
Word-based Statistical Compressors as

Natural Language Compression Boosters ∗

Antonio Fariña1, Gonzalo Navarro2, and José R. Paramá1

1 Database Lab, University of A Coruña, A Coruña, Spain.
{fari,parama}@udc.es

2 Dept. of Computer Science, University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract

Semistatic word-based byte-oriented compression codes are known to be
attractive alternatives to compress natural language texts. With compression
ratios around 30%, they allow direct pattern searching on the compressed text
up to 8 times faster than on its uncompressed version.

In this paper we reveal that these compressors have even more benefits. We
show that most of the state-of-the-art compressors such as the block-wise bzip2,
those from the Ziv-Lempel family, and the predictive ppm-based ones, can ben-
efit from compressing not the original text, but its compressed representation
obtained by a word-based byte-oriented statistical compressor.

In particular, our experimental results show that using Dense-Code-based
compression as a preprocessing step to classical compressors like bzip2, gzip, or
ppmdi, yields several important benefits. For example, the ppm family is known
for achieving the best compression ratios. With a Dense coding preprocessing,
ppmdi achieves even better compression ratios (the best we know of on natural
language) and much faster compression/decompression than ppmdi alone.

Text indexing also profits from our preprocessing step. A compressed self-
index achieves much better space and time performance when preceded by
a semistatic word-based compression step. We show, for example, that the
AF-FMindex coupled with Tagged Huffman coding is an attractive alternative
index for natural language texts.

1 Introduction

Traditionally, classical compressors used characters as the symbols to be compressed;
that is, they regarded the text as a sequence of characters. Classical Huffman [11] uses
a semistatic model to assign shorter codes to more frequent symbols. Unfortunately,
the compression obtained when applied to natural language English text is very poor
(around 65%). Other well-known compressors are the dictionary-based algorithms of

∗Funded in part (for the second author) by Fondecyt (Chile) grant 1-050403, and (for the Span-
ish group) by MEC (TIN2006-15071-C03-03) and Xunta de Galicia (PGIDIT05-SIN-10502PR and
2006/4).

Ziv and Lempel [15, 16]. These algorithms are usually very fast at compression and
especially at decompression (to which they probably owe their popularity), but their
compression ratio is still not too good (around 35-40%) on natural language.

It is possible to obtain much better compression by collecting k-th order statistics
on the text. These modelers predict the probability of a symbol depending on the
context formed by the last k symbols preceding it. This is the case of PPM (Prediction
by Partial Matching) compressors [4], which couple such modeling with an arithmetic
coder [1]. Compression ratio is very good, close to 22-25%, but they are very slow at
compression and decompression. Similar results can be obtained by using a block-wise
compressor such as Seward’s bzip2. It makes use of the Burrows-Wheeler transform
(BWT) [7] to obtain a more compressible permutation of the text, and then applies a
move-to-front strategy followed by a Huffman coder. In practice, using less memory
than ppm-based compressors, bzip2 obtains competitive compression ratios (around
23-26%) and it is much faster at both compression and decompression.

In [12], Moffat proposed to consider the text as a sequence of words instead of
characters. By building a word-based model and then applying a Huffman coder,
compression ratio was improved from 65% to around 25-30%. Moreover, compression
and decompression became much faster. Basically, as words display a more biased
distribution of frequencies than that of characters (as Zipf’s Law [14] indicates), they
become more compressible with a zero-order coder.

Following the word-based approach, in [17] two new byte-oriented compressors
were presented. By using bytes instead of bits as the target alphabet (codes are
a sequence of bytes rather than bits), compression worsens by around 5 percentage
points (30-35%). However, the method becomes much faster at compression and
especially decompression. The first technique, called Plain Huffman (PH), is just
a Huffman code assigning byte rather than bit sequences to the codes. The second,
called Tagged Huffman (TH), reserves the first bit of each byte to mark the beginning
of a code and builds the Huffman code over the remaining 7 bits. This leads to a loss
of around 3 percentage points in compression ratio, but makes TH a self-synchronizing
code, which can be directly searched for a compressed pattern with any technique.

