
Faster Approximate String Matching overCompressed TextGonzalo Navarro� Takuya Kiday Masayuki TakedayAyumi Shinoharay Setsuo ArikawayAbstractApproximate string matching on compressed text was a problem open dur-ing almost a decade. The two existing solutions are very recent. Despite thatthey represent important complexity breakthroughs, in most practical casesthey are not useful, in the sense that they are slower than uncompressing thetext and then searching the uncompressed text. In this paper we present a dif-ferent approach, which reduces the problem to multipattern searching of patternpieces plus local decompression and direct veri�cation of candidate text areas.We show experimentally that this solution is 10{30 times faster than previouswork and up to three times faster than the trivial approach of uncompressingand searching, thus becoming the �rst practical solution to the problem.1 IntroductionThe string matching problem is de�ned as follows: given a pattern P = p1 : : : pmand a text T = t1 : : : tu, �nd all the occurrences of P in T , i.e. return the setfjxj; T = xPyg. Exact string matching has been a basic problem in computerscience since its beginnings [CR94, AG97].A generalization of the basic string matching problem is approximate string match-ing [Nav00]: an error threshold k < m is also given as input, and we want to reportall the ending positions of text substrings which match the pattern after performingup to k character insertions, deletions and replacements on them. Formally, we haveto return the set fjxP 0j; T = xP 0y and ed(P;P 0) � kg, where ed(P;P 0) is the \editdistance" between both strings, i.e. the minimum number of character insertions,deletions and replacements needed to make them equal. The best algorithms for thisproblem need in the worst case O(u) time, and O(ku) if the extra space must be poly-nomial in m. On average, they need O(u(k+ log�(m))=m) time. Approximate stringmatching is an important problem in textual databases (e.g. for spelling checkersand to query low-quality databases), computational biology (e.g. to search on DNAand protein databases) and signal processing (e.g. to search approximate patterns inaudio strings or for speech recognition).On the other hand, text compression [BCW90] tries to exploit the redundanciesof the text to represent it using less space. There are many di�erent compression�Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl. Supported in part by Fondecyt grant 1-990627.yDept. of Informatics, Kyushu University 33. Fukuoka 812-8581, Japan.fkida,takeda,ayumi,arikawag@i.kyushu-u.ac.jp.1



schemes, among which the Ziv-Lempel family [ZL77, ZL78] is one of the most pop-ular in practice because of their good compression ratios combined with e�cientcompression and decompression time.It is natural to think of merging search and compression. The compressed matchingproblem was �rst de�ned in the work of Amir and Benson [AB92] as the task ofperforming string matching in a compressed text without decompressing it. Givena text T , a corresponding compressed string Z = z1 : : : zn, and a pattern P , thecompressed matching problem consists in �nding all occurrences of P in T , usingonly P and Z. A naive algorithm, which �rst decompresses the string Z and thenperforms standard string matching, takes time O(m+u). An optimal algorithm takesworst-case time O(m+ n+R), where R is the number of matches (note that it couldbe the case that R = u > n).The compressed matching problem is important in practice. Today's textual andDNA databases are an excellent example of applications where both problems arecrucial: the texts should be kept compressed to save space and I/O time, and theyshould be e�ciently searched. Moreover, as the CPU speed improves much fasterthan that of I/O devices, it is worthwhile to spend more and more CPU time for thesake of reduced I/O. Surprisingly, the combined requirements of having a searchableand compressed text are not easy to achieve together, as the only solution before the90's was to process queries by uncompressing the texts and then searching into them.In particular, approximate searching on compressed text was advocated in 1992as an open problem [AB92]. Only very recently a couple of solutions have appeared[KNU00, MKT+00]. Despite their theoretical achievements, which are nontrivial, theexperimental results in both papers show that in practice they are slower than adecompression of the text followed by a state-of-the-art search on the uncompressedtext.In this paper we take a di�erent approach. We reduce the problem of approximatesearching to the problem of multipattern searching of a set of pattern pieces plus localdecompression and direct veri�cation of candidate text areas. Apart from the existingalgorithm for multipattern searching on compressed text [KTS+98], we propose acouple of new algorithms by adapting existing single-pattern search algorithms [NT00,NR99, KTS+99].Our experimental results show that, for moderate error level k=m, the new al-gorithms are faster than the naive approach of uncompressing plus searching (up to3 times faster for low enough error levels). For this moderate error level, the newalgorithms are about 10{30 times faster than previous work. Therefore, this is the�rst practical result for this problem.2 Related WorkTwo di�erent approaches exist to search compressed text. The �rst one applies tocompression methods based on single symbol replacement, such as Hu�man coding[Huf52]. E�cient solutions exist for this case [Man97, MNZBY00], but in generalthe compression ratio is not so good or the functionality is limited (e.g. to natural2



