the
source alphabet, o, and must be maintained in main memory while compressing or
decompressing. In semi-static compression this mapping, in addition, must be stored
with the compressed file, adding to the redundancy.

While in several cases o is negligible compared to n, the length of the sequence
to compress, there are various applications where storing the model is problematic.
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A paradigmatic example is the word-wise compression of natural language texts [13],
where Huffman codes not only perform very competitively but also benefit direct ac-
cess [22], text searching [14], and indexing [2]. Other scenarios where large alphabets
arise are the compression of Oriental languages and general numeric sequences. In
other cases one wishes to apply Huffman coding to short texts (and thus even a small
alphabet becomes relatively large), for example for compression boosting [8] or in
interactive communications or adaptive compression [3].

Note that, while the plain and the compressed sequences may be read/written
from/to disk, the model must be represented in memory for efficient compression
and decompression. Therefore a large model cannot be handled by resorting to disk.
This is also the case in mobile devices, where the amount of memory is limited and
representing a large model may be prohibitive.

A naive representation of the encoding or decoding model requires as much as
O(ologn) bits, since O(logn) is the maximum possible code length. A more careful
implementation, using canonical codes, requires ologo + O(c) bits (our logarithms
are in base 2), to store the Huffman tree shape and the permutation of the symbols
at its leaves. The permutation can be avoided, and the space of the model reduced to
O(o) bits, if we give up on the optimality and use optimal alphabetic codes (which
cannot reorder the leaves; they are also called Hu-Tucker codes [12]). These codes,
however, can increase the redundancy by up to n bits. Several other suboptimal codes
that allow one to reduce the model size have been studied, see Gagie et al. [9] for
recent results and references.

In this paper we show how the optimal model can be represented using o log log n+
O(c + log?n) bits in the worst case (and usually better in practice) while encoding
and decoding in time O(loglogn). The key idea is to alphabetically sort the source
symbols that share the same depth in the canonical Huffman tree, so that O(logn)
increasing runs are formed in the permutation, and then use a representation of
permutations that takes advantage of those runs [1]. We implement our representation
and experimentally show its impact on the model size in various real-life applications.
Concretely, we decrease the storage space of a state-of-the art representation to around
12% (for compression) and 17% (for decompression), while still offering reasonable
compression and decompression time. This opens the door to applying Huffman
compression and decompression over large-alphabet sequences on severely limited
memories.

2 Basic Concepts

2.1 Huffman Coding

Given a sequence M[1,n] with vocabulary ¥ = [1,0], the Huffman algorithm [11]
produces an optimal variable-length encoding so that (1) it is prefix-free, that is,
no code is prefix of another; (2) the size of the compressed sequence is minimized.
Huffman [11] showed how to build a so-called Huffman tree to obtain a minimum
redundancy encoding. The tree leaves will contain the symbols, whose codes are



obtained by following the tree path from the root to their leaves. The optimality of
such a set of codes depends only on the length of each code, not on its numerical
value. Based on this idea, Schwartz et al. [21] proposed a different way to assign
codes to symbols so that all the codes of the same length are consecutive numbers.
This yields several interesting benefits like faster decoding and others [21, 20).

2.2 Wavelet Trees

Huffman coding is also widely used in compact data structures, being wavelet trees
[10] a prominent example. A wavelet tree (WT) is a versatile data structure used
to represent a sequence M|[1,n] over an alphabet X[1,0]. It is a perfect balanced
binary tree with o leaves where each node handles a subset of symbols. At the root
node, the building algorithm divides the vocabulary ¥ into two halves (¥; and )
and stores a bitmap B[1,n| so that B[i] = 0 iff M[i] € ¥;, B[i] = 0 otherwise. The
process is repeated recursively so that the left sub-tree will handle ¥; (and represent
the subsequence of M formed by the symbols in ¥;) and the right sub-tree will handle
Y9. As tree has height [log o] and there are n bits per level, the total length of all the
bitmaps is n[log o] bits. Storing the tree pointers will require O(o logn) further bits,
so the total size of a perfect balanced WT is nlogo + O(n + ologn) bits. This can
be reduced to nlogo + O(n) if we use a levelwise representation where all bitmaps of
the same level are concatenated [6].