The End Tagged Dense Code (ETDC) [6] retains all the good properties of TH,
and obtains better compression ratios. It is a variable-length integer representation
of the rank of a word in the frequency-sorted vocabulary. Another recent competitive
semistatic proposal was presented in [8].

Text compression has been recently integrated with text indexing, so that one can
build an index which takes space proportional to the compressed text, replaces it, and
permits fast indexed searching on it [13]. Two practical examples of those so-called
“self-index” structures are the Succinct Suffix Array (SSA) and the Alphabet-Friendly
FM-index (AF-FMindex) [9]1. Those indexes work for any type of text.

Overall, the word-based detour has been justified by the interest in achieving
fast compression/decompression and direct searching of the compressed text, while
maintaining a reasonably competitive compression ratio. In this paper we somehow
return to the original goal of optimizing the compression ratio, provided with the tools

1Code is available at the PizzaChili site, http://pizzachili.dcc.uchile.cl.

acquired in this detour. The results are surprising, as they show that those compres-
sors designed for natural language actually become compression boosters for the best
classical methods, both in time and compression ratio. This is the case even with
compressors/self-indexes that are supposed to capture the high-order correlations in
T , an intriguing fact that we also discuss in the paper.

We show that compressing a text T with ETDC (or any competitive word-based
byte-oriented code) is a fast and useful preprocessing step for a general text com-
pressor or self-index. Let us call ETDC(T) the output of this preprocessing. As
ETDC(T) reduces |T | to around |T |/3, when ETDC(T) is compressed again with a
slower compressor X (such as gzip, bzip2 or ppmdi), the whole compression process
X(ETDC(T)) is much faster than just X(T). Moreover, X(ETDC(T)) also obtains
better compression than X(T). Similarly, we show that a self-index on the prepro-
cessed text is smaller and faster for searching than if applied directly on T 2.

2 ETDC and TH

As explained, TH reserves the first bit of each byte to mark the code beginnings, and
uses Huffman coding on the remaining 7 bits to ensure that a prefix code is obtained.

ETDC [6] can be seen as a variation of TH, as it marks the end of a code instead of
the beginning. This small change has interesting consequences, as the codes obtained
by ETDC are prefix codes independently of the remaining 7 bits, and then Huffman
coding is no longer necessary. As a result, ETDC can simply use all the combinations
on those 7 bits. That is, the 128 most frequent words in the sorted vocabulary are en-
coded using the codes from <00000000> to <01111111>. Then, the next 1282 words
are encoded with 2-byte codes from <1000000 0000000> to <1111111 01111111>,
and so on. Note that the code associated to a given word does not depend on its
frequency, but just on its actual position in the ranked vocabulary.

3 Boosting compression and indexing

The analysis of the byte values obtained by compressing a text T with a byte-oriented
word-based compressor (ETDC, PH, etc.) shows that their frequencies are far from
uniform. Besides, the same analysis on the output of a bit-oriented encoder3 displays
a rather homogeneous distribution. Figure 1 depicts this situation. This idea led
us to consider that the compressed file ETDC(T) was still compressible with a bit-
oriented compressor. This could not be a zero-order compressor, because the zero-
order entropy (H0) of ETDC(T) is too high (around 7 bpc), and indeed directly using a
word-based bit-oriented compressor (like arith or that in [12]) achieved better results.

Instead, a deeper study of k-order entropy (Hk) of both T and ETDC(T) exposed
some interesting properties of ETDC. The values obtained for Hk for both T and

2The price is that we lose the ability of searching for other than whole words and phrases.
3Arith, a compressor coupling a word-based modeler with an arithmetic encoder. It is available

at http://www.cs.mu.oz.au/~alistair/arith coder/.

