
Faster Compact Top-k Document Retrieval∗

Roberto Konow1,2 and Gonzalo Navarro1

1Department of Computer Science, University of Chile
2Escuela de Informática y Telecomunicaciones, Univ. Diego Portales, Chile

{rkonow,gnavarro}@dcc.uchile.cl

Abstract: An optimal index solving top-k document retrieval [Navarro and
Nekrich, SODA’12] takes O(m + k) time for a pattern of length m, but its
space is at least 80n bytes for a collection of n symbols. We reduce it to 1.5n–
3n bytes, with O(m+(k+log log n) log log n) time, on typical texts. The index is
up to 25 times faster than the best previous compressed solutions, and requires
at most 5% more space in practice (and in some cases as little as one half).
Apart from replacing classical by compressed data structures, our main idea is
to replace suffix tree sampling by frequency thresholding to achieve compression.

1 Introduction

Finding the k documents most relevant to a query is at the heart of search engines
and information retrieval [23]. A simple relevance measure is the number of occur-
rences of the query in the documents (term frequency). Typically the data structure
employed to solve those “top-k” queries is the inverted index. Inverted indexes work
well, but they are limited to scenarios where the queryable terms are predefined and
not too many (typically “words” in Western languages), while they cannot search for
arbitrary patterns (i.e., substrings in the sequences of symbols). This complicates the
use of inverted indexes for Oriental languages such as Chinese, Japanese and Korean,
for agglutinating languages such as Finnish and German, and in other types of collec-
tions containing DNA and protein sequences, source code, MIDI streams, and other
symbolic sequences. Top-k document retrieval is of interest on those more general
sequence collections [17, 11, 19, 21], yet the problem of finding top-k documents con-
taining the pattern as a substring, even with a simple measure like term frequency,
is much more challenging.

The general problem can be defined as follows: Preprocess a collection of d docu-
ments containing sequences of total length n over an alphabet of size σ, so that later,
given a query string P of length m, one retrieves k documents with highest relevance
to P , for some definition of relevance. Hon et al. [12, 9] presented the first efficient
solution for this problem, achieving O(m + log n log log n + k) time, yet with super-
linear space usage, O(n log2 n) bits. Then Hon et al. [11] improved the solution to
O(m+ k log k) time and linear space, O(n log n) bits. Recently, Navarro and Nekrich
[19] achieved optimal O(m+k) time, using O(n(log σ+log d)) bits. Although the lat-
ter solution essentially closes the problem in theoretical terms, the constants involved

∗Funded by Fondecyt grant 1-110066 and by the Conicyt PhD Scholarship Program, Chile. We
thank Francisco Claude for his help during the implementation.

1

are not small, especially in space: Their index can use up to 80n bytes, making it
unfeasible for real scenarios.

There has been some work aiming to reduce the space of top-k indexes [24, 3, 21],
yet they come at the cost of search times of at least O(m + k log k log1+ε n) for any
constant ε > 0, while reaching as low as n log σ + O(n log log log d) bits of space (all
our logarithms are in base 2). In practice, the best ones [21] require 2n to 4n bytes and
answer top-10 queries in about a millisecond. Their main idea is suffix tree sampling,
that is, store the top-k answers for large enough suffix tree nodes.

Hon et al. [10] have proposed an intermediate alternative, which is basically an
engineered implementation of their classical scheme [11]. They use (log σ+2 log d)(n+
o(n)) bits and O(m+ k log log n+ (log log n)4) time, or (log σ + log d)(n+ o(n)) bits
and O(m+ k(log σ log log n)1+ε + (log log n)6) time.

In this work we design and implement a fast and compact solution for top-k
document retrieval, building on the ideas of Navarro and Nekrich [19]. Apart from
replacing classical by compact data structures, we use a novel idea of frequency thresh-
olding instead of sampling suffix tree nodes: We store all the solutions for all the suffix
tree nodes, but discard those with frequency 1.

We obtain timeO(m+(k+log log n) log log n) and space (log σ+log d+4 log log n)(n+
o(n)) bits for typical texts. By “typical” we mean that our results hold almost surely
(a.s.1, a very strong kind of convergence) for texts sampled from a stationary mixing
ergodic source (more precisely, type A2 in Szpankowski’s sense [26]). This is also a
quite general assumption including Bernoulli and Markovian models.