Building a balanced WT is equivalent to using a fixed-length encoding of [log o]
bits per symbol. Instead, by giving the WT the shape of the Huffman tree, the total
number of bits stored is exactly the output size of the Huffman compressor [10, 17].
In this Huffman-shaped WT (HWT), the path from the root to each leaf spells out
the code assigned to the corresponding source symbol. The total size of the HWT is
thus upper bounded by n(1+ Ho(M)) + O(o logn) bits, being Hyo(M) the zero-order
entropy of M. The term O(ologn) accounts for the pointers and for the permutation
of symbols induced by the code.

To access M[i] we examine the root bitmap at position i. If B[i] = 0 we descend
to the left sub-tree, output 0, and update i <— ranky(B,7). Here ranky(B,1) is the
number of occurrences of the bit b in B[1,]. Otherwise we descend to the right sub-
tree, output 1, and update i < rank;(B,i). When we reach a leaf we have output
the Huffman code of M[i]. From that code, using the Huffman decoder, we obtain
the source symbol contained in M[i].

The WT can also compute two powerful operations on sequences. The first is
ranks(M, i), the number of times symbol s appears in M|[1,i]. We start by obtaining
the Huffman code ¢[1, [] associated to symbol s and setting [ «— 1. At the root bitmap,
if c[l] = 0 we descend to the left sub-tree with ¢ <— rankq(B, ). Otherwise we descend
to the right sub-tree with ¢ <— rank;(B,i). In both cases we increment [. When we
reach a leaf the answer is the value of i.

The other operation is selects(M, j), the position of the j-th occurrence of symbol
sin M. This time we start at the leaf corresponding to s and at position j. If the leaf
is a left child of its parent, whose bitmap is B, we update j < selecty(B, j). Else we
update j < select;(B,j). When we arrive at the root, the value of j is the answer.



In order to solve those operations, we must be able to solve rank and select on
the bitmaps. Depending on the technique used we can obtain different space/time
trade-offs for wavelet trees. Munro [15] and Clark [5] proposed a technique to solve
rank and select in constant time by adding a sublinear-size overhead to the bitmap,
which has since then be reduced to O(n/log®n) and less [18]. Then the space of the
WT becomes at most n(1+Ho(M))(1+o0(1))+O(clogn) = nHy(M)+O(n+ologn).
By rebalancing deep leaves, the space figure is maintained and the worst-case time
of the operations is limited to O(logo), whereas their average time is reduced to
O(1 + Hy(M)) if positions in M are probed uniformly at random.

Another bitmap representation, by Raman, Raman, and Rao (RRR) [19], retains
constant time for both operations but reencodes the bitmap B[l,n] in total space
nHo(B) + o(n) [10]. Using this representation, even on balanced WTs the space
reaches zero-order entropy as well. In practice, combining HWTs and RRR achieves
the bests results [6].

2.3 Compressed Permutations

The wavelet tree can be used for a wealth of purposes [17]. A recent application [1] is
to compress and efficiently access a permutation 7[1..p]. Two interesting operations
defined over 7 are accessing any 7 (i) and accessing its inverse 7~ 1(7). While general
permutations require logp! = plogp — O(p) to represent m, Barbay and Navarro
[1] show how to use less space on permutations that can be decomposed into a few
increasing runs. An increasing run is a maximal interval [i, j] where 7 is increasing.
So, being r1,...,7, = p the endpoints of the increasing runs, we define the vector
Runs = (r1,r9 —r1,...,7, — rp—1) of the run sizes. For example, the permutation
(7,2,6,8,4,1,5,3) has p = 5 increasing runs and Runs = {1,3,1,2,1}.

Let P[1,p] be the sequence on alphabet [1, p] obtained by replacing, in 7, every
number belonging to the k-th run in © by symbol k. Then a HWT on P requires
pH(Runs) + O(p + plogp) bits, where H(Runs) = Hyo(P) < logp is the entropy of
the distribution of run sizes. If accessing P[i] we arrive at position j inside the leaf
corresponding to run k, then we have that 7=(i) = r,_; + j. Instead, if position i
corresponds to offset j in run £, then we run the process of select on the WT, starting
at offset j of the leaf of run k, and arrive at position 7 (¢) in the root. Hence 7 (i) and
7 1(i) are computed in time O(log p).

3 A Compact Model Representation

In this section we describe how to represent the Huffman model in compact form.
Given a sequence M|[1..n] on alphabet [1,0], we first obtain a canonical Huffman
code for the symbols.