0 50 100 150 200 250
0

2

4

6

x 10
−3

byte value (non−increasingly sorted by probability)

pr
ob

ab
ili

ty
 o

f b
yt

e
va

lu
e

ETDC
TH
PH
Arith

Figure 1: Probability of byte values on TREC-4 Congress Record 93 corpus.

Plain Text Text compressed with ETDC

k Hk contexts k Hk contexts k Hk contexts k Hk contexts

0 4.888 1 8 0.972 6,345,025 0 7.137 1 8 0.132 12,531,512
1 3.591 96 9 0.837 9,312,075 1 6.190 256 9 0.099 12,854,938
2 2.777 4,197 10 0.711 12,647,531 2 4.642 46,027 10 0.082 13,080,690
3 2.098 51,689 11 0.595 16,133,250 3 2.601 1,853,531 11 0.072 13,252,088
4 1.668 299,677 12 0.493 19,598,218 4 1.190 6,191,411 12 0.061 13,401,719
5 1.430 951,177 13 0.406 22,900,151 5 0.566 9,396,976 13 0.056 13,531,668
6 1.264 2,133,567 33 0.025 43,852,665 6 0.308 11,107,361 49 0.001 14,939,845
7 1.118 3,931,575 50 0.011 46,075,896 7 0.187 12,015,748 50 0.001 14,946,730

Table 1: k-order entropy for plain and compressed CR corpus.

ETDC(T) are given in Table 1 (obtained with software from PizzaChili). When
regarding the text T as a sequence of characters, the k-order modeler gathers statistics
of each character ci by looking at the k characters that precede ci. A low-order modeler
is usually unable to capture the correlations between consecutive characters in the
text, and hence compression is poor (e.g. H2 = 4.64 bpc). By switching to higher-
order models much better statistics can be obtained [5], but the number of different
contexts increases so sharply that compression becomes impractical. For example,
existing ppm compressors are able to use k up to 5–10 in practice.

The average length of a word is around 5 bytes in English texts [5], but the
variance is relatively high (and raises if we are interested in the distance between two
consecutive words). In general, a high-order modeler needs to achieve k near 10 to
capture the relationship between two consecutive words.

Modeling ETDC(T) instead of T is clearly advantageous in this aspect. Even
though the basic atom is still the byte, the average code length is less than 2 bytes
(even considering separators), and the variance is low as codes rarely contain more
than 3 bytes (this would require more than

∑3
i=1 128i = 2, 113, 664 different words in

T). Hence a k-order modeler can capture the correlations between consecutive words
with a much smaller k, or capture longer correlations with a given k.

The argument is not that simple, however, because good compressors like ppmdi
do not use a fixed k, but rather administer in the best way they can a given amount of
memory to store contexts. Therefore, the correct comparison is between the entropy
achieved as a function of the number of contexts necessary to achieve it. For example,
around 2 million contexts are necessary to reach H6 entropy on plain text, which
corresponds more or less to a word. About the same is necessary to achieve H3

on ETDC(T), which also corresponds to a word. The Hk values are not directly

0 1 2 3 4 5 6 7 8 9

x 10
8

0

5

10

x 10
6

number of contexts

n
H

k

ETDC
Plain text

0 3 6 9 12 15 18 21 24
0

5

10

x 10
7

k = order
nH

k
+

 #
co

nt
ex

t l
og

2(n
)

ETDC
Plain Text

Figure 2: Values nHk and nHk + #contexts × log2(n) for plain text and text com-
pressed with ETDC.

comparable because they are in bits per symbol, and ETDC(T) has around one third
of the symbols of T . Figure 2 (top) shows the corrected comparison. It displays the
value nHk as a function of the number of contexts, where n = |T |.