In addition, we have implemented our index, showing its practicality. It turns
out to require about 1.5n–3n bytes, that is, 25–50 times less than a naive implemen-
tation of the basic idea [19] and at most 5% more space than the most compressed
practical solutions [21] (while in some cases our index uses half the space). Its time
per query is k–4k microseconds, outperforming the more compressed solutions by up
to 25 times. This is the first top-k index for general texts that achieves little space
and microseconds-time. Moreover, it shows that our idea of thresholding frequencies
generally gives better results than the previous trend of sampling suffix tree nodes.

2 Basic Concepts

Consider a collection of string documents Di as the concatenation T [1, n] = D1, D2 . . .
Dd, T = t1t2 . . . tn, where at the end of each Di a special symbol $ is used to mark
the end of that document. A suffix array [14] SA[1, n] contains pointers to every
suffix of T , lexicographically sorted. For a position i ∈ [1, n], SA[i] points to the
suffix T [SA[i], n] = tSA[i]tSA[i]+1 . . . tn, where it holds T [SA[i], n] < T [SA[i + 1], n].
The occ = ep− sp+ 1 occurrences of a pattern P [1,m] in T are pointed from a range
SA[sp, ep], that can be found and listed in time O(m log n+ occ).

The suffix tree [27] of T is a path-compressed trie (i.e., unary paths are collapsed)
in which all the suffixes of T are inserted. Internal nodes correspond to repeated

1A sequence Xn tends to a value β almost surely if, for every ε > 0, the probability that |XN/β−
1| > ε for some N > n tends to zero as n tends to infinity, limn→∞ supN>n Pr(|XN/β− 1| > ε) = 0.

2

strings of T and the leaves correspond to suffixes. For internal nodes v, path(v) is
the concatenation of the edge labels from the root to v. The suffix tree finds the
occurrences of P in T in time O(m + occ), by traversing it from the root to the
locus of P , i.e., the highest node v such that P is a prefix of path(v). Then all the
occurrences of P correspond to the leaves of the subtree rooted at v. These leaves
correspond to the range SA[sp, ep], indeed, v is the lowest common ancestor of the
spth and the epth leaves. The suffix tree has O(n) nodes.

Compressed suffix arrays (CSAs) [18] can represent the text and its suffix array
within essentially nHk(T) ≤ n log σ bits. Here Hk(T) is the empirical kth order
entropy of T [15], a lower bound to the bits per symbol emitted by a statistical
compressor of order k. This representation allows us to count (determine the interval
[sp, ep] corresponding to a pattern P), access (compute SA[i] for any i), and extract
(rebuild any T [l, r]). We use one [2] that can count in time O(m), access in time O(s)
and extract in time O(s+ r− l) while using nHk(T)+o(nHk(T))+O(n+(n/s) log n)
bits for any k ≤ α logσ n, any constant 0 < α < 1 and any sampling step s. The
O((n/s) log n) bits correspond to storing one SA[i] value every s text positions.

General trees of n nodes can be represented using 2n+ o(n) bits. In this paper we
use a representation [25] that supports in O(1) time a number of operations, including
preorder(v) (the preorder of node v), preorderselect(i) (the ith node in preorder),
depth(v) (depth of node v), subtreesize(v) (number of nodes in subtree rooted at v),
lca(u, v) (lowest common ancestor of nodes u and v), and many others. This structure
is practical and implemented [1], using 2.37n bits.

Bitmaps B[1, n] can be represented using n + o(n) bits, so that we can solve
in constant time operations rankb(B, i) (number of occurrences of bit b in B[1, i])
and selectb(B, j) (position in B of the jth occurrence of bit b) [16]. We use an
implementation [7] that requires 1.05n bits, yet for very sparse bitmaps (with m << n
bits set) we prefer a compressed one using m log(n/m) + 2m bits [22].

Range Maximum Queries (RMQs) ask for the position of the maximum element
in a range of an array, rmqA(i, j) = argmaxi≤k≤jA[k]. They can be solved in constant
time after preprocessing A and storing a structure using 2n+ o(n) bits. No accesses
to A are needed at query time [6]. The solution requires lca queries on a tree called
a “2d-min-heap”, and we implement it over our compact trees [25].