To obtain a compressible permutation from the canonical Huffman tree, we read
the Huffman tree leaves from left to right and store the corresponding symbols in a
vector 7[l,o]. 7 is a permutation since the encoded symbols are distinct numbers
in [1,0]. For instance, applying this process to the Huffman tree of Figure 1, we



Canonical Huffman Tree Canonical Huffman Tree representation
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Figure 1: On the left, a Canonical Huffman Tree. On the right, a classical represen-
tation using ologn + ologo + O(log®n) bits. Here fst[i] contains the first code of
length ¢ and sR[i] indicates where the codes of length ¢ start in the vector of symbols.

obtain the permutation 7 = (7,2,6,8,4, 1,5, 3), which has p = 5 increasing runs. We
wish to use the technique of Barbay and Navarro [1] to compress and access w. That
technique will work better when the number of increasing runs is smaller. To reduce
the number of runs, we reassign codes to symbols while keeping the encoding optimal
and prefix-free as follows: For each Huffman tree level (i.e., for each distinct Huffman
tree code length), we sort the tree leaves so that smaller codewords are assigned to
smaller symbols. In our example, we obtain 7 = (2,7,6,8,1,3,4,5), with p = 3
increasing runs (see Figure 2).

Since the maximum Huffman code length is O(logn), the Huffman tree has at
most O(logn) distinct levels, thus the number of increasing runs in 7 is O(logn) (one
run per level). Now the technique of Barbay and Navarro [1] compresses permutation
(1, o], with run sizes Runs, into o H(Runs)+O(o+plogn)+0O(log®n) < ologlogn+
O(o+log® n) bits. We also include in the O(log® n) term the space to store two vectors
fst and sR: fst[i] contains the first Huffman code of each length, while sR][i] contains
the position in 7 where each run begins, for i € [1,O(logn)]. Both vectors are also
used by other canonical Huffman tree representations.

To obtain a code from a symbol s, we first apply 771(s). This returns the position
pos in 7 that contains s, and binary search in sR obtains the length [ of the code.
Then we return the code ¢ = fst[l] + pos — sR[l]. That is, if we know the offset
(pos — sRJl]) inside a run and the first code of that run (fst[l]), we know the code
associated to s since all codes inside a run are consecutive. For instance, to obtain the
code associated with symbol sg from the Huffman tree of Figure 2, we apply 7 1(8)
and obtain pos = 4. Binary searching sR we find that the code has length | = 3.
Then the code of symbol sg is fst[l] + pos — sR[l]] = 100 +4 -3 =4+4—3 = 5.
The time for this encoding operation is O(loglogn), both for computing 7! (with a
downward traversal on the wavelet tree used to represent the inverse of 7 [1]) and for
binary searching sR.

To obtain the symbol corresponding to a code ¢ of length [ we do the inverse
process. We compute 7[pos], for pos = ¢ — fst[l] + sR[l]. For instance, to obtain the



Canonical Huffman Tree with symbols sorted at each level

.
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Figure 2: A canonical Huffman tree with the symbols at each level sorted in increasing
order. Our representation uses fst and sR, plus a compressible permutation for .

Collection | Length (n) Alph. (6) Entropy (Hy) Depth Runs (p) H(Runs)

EsWiki 200,000,000 1,634,145 11.12 28 25 2.53
EsInv 200,000,000 1,590,398 12.47 28 28 3.12
Indo 120,000,000 3,715,187 16.29 27 19 2.51

Table 1: Main statistics of the collections used.

symbol associated to code ¢ = 1015 of length [ = 3, we compute pos = 1015 — fst[3] +
sR[3] = 1015 — 1005 + 3 = 4, and then return 7w[4] = sg. The time complexity is also
O(loglogn), dominated by the time to compute 7[pos] (recall that this is done via
an upward traversal on the wavelet tree used to represent the inverse of 7 [1]).

4 Experimental results

We used an isolated Intel®Xeon®-E552002.26GHz with 72 GB DDR3@800 MHz
RAM. It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1 with -09
optimization. Time results refer to CPU user time.