However, this is not yet considering all the factors. A k-th order compressor pays
some price because of the number of contexts. Not only it is usually limited to some
amount of memory, but also it has to encode (as a table if it is semistatic, or as
escape symbols if it is adaptive) every different context that appears in the sequence.
Figure 2 (bottom) gives a more realistic estimation of the size of the compressed text
achievable by a k-th order compressor, by penalizing each new context with log n bits.
The minima in the curves show that the compression is expected to be (slightly) better
for ETDC(T) than for T , but also that the necessary k is much smaller. This permits
faster and less sophisticated modelers to succeed on ETDC(T).

3.1 Using ETDC+X to boost compression

The main idea behind this work is simple. A text is firstly compressed with ETDC,
then the resulting data is again compressed with another character-oriented technique
X. Therefore, the compressed file is obtained as X(ETDC(T)). Decompression con-
sists also of two steps. The compressed file is firstly decompressed with X−1 to obtain
ETDC(T). Finally, ETDC decompressor recovers the source text.

Following the guidelines shown in the previous section, we used PPM [4] and
BWT [7], two techniques that obtain k-order compression. PPM (from which we
chose ppmdi) uses the previous k characters of the text as a context, and model the
character frequency according to that context. A character c is usually sought at
a given k-order model. If the k-order model fails to predict c, an escape symbol is
output and a switch to a lower-order model is performed until c is found in a low-
order model. Finally, the obtained statistics are used to perform encoding with an
arithmetic coder. BWT (from which we chose bzip2) obtains a permutation of the
text such that characters in the same k-order context are grouped. In such way,
the BWT generates a much more compressible text on which a move-to-front coding
(MTF) is applied, and this is followed by a zero-order coder (Huffman) encoding.

Compressors from the Lempel-Ziv family [15, 16] are also suitable for this sake.

They obtain compression by detecting sequences of symbols that are repeated as
compression progresses, and replacing them by a fixed-size pointer. Lempel-Ziv com-
pression should be useful on top of ETDC, as it would detect repeated phrases in
natural language text.

3.2 Using TH+X to boost self-indexing

The same idea of the previous section can be applied to the construction of self-
indexes. We chose TH as the base compressor because it generates suffix-free4 codes.
This is a mandatory property when searching for a pattern p, as it permits to com-
press p and then search for its compressed form directly. We used this idea, joined
with AF-FMindex and SSA, to create TH+affm and TH+ssa respectively. As both
AF-FMindex and SSA need a terminator for the indexed text (a symbol from the
alphabet), we modified TH to ensure that at least 1 byte value does not appear in
the compressed text. This loses, in practice, less than 0.05% in compression ratio.

Self-indexes permit counting the number of occurrences of a pattern p in O(|p|)
steps. By applying them over TH(T), we search for the encoded words, and hence the
counting process is much faster as codewords are shorter. On the other hand, just as
high-order compressors, the AF-FMindex produces a structure whose size approaches
the k-th order entropy of the sequence, whereas the SSA size is related to the zero-
order entropy. We therefore expect the AF-FMindex to be successful in detecting
high-order correlations in TH(T), where a smaller k would be sufficient to succeed
compared to building on T . This is particularly important because the AF-FMindex
is limited in practice to achieve entropies of relatively low k.

4 Experimental results

We used some large text collections from trec-2: AP Newswire 1988 (AP) and Ziff
Data 1989-1990 (ZIFF), as well as trec-4, namely Congressional Record 1993 (CR)
and Financial Times 1991 to 1994 (FT91 to FT94). As a small collection we used the
Calgary corpus5. We also created a larger corpus (ALL) by aggregating them all.

We compared the compressors ETDC, gzip, bzip2, and ppmdi, (setting default op-
tions and best compression)6 against ETDC+gzip, ETDC+bzip2, and ETDC+ppmdi.
We also included in the comparison another compressor called MPPM7 [2] that ba-
sically maps words into 2-byte ids, which are later encoded with ppmdi. We provide
comparisons in compression ratio, as well as in compression and decompression speed.

An isolated Intel R©Pentium R©-IV 3.00 GHz, with 4 GB RAM was used in our tests.
It ran Debian GNU/Linux (kernel version 2.4.27), using gcc version 3.3.5 with -O9

optimizations. Time results measure cpu user time.