Direct Access Codes [4] represent a sequence of variable-length numbers by packing
them into chunks of length b. Then the chunks are rearranged to allow one accessing
any `-bit number in the sequence in time O(`/b). The space overhead for a number of
` bits is `/b+ b. We use their implementation, which chooses optimally the b values.

Wavelet trees [8] can be used to represent an n × r grid that contains n points,
one per column [13]. The root represents the sequence of coordinates yi of the points
in x-coordinate order. It only stores a bitmap B[1, n] telling at B[i] whether yi < r/2
or not. Then the points with yi < r/2 are represented, recursively, on the left child of
the root, and the others on the right. Adding rank capabilities to the bitmaps, the
wavelet tree requires overall n log r(1 + o(1)) bits and can track any point towards its
leaf (where the yi value is revealed) in time O(log r). It can also count, in O(log r)
time, the number of points lying inside a rectangle [x1, x2]× [y1, y2]: Start at the root
with the interval [x1, x2] and project those values towards the left and right child (on

3

the left child the interval is [rank0(B, x1 − 1) + 1, rank0(B, x2)], and similarly with
rank1 on the right). This is continued until reaching the O(log r) wavelet tree nodes
that cover [y1, y2]. Then the answer is the sum of the lengths of the mapped intervals
[xi1, x

i
2]. One can also track those points toward the leaves and report them, each in

time O(log r). We use a simple balanced wavelet tree without pointers [5].
Muthukrishnan’s algorithm [17] for listing the distinct elements in a given interval

A[i, j] of an array A[1, n] uses another array C[1, n] where C[i] = max{j < i, A[j] =
A[i]}∪{−1}, which is preprocessed for range minimum queries. Each value C[m] < i
for i ≤ m ≤ j is a distinct value A[m] in A[i, j]. A range minimum query in C[i, j]
gives one such value m, and then we continue recursively on A[i,m−1] and A[m+1, j]
until the minimum is ≥ i. One retrieves any k unique elements in time O(k).

3 The Optimal-Time Linear-Space Solution

Our implementation is based on the framework proposed by Hon, Shah and Vitter
[11] and then followed by Navarro and Nekrich [19]: Let T be the suffix tree for the
concatenation T of a collection of documents D1, . . . , Dd. This tree contains the nodes
corresponding to all the suffix trees Ti of the documents Di: For each node u ∈ Ti,
there is a node v ∈ T such that path(v) = path(u). We will say that v = map(u, i).
Also, let parent(u) be the parent of a node u and depth(u) be its depth.

They store T plus additional information on the trees Ti. If v = map(u, i), then
they store i in a list called F-list associated to v. Further, for each v = map(u, i) they
store a pointer ptr(v, i) = map(parent(u), i), noting where the parent of u maps in
T . We add a dummy root ρ to T so that ptr(v, i) = ρ if u is the root of Ti.

Together with the pointers ptr(v, i) they also store a weight w(v, i), which is the
relevance of path(u) in Di. This relevance can be any function that depends on the
set of starting positions of path(u) in Di. In this paper we focus on a simple one: the
number of leaves of u in Ti, that is, the term frequency.

Let v be the locus of P . Hon et al. [11] prove that, for each distinct document Di

where P appears, there is exactly one pointer ptr(v′′, i) = v′ going from a descendant
v′′ of v (v itself included) to a (strict) ancestor v′ of v, and w(v′′, i) is the relevance
of P in Di. Therefore, they find the k largest w values in this set.

Navarro and Nekrich [19] represent this structure as a grid of size O(n) × O(n)
with labeled weighted points, as follows. They traverse T in preorder. For each node
v ∈ T , and for each pointer ptr(v, i) = v′, they add a new rightmost x-coordinate with
only one point, with y-coordinate equal to depth(v′), weight equal to w(v, i), and label
equal to i. At query time, they find the locus v of P , determine the range [x1, x2] of
all the x-coordinates filled by v or its descendants, find the k highest-weighted points
in [x1, x2] × [0, depth(v) − 1], and report their labels. A linear-space representation
(yet with a large constant) allows them to carry out this task in time O(m+ k).

