
Lempel-Ziv Compression of Strutured Text�Joaquín Adiego1, Gonzalo Navarro2 and Pablo de la Fuente11Dpto. de Informátia, Universidad de Valladolid, Valladolid, España.{jadiego, pfuente}�infor.uva.es2Dpto. de Cienias de Computaión, Universidad de Chile, Santiago, Chile.gnavarro�d.uhile.lAbstratWe desribe a novel Lempel-Ziv approah suitable for ompressing stru-tured douments, alled LZCS, whih takes advantage of redundant informa-tion that an appear in the struture. The main idea is that frequently repeatedsubtrees may exist and these an be replaed by a bakward referene to their�rst ourrene. The main advantage is that ompressed douments generatedby LZCS are easy to display, aess at random, and navigate. In a seondstage, proessed douments an be further ompressed using some semiadap-tive tehnique, so that random aess and navigability remain possible. LZCSis espeially e�ient to ompress olletions of highly strutured data, suh asXML forms, invoies, e-ommere and web-servie exhange douments. Theomparison against struture-based and standard ompressors shows that LZCSis a ompetitive hoie for this type of douments, while the others are not well-suited to support navigation or random aess.Keywords: Ziv-Lempel, XML Data, Text Compression.1 IntrodutionThe storage, exhange, and manipulation of strutured text as a devie to representsemistrutured data is spreading aross all kinds of appliations, ranging from textdatabases and digital libraries to web-servies and eletroni ommere. Struturedtext, and in partiular the XML format, is beoming a standard to enode data withsimple or omplex, �xed or varying struture. Although XML has been envisioned asa mehanism to desribe strutured data from some time ago, it has been the reentexplosion of �eletroni business� that has shown its potential to desribe all sorts�This work was partially supported by CYTED VII.19 RIBIDI projet (all authors), Millen-nium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile (seond author) and theTIC2003-09268 projet from MCyT, España (�rst and third authors)1

of douments exhanged between organizations and stored inside an organization.Examples are invoies, reeipts, orders, payments, aounting, and other forms.Although the information stored by an organization is usually kept in relationaldatabases and/or data warehouses, it is important to store digital opies, in XMLformat, of all the douments that have been exhanged and/or produed along time.A strutured text retrieval engine should provide random aess to those strutureddouments, so that they should be easily searhed, visualized, and navigated. On theother hand, as usual, we would like this repository to take as little spae as possible.In this paper we fous on the ompression of strutured text. We aim spei�allyat ompression of highly strutured data, suh as forms where there is little text ineah �eld. Colletions formed by those types of forms ontain a lot of redundanythat is not aptured well enough by lassial ompression methods. At the same time,we want the ompressed olletion to be easily aessed, visualized and navigated.Existing struture-aware ompression methods do not aount for these apabilities:texts have to be unompressed �rst before they an be aessed.We develop a ompression method, LZCS, inspired in Lempel-Ziv ompression,where repeated substrutres are fatored out. We obtain very good ompressionratios, muh better than those of lassial methods, and ompetitive against otherstruture-aware methods. Only XMLPPM ompresses better than our LZCS. How-ever, text olletions ompressed with LZCS are easily aessed at random, visualizedand navigated, whih is not possible with XMLPPM, whih is adaptive and heneneeds to unompress the whole olletion before extrating a single doument.Moreover, LZCS algorithm is one-pass, whih means that it an output the om-pressed text almost immediately after seeing the soure text. This makes it suitablefor use over a ommuniation network without introduing any delay in the trans-mission. The output of LZCS is still plain text, whih easies transmission over plainASCII hannels. In a seond pass, the output of LZCS an be further ompressedusing a oding method that retains navigability and random aess.2 Text ompression2.1 Compressing plain textIn general, lassi methods of text ompression do not take into aount the strutureof the douments they ompress. At the end of the seventies, Lempel and Ziv designednew tehnologies of data ompression based on replaing text substrings by previousrepeated ourrenes. Their two most famous algorithms are alled LZ77 [13℄ andLZ78 [14℄, as well as the later variant LZW [11℄. Depending on the variants, di�erentprevious strings an be referened, while others annot. These tehniques do notonsider the semanti meaning of sequenes replaed. The Lempel-Ziv family is themost popular to ompress text beause it ombines good ompression ratios with fastompression and deompression.nWith regard to ompressing natural language texts in order to permit e�ient2