4That is, a code is not a suffix of a longer code.
5ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus
6http://rosalia.dc.fi.udc.es/codes, http://www.gnu.org, http://www.bzip.org, and

http://pizzachili.dcc.uchile.cl, respectively.
7http://www.infor.uva.es/~jadiego/.

Size ppmdi mppm Cascade ETDC + X
CORPUS KB ETDC gzip bzip2 -9 def -9 gzip bzip2 ppmdi -6 ppmdi -9

CALGARY 2,081 47.40% 36.95% 28.92% 25.62% 26.39% 26.33% 32.39% 31.67% 28.27% 28.38%
FT91 14,404 35.53% 36.42% 27.06% 23.44% 25.30% 21.90% 26.50% 24.41% 22.86% 22.21%

CR 49,888 31.94% 33.29% 24.14% 20.72% 22.42% 19.14% 22.63% 20.99% 19.72% 18.87%
ZIFF 180,879 33.77% 33.06% 25.11% 21.77% 23.04% 20.56% 23.52% 22.14% 20.69% 20.07%
ALL 1,055,391 33.66% 35.09% 25.98% 22.34% 24.21% 20.83% 24.35% 22.18% 20.90% 19.98%

Table 2: Comparison on compression ratio.

Table 2 shows the compression ratio obtained by ETDC, gzip, bzip2, and pp-
mdi run over plain text, as well as the compression ratio obtained by ETDC+gzip,
ETDC+bzip2, and ETDC+ppmdi. The first two columns in that table indicate the
corpus and its size in KB. It can be seen that ETDC+gzip obtains an improvement
over gzip of more than 10 percentage points (except in the smallest corpus). These
results make ETDC+gzip directly comparable with ppmdi, and overcome the com-
pression ratio obtained by bzip2 in around 1.5 percentage points. ETDC+bzip2 is also
able to overcome bzip2 by around 3-4 percentage points and improve the compres-
sion ratio of ppmdi (with the exception of the two smallest corpora). ETDC+ppmdi
also obtains improvements of around 3-4 percentage points with respect to ppmdi and
around 1 percentage point when compared against MPPM. In practice, ETDC+ppmdi
works similarly to MPPM. However, while MPPM associates 2-byte ids to each word,
which are later encoded with ppmdi, ETDC+ppmdi uses the code associated by
ETDC to each word as its id. A very recent work [3] presents a graph-based ap-
proach that improves MPPM by 0–4%. Still our results are slightly superior in the
cases we are able to compare.

Table 3 shows compression and decompression times. As ETDC is a very fast
technique at compression and mainly at decompression, the cascade ETDC+X obtains
very good performance. The reason is that bzip2 and ppmdi are very slow. When they
are run over the text compressed with ETDC, they have to compress only around 33%
of the plain text. As a result, not only ETDC+bzip2 and ETDC+ppmdi compress
more than bzip2 and ppmdi respectively, but also they are around 30-40% faster at
both compression and decompression (the speedup is not linear because ETDC(T)
has more contexts than T , for a given k). Comparing against gzip, ETDC+gzip is
also around 25-35% faster at compression (gzip -1 would be faster, but its compression
ratio is very poor). Similar results are obtained at decompression (notice that gzip is
regarded as a very fast decompression technique, and very popular for that reason).

We note that those measurements have been obtained by just compressing the
text with ETDC, and then running the second compressor over the text compressed
with ETDC. Better results would be obtained by joining both techniques in such a
way that the output of ETDC would be used directly as the input of the second
compressor. These would avoid many disk I/Os and performance would be improved.