4 Our Compressed Representation

We describe our compressed data structures we use and how we carry out the search.

4

Suffix tree. We use a CSA [2] requiring nHk(T) + o(nHk(T)) + O(n) bits, which
computes [sp, ep] corresponding to P in time O(m). It also computes any SA[i] in
time O(log log n). For this sake we use a sampling every log log n positions. In the
samples we store not the exact position in T but just the document where it lies.
Hence we need O(n log d/ log log n) = o(n log d) bits for the sampling.

In practice, we use an off-the-shelf CSA (SSA from PizzaChili site, http://
pizzachili.dcc.uchile.cl), and add a sparse bitmap D[1, n] marking where
documents start in T : the document corresponding to SA[i] is rank1(D,SA[i]), com-
puted in time O(log log n). While this is worse than having the CSA directly return
documents, it retains our CSA other pattern matching functionalities.

We also add 2n+ o(n) bits to describe the topology of the suffix tree, using a tree
representation that carries out most of the operations in constant time [25]. Note this
is just the topology, not a full suffix tree, so we need to search using the CSA.

We also add 2n+o(n) bits for an RMQ structure on top of Muthukrishnan’s array
C [17], which can list k distinct documents in any interval SA[sp, ep] in time O(k).

Mapping to the grid. The grid is of width
∑

i |Ti| ≤ 2n, as we add one coordinate
per node in the suffix tree of each document. To save space, we will consider a virtual
grid just as defined, but will store a narrower physical grid. In the physical grid, the
entries corresponding to leaves of T (which contain exactly one pointer ptr(v, i)) will
not be represented. Thus the physical grid is of width at most n. This frequency
thresholding is a key idea, as it halves the space of most structures in our index.

Two bitmaps will be used to map between the suffix array, the suffix tree, and
the virtual and physical grids: B[1, 2n] and L[1, 2n]. Bitmap B will mark starting
positions of nodes of T in the physical grid: each time we arrive at an internal node
v we add a 1 to B, and each time we add a new x-coordinate to the grid (due to a
pointer ptr(v, i)) we add a 0 to B. Bitmap L will mark leaves in the preorder traversal
of T , using a 1 for leaves and a 0 for internal nodes.

Representing the grid. In the grid there is exactly one point per x-coordinate.
We represent with a wavelet tree [8] the sequence of corresponding y-coordinates.
Note that the height of this grid is c. log n for some constant c a.s. [26, Thm. 1(ii)
and Remark 2(iv)]. Thus, the height of the wavelet tree is log log n + O(1) and the
wavelet tree requires n log log n(1+o(1)) bits in total, a.s. (from now on we will omit,
except in the theorems, that our results hold almost surely and not in the worst case).

Each node v of the wavelet tree represents a subsequence of the original sequence
of y-coordinates. We consider the (virtual) sequence of the weights associated to the
points represented by v, W (v), and build an RMQ data structure [6] for W (v). This
structure requires 2|W (v)|+O(|W (v)|/ log n). This adds up to 2n log log n(1 + o(1))
for the whole wavelet tree.

Representing labels and weights. The labels of the points, that is, the document
identifiers, are represented directly as a sequence of at most ndlog de = n log d+O(n)
bits, aligned to the bottom of the wavelet tree. Given any point to report, we descend
to the leaf in O(log log n) time and retrieve the document identifier.

The weights are stored similarly, but using direct access codes [4] to take advantage
of the fact that most weights (term frequencies) are small. Note that the subtree size

5

of each Ti internal node will be stored exactly once as the weight of some ptr(v, i).
We analyze now that the number of bits required to store those numbers. Let

ni = |Di|. Since the height of any Ti is O(log ni), so is the depth of any node. The
sum of the depths of all the nodes is then O(ni log ni), and this is also the sum of all
the subtree sizes. Distributing those sizes over the ni nodes uniformly (which gives a
pretty pessimistic worst case for the sum of the logarithms) gives O(log ni) for each.
Thus the number of bits required to represent the sizes is at most log log ni +O(1) ≤
log log n + O(1). Using direct access codes with block size b =

√
log log n poses an

extra overhead of O(
√

log log n) = o(log log n) bits. Hence all the weights can be
stored in n log log n(1 + o(1)) bits and accessed in time O(

√
log log n).2

Answering queries. The first step to answer a query is to use the CSA to deter-
mine the range [sp, ep] in time O(m). To find the locus v of P in the topology of
the suffix tree, we compute l and r, the spth and epth leaves of the tree, respectively,
using l = preorderselect(select1(L, sp)) and r = preorderselect(select1(L, ep)), and
then we have v = lca(l, r). All those operations take O(1) time.