retrieval from the olletion, the most suessful tehniques are based on modelswhere the text words are taken as the soure symbols [7℄, as opposed to the traditionalmodels where the haraters are the soure symbols.Words re�et muh better than haraters the true entropy of the text [2℄. Forexample, a semiadaptive Hu�man oder over the model that onsiders haraters assymbols typially obtains a ompressed �le whose size is around 60% of the originalsize, on natural language. A Hu�man oder when words are the symbols obtains 25%[15℄. Another example is the WLZW algorithm, whih uses Ziv-Lempel on words[3, 5℄.On the other hand, most information retrieval systems use words as their maininformation atoms, so a word-based ompression easies the integration with an infor-mation retrieval system. Some examples of suessful integration are [12, 9, 8℄.2.2 Compressing Strutured TextSCM [1℄ is a generi model used to ompress semistrutured douments, whih takesadvantage of the ontext information usually impliit in the struture of the text.The idea is to use a separate model to ompress the text that lies inside eah di�erentstruture type (e.g., eah di�erent XML tag). The idea is that the distribution of allthe texts that belong to a given struture type should be similar, and di�erent fromthat of other struture types.Another ompression method that onsiders the doument struture is XMill [6℄,developed in AT&T Labs. XMill is an XML-spei� ompressor designed to exhangeand store XML douments, and its ompression approah is not intended for diretlysupporting querying or updating of the ompressed doument. XMill is based on thezlib library, whih ombines Ziv-Lempel ompression with a variant of Hu�man.Yet another XML ompressor is XGrind [10℄, whih diretly supports queriesover the ompressed �les. An XML doument ompressed with XGrind retains thestruture of the original doument, permitting reuse of the standard XML tehniquesfor proessing the ompressed doument. It does not, however, take full advantage ofthe struture.Other approahes to ompress XML data exist, based on the use of a PPM-like oder, where the ontext is given by the path from the root to the tree nodethat ontains the urrent text. One example is XMLPPM [4℄, whih is an adaptiveompressor based on PPM, where the ontext is given by the struture.3 LZCS desriptionLZCS is a new tehnique to ompress strutured text (suh as XML and HTML)that allows one to easily navigate the ompressed struture. Thus, LZCS an beintegrated into a strutured text retrieval system without loss of e�ieny in thesearh or visualization of results. The main idea is based on the Ziv-Lempel onept,so that repeating substrutures and text bloks are replaed by a bakward refereneto their �rst ourrene in the proessed doument. The result is a valid strutured3

text with additional speial tags (bakward referene tags), whih an be transmitted,handled or visualized in a onventional way, or further ompressed using some existingompressor.These douments are visualized in the usual way up to meeting a bakward ref-erene. When a bakward referene appears, we push urrent text position in astak and move to the indiated text position. If the referened text begins with astart-tag, then the bakward referene will �nalize when the orresponding end-tagappears. Otherwise, it will �nalize when a start-tag appears. When the referenedtext �nishes we pop previous text position from the stak and ontinue. Furtherbakward referenes an appear in referened text, in whih ase we repeat the sameproess. A similar proedure an be used to traverse or navigate the struture in treeform.Sine the douments generated by LZCS are navigable, a good idea is to furtherompress them using a semiadaptive ompression method, like word-based Hu�man.After this proess, the douments annot anymore be visualized as plain text (a word-wise deompression is needed), but they are still navigable and aessible at randompositions.In the following we formally de�ne the LZCS transformation.3.1 Formal de�nitionDe�nition 1 (Text Blok) A text blok will be any maximal onseutive alphanu-meri harater sequene not ontaining struture or bakward referene tags.De�nition 2 (Strutural Element) A strutural element will be any onseutiveharater sequene that begins with a start-tag and �nalizes with its orrespondingend-tag.Bearing in mind last de�nition, a strutural element an ontain one or more textbloks, one or more strutural elements and/or one or more bakward referene tags.For simpliity, other types of valid tags (e.g. omment tags, autoontained tags andso on) will be treated as onventional text, and only start-tags and end-tags will beused to identify strutural elements.The struture indues a hierarhy that an be represented as a tree. Let us regarddouments in tree form. Text bloks will be represented by leaves, and struturalelements by subtrees.De�nition 3 (Node) A node will be either a text blok or a struture element.The main point of LZCS is to replae some subtrees by referenes to equivalentsubtrees seen before.De�nition 4 (Equivalent Nodes) Let N1 and N2 be two nodes that appear in aolletion. We will say that node N1 is equivalent to node N2 i� N1 is textually equalto N2. 4