We use three datasets in our experiments. ESWiki is a sequence of word iden-
tifiers obtained by stemming the Spanish Wikipedia with the Snowball algorithm.
Compressing natural language using word-based models is a strong trend in text
databases [13, 22, 14, 2]. EsInv is the concatenation of the (differentially encoded)
inverted lists of a random sample of the Spanish Wikipedia. These differences are
usually encoded using suboptimal codes due to the large alphabet sizes [22]. Fi-
nally, Indo is the concatenation of the adjacency lists of Web graph Indochina-2004
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Collection | Naive (cw) Engineered (¢d) Canonical (clogo) Ours (0 H(Runs))

EsWiki 6.23 MB 5.45 MB 4.09 MB 0.49 MB
EsInv 6.07 MB 5.30 MB 3.90 MB 0.59 MB
Indo 14.17 MB 11.95 MB 9.74 MB 1.11 MB

Table 2: Estimated size of various model representations.

available at http://law.di.unimi.it/datasets.php. Compressing adjacency lists
to zero-order entropy is a simple and useful tool for graphs with power-law degree
distributions, although it must be combined with stronger techniques [7]. For the
three sequences, we use a prefix to speed up experiments.

Table 1 gives various statistics on the collections. Apart from n and o, we give
the zero-order entropy of the sequence (in bits per symbol), the depth of the Huffman
tree, the number of runs after we reorder the symbols of each level of the canonical
Huffman tree (i.e., the number of different levels in the wavelet tree), and the entropy
of the sequence of run sizes, which is significantly lower than log p.

Table 2 shows how the sizes of different representations of the model can be
estimated using these numbers. The first column gives ow, the size of a naive model
representation using computer words of w = 32 bits. The second gives od, where d is
the Huffman tree depth, and corresponds to a more engineered representation where
we use only the (maximum) number of bits required. In these two, more structures
are needed for decoding but we ignore them. The third column gives o log o, which
is the main space cost for a canonical Huffman tree representation: basically the
permutation of symbols (different ones for encoding and decoding). Finally, the
fourth column gives o H(Runs), which is a good predictor of the size of our model
representation. From the estimations, it is clear that our technique is much more
effective than known representations to reduce the space, and that we can expect
space reductions of around one order of magnitude.

Next we evaluate the performance of our technique to compress and decompress
the whole sequences. We measure the space required by the model and the compres-
sion/decompression time. We compare our technique (PERM) with a careful imple-
mentation (TABLE) using the “engineered” table for compression (od bits) and the
“canonical” table for decompression (o logo bits). The input and output sequences
reside on disk. For decompression, we use in both cases canonical Huffman codes with
tables fst and sR: we iteratively probe the next [ bits from the compressed sequence,
where [ is the next available tree depth. If the relative numeric code resulting from
reading [ bits exceeds the number of nodes at this level, we probe the next level, and
so on until finding the right length [21, 20].

For our permutation we implement the technique of Barbay and Navarro almost
verbatim [1], using a Hu-Tucker tree with pointers to the children plus pointers to
the leaves (note that this tree has just O(p) = O(logn) nodes). For the bitmaps we
use a fast version posing 37.5% space overhead on top of the bitmaps [16].

We can see in Figure 3 that our compressed representations take just around 12%
of the space of the table implementation for compression, and 17% for decompres-
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Figure 3: Model size versus compression/decompression time for the naive represen-
tation (TABLE) and ours (PERM).




sion. We can also see that our structures make the process slower, by 3-4 times in
compression and around 7-13 times in decompression. The gap could be narrowed by
improving the performance of the operations on the bitmaps (especially select). Yet,
we can still compress and decompress at the reasonable rates of around 2 MB/sec
and 0.5-1 MB/sec, respectively.

5 Conclusions

We have presented a technique to sharply reduce the size of the model representation
in Huffman coding, to about 12% (at compression) and 17% (at decompression) of
its original size, processing the data at 2 MB/sec (at compression) and 0.5-1 MB/sec
(at decompression). This result is relevant in various applications where large al-
phabets must be handled, such as when compressing natural language texts using
word-based models. The drastic reduction in the model space enables compression
and decompression within very limited main memory, for example on mobile devices.

An interesting challenge, precisely considering a computationally strong server
sending compressed data to a weaker client (e.g., a mobile device), is whether a
dynamic code can be maintained with the minimum possible burden for the client.
This asymmetry has been studied on the word-based model using suboptimal codes
[4], showing that the server can maintain the statistics, update the code, and inform
the receiver only of the code changes, trying to minimize them. Is it possible for
a server to maintain a dynamic canonical Huffman code and inform the receiver of
the changes, so that it can now handle a dynamic compressed representation of the
permutation?
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