To determine the horizontal extent [x1, x2] of the grid that corresponds to the
locus node v, we first compute p1 = preorder(v) and p2 = p1 + subtreesize(v). This
gives the preorder range [p1, p2) including leaves. Now l1 = rank1(L, p1) and l2 =
rank1(L, p2−1) gives the number of leaves up to those preorders. Then, since we have
omitted the leaves in the physical grid, we have x1 = select1(B, p1− l1)− (p1− l1) + 1
and x2 = select1(B, p2−l2)−(p2−l2). The limits in the y axis are just [0, depth(v)−1].
Thus the grid area to query is determined in constant time.

Once the range [x1, x2] × [y1, y2] to query is determined, we proceed to the grid.
We determine the wavelet tree nodes that cover the interval [y1, y2], and map the
interval [x1, x2] to all of them. As there are at most two such nodes per level, there
are O(log log n) nodes covering the interval, and they are found in O(log log n) time.

We now use a top-k algorithm for wavelet trees [20]. Let v1, v2, . . . , vs the wavelet
tree nodes that cover [y1, y2] and let [xi1, x

i
2] be the interval [x1, x2] mapped to vi. For

each of them we compute rmqW (vi)(x
i
1, x

i
2) to find the position xi with the largest

weight among the points in vi, and find out that weight and the corresponding doc-
ument, wi and di. We set up a max-priority queue that will hold at most k elements
(elements smaller than the kth are discarded by the queue). We initially insert the
O(log log n) tuples (vi, x

i
1, x

i
2, xi, wi, di), being wi the sort key. Now we iteratively ex-

tract the tuple with the largest weight, say (vj, x
j
1, x

j
2, xj, wj, dj). We report the doc-

ument dj with weight wj, and create two new ranges in vj: [xj1, xj−1] and [xj +1, xj2].
We compute their RMQ, find the corresponding documents and weights, and reinsert
them in the queue. After k steps, we have reported the top-k documents.

Using a y-fast trie [28] for the priority queue, the total time is O(log log n) to
find the cover nodes, O((log log n)2) to determine their tuples and insert them in the
queue, and O(k log log n) to extract the minima, compute and reinsert new tuples.

We remind that we have not stored the leaves in the grid. Therefore, if the
procedure above yields less than k results, we must complete it with documents

2We conjecture that the number of bits is actually O(n), which we can prove only for uniformly
distributed texts.

6

where the pattern appears only once. We use Muthukrishnan’s algorithm [17] with
the RMQ structure on the C array. We extract distinct documents until we obtain
k distinct documents in total, counting those already reported with the grid. This
requires at most 2k steps, as we can revisit the documents reported with the grid.
Each step requires O(log log n) time to compute the document identifier.

Theorem 1 Given d documents concatenated into a text T [1, n], we can build an
index requiring almost surely (Hk(T) + log d + 4 log log n)(n + o(n)) bits, which can
report the top-k documents most relevant to a search pattern P [1,m] in time O(m+
(k+ log log n) log log n) almost surely. Our structure can be built in time O(n log σ +
n log log n) (details omitted).

5 Experiments and Results

We compared our solution to the implementation of Navarro and Valenzuela [21],
which is the current state of the art. We use various compact data structures im-
plementations from libcds (http://libcds.recoded.cl). We used the following
collections in our experiments. Their grid heights are between 5 and 9.