De�nition 5 (LZCS Transformation) LZCS replaes eah maximal node that isequivalent to a previous node by a bakward referene to its �rst ourrene in the text.Other elements are left unhanged. �Maximal� means that the node replaed does notdesend from another that an be replaed.A bakward referene is represented by a speial tag in the output. The speialtag is onstruted by means of the symbols <� and > that mark the beginning andend of the bakward referene tag. The ontent of this tag will be formed by digitsthat express an unsigned integer indiating the absolute position where the referenedelement begins. For spae optimization, this number will be expressed in base 62,using 0..9, A..Z and a..z as digits.It may happen that a referened text blok is smaller than the referene itself (forexample, when the text blok is formed only by harater '\n'). In these irum-stanes, replaing it by a referene is not a good hoie. Hene we do not replae textbloks that are shorter than a user-spei�ed parameter l. The hoie of l in�uenesompression ratio, but not orretness.For lak of spae we do not show the ompression algorithm, whih runs in linearexpeted time, 2.5 times slower than gzip in pratie.3.2 ExampleAssume that we are going to ompress a olletion of three douments using LZCS.The douments are represented in Figure 1. In the �gure, there exist three di�erentstrutural elements represented by irles. The strutural element of type 1 has theirle drawn with a ontinuous line, that of type 2 with a dashed line, and that of type3 with a dotted line. Text bloks are represented by squares. Letters and numbers inthe �gure represent node identi�ers.
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

A

B

C D

E

1 2

3

M

N

O P

Q

98

10

F

G

H I

J

K L

4 5 6 7

(C)(B)(A)Figure 1: Three example douments. Equivalent subtrees are marked.To over all the possibilities, suppose that text bloks numbered 1, 4, 7 and 9 inthe �gure are equivalent. Also text bloks numbered 3 and 10 are equivalent, as wellas those numbered 6 and 8. With this, the douments share repeating parts (thatis, equal subtrees). Furthermore, Figure 1 shows graphially these orrespondenes.Finally Figure 2 shows the olletion transformed with LZCS.5

A

B

C D

E

1 2

3

F

G

I

J

K

5 6

C C

M

QJ

3

(A) (B) (C)Figure 2: Example douments after applying the LZCS transformation. Bakwardreferenes are represented by triangles.4 EvaluationThe LZCS model was tested using di�erent XForms olletions, whih orrespond toreal douments in use in small and medium Chilean ompanies. XForms1, an XMLdialet, is a W3C Candidate Reommendation for a spei�ation of Web forms thatlearly separate semanti from presentation aspets. In partiular, XForms is beom-ing quite ommon in the representation and exhange of information and transationsbetween ompanies.For privay reasons we annot use atual XForms databases, but we an get ratherlose. We have obtained �ve di�erent types of forms (e.g., invoies). Eah suh formhas several �elds. Eah �eld has a ontrolled voabulary (e.g., names of parts) we haveaess to. Hene, we have generated atual forms by randomly hoosing the ontentsof eah �eld from their ontrolled voabulary. We remark that this is pessimisti,sine atual data may ontain more regularities than randomly generated data.A brief desription of the �ve types of forms used follows.� XForms type 1: Centralization of Remunerations. It represents the aountingof the monthly remunerations, both for total quantities and with itemization.This is a frequently used doument.� XForms type 2: Sales Invoie. It is a legal Chilean doument.� XForms type 3: Purhase Invoie. It is a legal Chilean doument, similar to theprevious one.� XForms type 4: Work Order. It is the doument used in ompanies that installheating systems, to register the aount detail of ontrated work.� XForms type 5: Work Budget. It is the doument used in ompanies that buildsigns and publiity by request, to determine the parts and osts of works toarry out. Constrution ompanies use a similar doument.1http://www.w3.org/MarkUp/Forms. 6

For the experiments we seleted di�erent size olletions of XForms types 1, 2 and3. Colletions of XForms types 4 and 5 were smaller so we used them as a whole.In all ases, LZCS was tested with di�erent l values. Value l = 0 means that allpossible substitutions are made, whereas l =1 means that no text blok is replaed,just strutural elements.Figure 3 shows how ompression ratios evolve when di�erent values for l are used,for XForms type 3. Other XForms olletions give similar results. Compression ratiois de�ned as the ompressed text size divided by the unompressed text size. We donot yet apply further ompression after the LZCS transformation.
 6