Figure 3 compares the AF-FMindex and SSA indexes built over text compressed
with TH (TH+affm and TH+ssa) against those built over the original text (Plain+affm
and Plain+ssa). Using corpus CR, and different values of the parameter sample-rate
(SR) in the self-indexes (the larger SR, the smaller and slower the index), the figure

ppmdi mppm Cascade ETDC + X
CORPUS ETDC gzip bzip2 -9 def -9 gzip bzip2 ppmdi -6 ppmdi -9

CALGARY 0.16 0.31 0.77 1.34 1.24 2.30 0.30 0.50 1.12 1.19
FT91 0.98 2.25 4.93 9.02 8.38 14.91 1.64 2.95 6.57 6.82

CR 3.11 7.48 17.03 27.89 26.75 47.89 5.07 9.30 19.86 20.66
ZIFF 11.89 26.29 63.02 105.43 98.81 189.76 20.35 35.19 76.19 80.45
ALL 75.03 157.91 336.81 636.57 599.15 1146.47 118.11 216.17 448.11 470.01

compression time (in seconds).

ppmdi mppm Cascade ETDC + X
CORPUS ETDC gzip bzip2 -9 def -9 gzip bzip2 ppmdi -6 ppmdi -9

CALGARY 0.02 0.04 0.33 1.33 1.31 1.56 0.04 0.20 1.03 1.04
FT91 0.19 0.29 2.15 8.98 9.49 8.91 0.26 1.27 5.98 6.07

CR 0.62 0.95 7.06 27.78 28.15 26.99 0.95 4.02 17.91 18.16
ZIFF 2.25 3.44 25.61 104.53 102.85 105.56 3.59 15.24 68.02 70.57
ALL 14.36 20.70 155.88 630.27 631.09 656.33 21.37 91.43 398.67 408.03

decompression time (in seconds).

Table 3: Comparison of compression and decompression time.

34.3 40 50 60 70 80 90 100 110
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A
vg

 lo
ca

te
 ti

m
e/

oc
cu

r.
 (

m
se

c.
)

Compression ratio (%)

TH+affm: SR=64

TH+affm: SR=32

TH+affm: SR=16

Plain+affm: SR=64

Plain+affm: SR=32

Plain+affm: SR=16

TH+ssa: SR=64

TH+ssa: SR=32

TH+ssa: SR=16

Plain+ssa: SR=64

Plain+ssa: SR=32

Plain+ssa: SR=16

(TH)

Compression
Ratio (%)

TH+affm 32.71%
Plain+affm 53.59%

TH+ssa 38.37%
Plain+ssa 83.62%

TH 34.31%

Figure 3: Space/time trade-off for AF-FMindex and SSA over compressed and plain
text.

shows the space/time trade-off obtained for locating all the occurrences of a phrase
composed of 4 words. For each SR value we obtain a line rather than a point, by trying
out different values for the rank-factor parameter. TH+affm and TH+ssa clearly im-
prove the space/time trade-off obtained by their traditional counterparts. The table
on the right of Figure 3 shows that, if we reduce the sampling sufficiently (SR=1024
and rank-factor=64, which makes searching slower), the resulting AF-FMindex can
become even smaller than applying TH alone, just as k-th order compressors im-
proved upon the result of ETDC(T). On the other hand, the zero-order indexer SSA
does not improve upon TH, as expected.

5 Conclusions

We have shown that byte-oriented natural language compressors such as ETDC, TH
and PH, are not only attractive because of their acceptable compression ratio and high
compression and decompression speed. They can also be seen as a transformation
of the text that boosts classical compression/indexing techniques. They transform a
text into a much shorter sequence of bytes (around 30-35% of the original text) that
is still compressible and indexable. The results obtained by cascading word-based

byte-oriented static compressors with block-wise bzip2, those from the Ziv-Lempel
family, and the predictive ppm-based ones, improved their compression ratio as well
as their performance in both compression and decompression.