DNA. A sequence of 10,000 highly repetitive (0.05% difference between docu-
ments) synthetic DNA sequences with 100,030,004 bases in total.
KGS. A collection of 18,383 sgf-formatted Go game records from year 2009
(http://www.u-go.net/gamerecords), containing 26,351,161 chars.
Proteins. A collection of 143,244 sequences of Human and Mouse Proteins
(http://www.ebi.ac.uk/swissprot), containing 59,103,058 symbols.
FT91-94. A sample of 40,000 documents from TREC Corpus FT91 to 94
(http://trec.nist.gov) containing 93,498,090 characters.
Wikipedia. A sample of 40,000 documents from the English Wikipedia con-
taining 83,647,329 characters.

The experiments were performed in an Intel(r) Xeon(r) model E5620 running at
2.40 GHz with 96GB of RAM and 12,288KB cache. The operating system is Linux
with kernel 2.6.31-41 64 bits and we used the GNU C compiler version 4.4.3 with -O3
optimization parameter. For queries, we selected 4,000 random substrings of length
3 and 8, and obtained the top-k documents for each, for k = 10..100 every 10 values.

Figure 1 shows time performance as a function of k. The time taken by the
CSA search is always near 20 microseconds, after which the index takes about k
microseconds. In some cases (KGS, or Wikipedia for m = 8) there are no enough
results with frequency larger than 1, and document listing must be activated, which
slows down the process to 1.6k–4k microseconds. Note that in practice one may wish
to avoid listing those low-frequency documents anyway.

Figure 2 (left) shows the fraction of space used by the different data structures
employed: the CSA, the augmented wavelet tree (WT), the DAC-encoded frequen-
cies (F), the suffix tree topology (T), the document identifiers (DOC), the mapping
bitmaps B and L (M), the RMQ structure for Muthukrishnan’s document listing (C),
and the sparse bitmap D marking document limits. Figure 2 (right), shows the size

7

 0

 40

 80

 120

 160

 200

 240

 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

ic
ro

se
co

n
d

s)

k

DNA
KGS

Wikipedia
FT

Proteins

 0

 40

 80

 120

 160

 200

 240

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
ic

ro
se

c
o

n
d

s)

k

Figure 1: Time performance as a function of k, for m = 3 (left) and m = 8 (right).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

CSA WT F T M DOC C D

S
p

ac
e

(f
ra

ct
io

n
 o

f
to

ta
l)

DNA
KGS

Wikipedia
FT

Proteins

 0

 1

 2

 3

 4

 5

Ratio

S
iz

e
ra

ti
o

 o
v

er
 o

ri
g

in
al

 d
at

as
et

Figure 2: Space consumption of the different compact data structures employed (left)
and the size ratio over the original dataset for the different collections (right).

ratio over the original dataset (considering one byte per symbol). The values vary
between 1.5 and 3 times the size of the collection. Note that, within this space, we
can reproduce any document of the collection, as our CSA offers access to them.

6 Final Remarks

Table 1 compares our solution with previous work [21] on the three collections shared,
taking their best compressed (from their variant WT-Alpha+SSGST plus more recent
improvements) and uncompressed (from their variant WT-Plain+SSGST) results.3

Our structure is at most only 5% larger. When both use about the same space, our
structure is 4 to 25 times faster. In other cases our structure can use up to half the
space, and it is still faster, up to 3 times (for large k and m we must resort to much
document listing, where their wavelet tree on documents is faster).

Needless to say, this is a remarkable result for a structure that, in theory [19], used
about 80 times the collection size. We have sharply compressed it while retaining the
best ideas that led to its optimal time. We believe this establishes a new direction
in which research on space-efficient top-k retrieval could be focused: Rather than

3In their paper [21], the CSA space is not included. We have added ours for a fair comparison.

8

vs compressed [21] vs uncompressed [21]
Collection × space speedup × space speedup

m k = 10 k = 100 m k = 10 k = 100
KGS 0.90 3 13.6 13.0 0.85 3 3.9 5.8

8 24.3 26.1 8 3.1 5.3
Wikipedia 1.05 3 4.2 4.4 0.79 3 2.5 1.0

8 6.4 5.9 8 3.4 3.6
Proteins 0.53 3 2.8 1.1 0.41 3 22.0 12.3

8 28.3 2.2 8 2.0 0.8

Table 1: Comparison to the best previous work [21], giving the fraction of their space
we use, and the speedup we obtain with respect to them.

sampling the suffix tree nodes [11, 21], threshold the document frequencies we store
(curiously, this is closer in spirit to the first, superlinear-size, proposed top-k solution
[12, 9]). For example, can we discard all the frequencies below a threshold f and
efficiently list them if needed? Our work shows this is possible at least for f = 1.