 7

 8

 9

 10

 11

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=0)
LZCS (l=4)
LZCS (l=5)
LZCS (l=6)
LZCS (l=7)
LZCS (l=8)

LZCS (l=infinity)

 6.1

 6.12

 6.14

 6.16

 6.18

 6.2

 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=0)
LZCS (l=4)
LZCS (l=5)
LZCS (l=6)
LZCS (l=7)
LZCS (l=8)

LZCS (l=infinity)

Figure 3: Compression ratios using di�erent values for l, for XForms type 3. Rightrepresentation is a zoom of left plot.As an be seen, the worst ompression has been obtained in all ases for l = 0, thisis, when all possible text bloks are replaed. Compression for l = 1 has obtainedintermediate results, obtaining on large olletions redutions in text size of 28%ompared to the option l = 0. However, hoie l = 1 is still muh worse thanintermediate hoies. Di�erent intermediate values for l yield similar ompression,with very small variations. Their ompression improves upon l = 1 by 18% andupon l = 0 by 42% for large olletion sizes.Next, we ompared LZCS against the basi word-based Hu�man method [7℄. Fig-ure 4 shows the best ompression ratio obtained for eah method and for eah dou-ment type. Column �LZCS (�rst stage)� indiates the ompression obtained when theLZCS transformation is applied alone, while olumn �LZCS (omplete)� indiates theompression obtained after applying Word Hu�man to the output of the �rst stage.Colletion / Method Word Hu�man LZCS (�rst stage) LZCS (omplete)XForms 1 9.693% 0.0374% 0.0215%XForms 2 12.646% 4.3111% 0.9220%XForms 3 11.550% 6.0872% 1.3294%XForms 4 13.994% 4.8861% 0.8928%XForms 5 12.441% 3.6245% 0.8393%Figure 4: Best ompression ratios for eah method and olletion.7

In all ases the ompression obtained by LZCS transformation alone is surprisinglygood. Let us remark that the output obtained by the transformation is still a plaintext doument. When Word Hu�man odi�ation is aplied over the transformed textthe ompression is still better, reduing the LZCS transformed text to 20%�60% ofits size.Finally, we ompared LZCS against other ompression systems that allow neithernavigation nor random aess on ompressed �le.These ompression systems either are struture-aware (like XMill and XMLPPMexplained in Setion 2), or they are standard. Most standard systems are based onlassial LZ-shemes. Standard systems used to ompare against LZCS are (1)zip and(2)gzip, using LZ77 plus a variant of Hu�man algorithm; (3)UNIX's ompress, thatimplements LZW algorithm; (4)bzip2, whih uses the Burrows-Wheeler blok sortingtext ompression algorithm, plus Hu�man oding.Bzip2 ompression is generally onsiderably better than that ahieved by moreonventional LZ77/LZ78-based ompressors, and approahes the performane of thePPM family of statistial ompressors.
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=8)
zip

gzip
bzip2
XMill

XMLPPM

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=4)
zip

gzip
bzip2
XMill

XMLPPM

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

LZCS (l=5)
zip

gzip
bzip2
XMill

XMLPPM

Method / Size T.4 (7.19 Mb) T.5 (5.74 Mb)zip 2.105% 4.435%gzip 2.104% 4.433%ompress 10.300% 10.396%bzip2 0.952% 0.843%XMill 0.942% 0.924%XMLPPM 0.712% 0.553%Word Hu�man 13.994% 12.441%LZCS l = 0 0.892% 0.939%LZCS l = 4 0.893% 0.847%LZCS l = 5 0.896% 0.846%LZCS l = 6 0.904% 0.839%LZCS l = 7 0.897% 0.839%LZCS l = 8 0.893% 0.841%LZCS l =1 1.953% 1.256%Figure 5: Comparison between LZCS and others, for XForms types 1 (upper left), 2(upper right), 3 (bottom left), 4 and 5 (bottom right).We ompressed our olletions with all the systems desribed. Compression ratiosare shown in Figure 5.Let us �rst onsider the general ompressors. Word Hu�man and ompress ob-tained the worst ompression ratios, and they are not ompetitive in this experiment.They are followed by zip and gzip, both with very similar ompression ratios. The8