In particular, ETDC+gzip is around 30% faster than gzip at compression, and
obtained similar performance at decompression. Moreover, ETDC+gzip improves
by around 2 percentage points the compression ratio obtained by bzip2, while it is
around 3 times faster at compression and around 7-8 times faster at decompression.
Reaching a compression ratio around 24%, ETDC+gzip obtains values that are very
close to those of the powerful but slow ppmdi technique. ETDC+gzip is around 5
times faster at compression, and around 25 times faster at decompression. To sum
up, ETDC+gzip poses an almost unbeatable trade-off between space and compression
and decompression efficiency.

ETDC+bzip2 obtains also a very good compression ratio (around 21-24%) and
improves bzip2 by around 3.5-4 percentage points. With respect to performance,
bzip2 is overcome by around 75% in both compression and decompression speed.

ETDC+ppmdi becomes actually one of the most effective compressors for natural
language text, reaching compression ratios around 20%. It improves the compression
ratio of ppmdi by around 3-4 percentage points and that of MPPM by around 0.5-1
percentage points. Again, ETDC+ppmdi is around 30% faster at both compression
and decompression than ppmdi alone. With respect to MPPM, ETDC+ppmdi is
around 2.5 times faster at compression and improves its decompression speed by
around 70%.

Summarizing, we showed that ETDC+gzip, ETDC+bzip2, and ETDC+ppmdi
yield an attractive space/efficiency trade-off. ETDC+gzip is very fast and obtains
very good compression. ETDC+bzip2 compresses a bit more but is also slower.
Finally, ETDC+ppmdi obtains the best compression at the expense of losing some
performance.

Indexing also benefits from the use of a compressed version of the text. If we apply
the AF-FMindex and SSA over TH compressed text and we set the index parameters
in order to obtain a structure of the same size as if we indexed the plain text, we
obtain two indexes that are much faster than the traditional ones. If we instead set
the parameters to obtain two indexes with the same search speed, the index over the
compressed text will occupy 30% less than in the case of the plain text.

For the final version we plan to run more exhaustive experiments, include other
natural language compressors and self-indexes, and improve the time performance of
our combinations. As future work, we plan to design new byte-codes that improve
upon TH while maintaining the properties that make it useful for self-indexing pur-
poses (ETDC was a good replacement for sequential searching, but does not work
well for indexed searching). The ideas in [10] could be inspiring for this purpose.

References

[1] N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

[2] J. Adiego and P. de la Fuente. Mapping words into codewords on ppm. In Proc.
13th SPIRE, LNCS 4209, pages 181–192, 2006.

[3] J. Adiego, M. Mart́ınez-Prieto, and P. de la Fuente. Edge-guided natural lan-
guage text compression. In Proc. 14th SPIRE, LNCS 4726, pages 14–25, 2007.

[4] T. Bell, J. Cleary, and I. Witten. Data compression using adaptive coding and
partial string matching. IEEE Trans. on Communications, 32(4):396–402, 1984.

[5] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall,
1990.

[6] N. Brisaboa, A. Fariña, G. Navarro, and J. Paramá. Lightweight natural language
text compression. Information Retrieval, 10(1):1–33, 2007.

[7] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, 1994.

[8] J.S. Culpepper and A. Moffat. Enhanced byte codes with restricted prefix prop-
erties. In Proc. 12th SPIRE, LNCS 3772, pages 1–12, 2005.

[9] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM TALG, 3(2):article 20, 2007.

[10] Sz. Grabowski, G. Navarro, R. Przywarski, A. Salinger, and V. Mäkinen. A
simple alphabet-independent FM-index. International Journal of Foundations
of Computer Science (IJFCS), 17(6):1365–1384, 2006.

[11] D. A. Huffman. A method for the construction of minimum-redundancy codes.
In Proc. of the IRE, volume 40, pages 1098–1101, 1952.

[12] A. Moffat. Word-based text compression. Software Practice and Experience,
19(2):185–198, 1989.

[13] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

[14] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley,
1949.

[15] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977.

[16] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

[17] N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for
next-generation text retrieval systems. IEEE Computer, 33(11):37–44, 2000.