Our approach easily extends to relevance functions other than term frequency.
In most cases it is sufficient to store the appropriate weights in our data structure.
Even if these are not compressible, the space should not grow up too much. Our
structure also trivially solves other document listing problems, like k-mining (list the
documents where P appears at least k times). Muthukrishnan [17] solves it in optimal
time O(m+ occ) and O(n log n) bits for k fixed at indexing time. For variable k the
space is O(n log2 n). Our compressed structure, without modifications, solves both
variants in time O(m+ (occ+ log log n) log log n).

References
[1] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in

practice. In Proc. 11th ALENEX, pages 84–97, 2010.

[2] D. Belazzougui and G. Navarro. Alphabet-independent compressed text index-
ing. In Proc. 19th ESA, pages 748–759, 2011.

[3] D. Belazzougui and G. Navarro. Improved compressed indexes for full-text doc-
ument retrieval. In Proc. 18th SPIRE, pages 386–397, 2011.

[4] N. R. Brisaboa, S. Ladra, and G. Navarro. Directly addressable variable-length
codes. In Proc. 16th SPIRE, pages 122–130, 2009.

[5] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences.
In Proc. 15th SPIRE, pages 176–187, 2008.

[6] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.

[7] R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical implemen-
tation of rank and select queries. In Proc. Posters 4th WEA, pages 27–38, 2005.

[8] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th SODA, pages 841–850, 2003.

9

[9] W.-K. Hon, M. Patil, R. Shah, and S.-B. Wu. Efficient index for retrieving top-k
most frequent documents. J. Discr. Alg., 8(4):402–417, 2010.

[10] W.-K. Hon, R. Shah, and S. Thankachan. Towards an optimal space-and-query-
time index for top-k document retrieval. In Proc. 23rd CPM, pages 173–184,
2012.

[11] W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string
retrieval problems. In Proc. 50th FOCS, pages 713–722, 2009.

[12] W.-K. Hon, R. Shah, and S.-B. Wu. Efficient index for retrieving top-k most
frequent documents. In Proc. 16th SPIRE, pages 182–193, 2009.

[13] V. Mäkinen and G. Navarro. Position-restricted substring searching. In Proc.
7th LATIN, pages 703–714, 2006.

[14] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string
searches. SIAM J. Comput., 22(5):935–948, 1993.

[15] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–
430, 2001.

[16] I. Munro. Tables. In Proc. 16th FSTTCS, pages 37–42, 1996.

[17] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc.
13th SODA, pages 657–666, 2002.

[18] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv.,
39(1):article 2, 2007.

[19] G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear
space. In Proc. 23rd SODA, pages 1066–1077, 2012.

[20] G. Navarro and L. Russo. Space-efficient data-analysis queries on grids. In Proc.
22nd ISAAC, pages 323–332, 2011.

[21] G. Navarro and D. Valenzuela. Space-efficient top-k document retrieval. In Proc.
11th SEA, pages 307–319, 2012.

[22] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dic-
tionary. In Proc. 8th ALENEX, 2007.

[23] C. Clarke S. Büttcher and G. Cormack. Information Retrieval: Implementing
and Evaluating Search Engines. MIT Press, 2010.

[24] S. Puglisi S. Culpepper, G. Navarro and A. Turpin. Top-k ranked document
search in general text databases. In Proc. 18th ESA, pages 194–205, 2010.

[25] K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc. 21st
SODA, pages 134–149, 2010.

[26] W. Szpankowski. A generalized suffix tree and its (un)expected asymptotic be-
haviors. SIAM J. Comput., 22(6):1176–1198, 1993.

[27] P. Weiner. Linear pattern matching algorithms. In Proc. Switching and Automata
Theory, pages 1–11, 1973.

[28] D. E. Willard. Log-logarithmic worst case range queries are possible in space
Θ(n). Inf. Proc. Lett., 17:81–84, 1983.

10