best by far in this ategory is bzip2, whih is still inferior to LZCS, in most ases bya slight margin. The reason for these results is that these four methods do not on-sider the struture of the douments, from whih LZCS takes signi�ant advantage.Also, we stress that LZCS allows navigation and random aess over ompressed text,whih is not easy for bzip2.Let us now onsider the struture-aware methods. In general, LZCS is signi�antlybetter than XMill in all olletions, produing ompressed texts from just 5% smallerto as muh as 25 times smaller. XMLPPM, on the other hand, obtains by far thebest ompression in most ases, exept for the notable exeption of XForms type 1,where LZCS is largely unbeaten. The problem of XMLPPM is that its ompressionis adaptive, and hene it is not suitable for navigation or random aess on theompressed text.5 ConlusionsWe have presented LZCS, a ompression sheme based on Lempel-Ziv whih is aimedat ompressing highly strutured data. The main idea of LZCS is to replae wholesubstrutures by previous ourrenes thereof. The main advantages of LZCS are (1)very good ompression ratios, outperforming all lassial methods and most struture-aware methods; (2) easy random aess, visualization and navigation of ompressedolletions; (3) fast and one-pass ompression and deompression. Only XMLPPMompressed better than LZCS in our experiments, but random aess to a partiulardoument is impossible with XMLPPM, sine it is adaptive and needs to deompress�rst all the douments that preede the desired one. This outrules XMLPPM for usein a ompressed text database senario.One of the most hallenging problems faed was the e�ieny problem of theompression stage, whih is quadrati if one follows the de�nition. We managed tooverome this problem and designed a linear average-time ompression algorithm, byusing a partiular hashing sheme.In many senarios, new douments are added to the doument olletion, but theseare never deleted or modi�ed. LZCS an easily ope with insertion of new douments,but more researh is needed in order to aomodate deletions and modi�ations ofdouments. It would also be interesting to design indexing shemes for fast searhingof douments ontaining some given words or substrutures, keeping in mind that theolletion is ompressed.Aknowledgement. We thank Pablo Palma, from Hypernet Ltd. (Chile), for pro-viding us with massive samples of almost-real data for the experiments.Referenes[1℄ J. Adiego, G. Navarro, and P. Fuente. SCM: Strutural ontexts model forimproving ompression in semistrutured text databases. In Pro. 10th Intl.9

Symp. on String Proessing and Information Retrieval (SPIRE'03), LNCS 2857,pages 153�167. Springer, 2003.[2℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prentie Hall, EnglewoodCli�s, N.J., 1990.[3℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A loally adaptive data ompres-sion sheme. Communiations of the ACM, 29:320�330, 1986.[4℄ J. Cheney. Compressing XML with multiplexed hierarhial PPM models. InPro. Data Compression Conferene (DCC 2001), pages 163�, 2001.[5℄ J. Dvorský, J. Pokorný, and V. Snásel. Word-based ompression methods andindexing for text retrieval systems. In Pro. ADBIS'99, LNCS 1691, pages 75�84.Springer, 1999.[6℄ H. Liefke and D. Suiu. XMill: an e�ient ompressor for XML data. In Pro.ACM SIGMOD 2000, pages 153�164, 2000.[7℄ A. Mo�at. Word-based text ompression. Software - Pratie and Experiene,19(2):185�198, 1989.[8℄ A. Mo�at and R. Wan. RE-store: A system for ompressing, browsing andsearhing large douments. In Pro. 8th Intl. Symp. on String Proessing andInformation Retrieval (SPIRE 2001), pages 162�174, 2001.[9℄ G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates.Adding ompression to blok addressing inverted indexes. Information Retrieval,3(1):49�77, 2000.[10℄ P. Tolani and J. Haritsa. XGRIND: A query-friendly XML ompressor. In Pro.of 18th International Conferene of Data Engineering (ICDE'02), pages 225�234,2002.[11℄ Terry A. Welh. A tehnique for high-performane data ompression. IEEEComputer, 17(6):8�19, 1984.[12℄ I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan KaufmannPublishers, seond edition, 1999.[13℄ J. Ziv and A. Lempel. An universal algorithm for sequential data ompression.IEEE Trans. on Information Theory, 23(3):337�343, 1977.[14℄ Jaob Ziv and Abraham Lempel. Compression of individual sequenes viavariable-rate oding. IEEE Transations on Information Theory, IT-24(5):530�536, 1978.[15℄ N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key fornext-generation text retrieval systems. IEEE Computer, 33(11):37�44, November2000. 10