language text).The second approach considers Ziv-Lempel compression, which is based on �ndingrepetitions in the text and replacing them with references to similar strings previouslyappeared. LZ77 [ZL77] is able to reference any substring of the text already processed,while LZ78 [ZL78] and LZW [Wel84] reference only a single previous reference plus anew letter that is added.String matching in Ziv-Lempel compressed texts is much more complex, since thepattern can appear in di�erent forms across the compressed text. The �rst algorithmis from 1994 [ABF96], which presents a compressed matching algorithm for LZ78which simulates a KMP machine [KMP77] and solves the existence problem (i.e. justdetermining whether the pattern appears or not) in time and space O(m2 + n). ForLZ77 a randomized algorithm has been presented [FT98] to solve the same problemin time O(m+ n log2(u=n)).An extension of the former work to multipattern searching on LZ78/LZW was laterpresented [KTS+98]. Based on Aho-Corasick [AC75], they achieve O(m2 + n + R)time and O(m2+n) space to �nd all the occurrences of the patterns, where this timem is the total length of all the patterns.Later work [NR99] presented a general scheme to search on Ziv-Lempel compressedtexts (simple and extended patterns) and specialized it for some particular formats(LZ77, LZ78, etc.) Their approach is based on bit-parallelism, a technique to packmany values in the bits of a computer word of w bits and manage to update all themin parallel. A similar result, for LZW, was independently found [KTS+99].Approximate string matching on compressed text is an open problem advocatedin 1992 [AB92]. Very recently, it has been solved for the LZ78/LZW formats inO(mkn +R) worst case and O(k2n +R) average case time using dynamic program-ming techniques [KNU00] and in O(nmk3=w) worst case time using bit-parallelism[MKT+00]. However, both solutions are very slow in practice. The aim of this paperis to present the �rst practical solution to this problem for the LZ78/LZW formats.3 The LZ78/LZW Compression FormatsWe introduce some notation for the rest of the paper. A string S is a sequence ofcharacters over an alphabet � of size �. The length of S is denoted as jSj, thereforeS = s1 : : : sjSj where si 2 �. A substring of S is denoted as Si:::j = sisi+1 : : : sj, andif i > j, Si:::j = ", the empty string of length zero. In particular, Si = si. P and T ,the pattern and the text, are strings of length m and u respectively.The general idea of Ziv-Lempel compression is to replace substrings in the textby a pointer to a previous occurrence of them. If the pointer takes less space thanthe string it is replacing, compression is obtained. We are particularly interested inthe LZ78 and LZW formats.The LZ78 format [ZL78] is based on a dictionary of blocks, to which we add everynew block computed. At the beginning of the compression, the dictionary containsa single block b0 of length 0. The current step of the compression is as follows: ifwe assume that a pre�x T1:::j of T has been already compressed into a sequence of3



blocks Z = b1 : : : br, all of them in the dictionary, then we look for the longest pre�xof the rest of the text Tj+1:::u which is a block of the dictionary. Once we found thisblock, say bs of length `s, we construct a new block br+1 = (s; Tj+`s+1), we write thepair at the end of the compressed �le Z, i.e Z = b1 : : : brbr+1, and we add the blockto the dictionary. It is easy to see that any pre�x of a dictionary element is also inthe dictionary, and a natural way to represent it is a trie.Given a block br = (s; c) we call ref(r) = s and char(r) = c. It is also easy toknow the length len(r) as len(0) = 0 and len(r) = len(ref(r)) + 1.Many variations on LZ78 exist, which deal basically with the best way to code thepairs in the compressed �le, or with the best way to compress using limited memory.A particularly interesting variant is from Welch, called LZW [Wel84], which is used byUnix's Compress program. In this case, the extra letter (second element of the pair)is not coded, but it is obtained as the �rst letter of the next block (the dictionary isstarted with one block per letter). Hence any algorithm designed for LZ78 is triviallyadapted to LZW, which we do not consider separately in our algorithm description(despite that our actual implementations work on LZW).4 Our Search Approach on LZ78/LZWMost algorithms to search on compressed text borrow their ideas from classical algo-rithms on uncompressed text and adapt them to work on a sequence of Ziv-Lempelblocks rather than on a sequence of characters. The solutions for approximate stringmatching are not an exception. Four basic approaches exist on classical approxi-mate pattern matching [Nav00], three of which are of interest for this paper: (1)Dynamic Programming, (2) Bit Parallelism, and (3) Filtration. (Refer to the survey[Nav00].) In the present work, we adapt a simple but powerful �ltration techniquedue to [WM92, NBY99] to work on compressed text. The idea is that if a patternis split in k + 1 nonoverlapping pieces, then at least one of the pieces must appearunaltered inside every occurrence with at most k errors. The reason is that each errorcan alter at most one piece.We split the pattern in k+1 equal-length pieces trying to maximize the length ofthe shortest piece. Hence their length is bm=(k + 1)c. We run a multipattern searchalgorithm on the compressed text, looking for the positions where any of the piecesappears. We discuss later the multipattern search algorithms that can be used.Each time a piece is found, we decompress the candidate text area and apply aclassical algorithm over the decompressed area (of length m+ 2k). Say that patternpiece Pi:::i0 begins at text position j. Then the text area to check is Tj�i+1�k:::j+m�i+k .We have chosen Myers' algorithm [Mye98] for the veri�cation.In order to decompress locally we need to store, as we process the compressed textblocks br, the information on ref(r), char(r) and len(r) in arrays. We also need tokeep track of the current text position j, which is easy by accumulating the lengths ofthe blocks. If the last block processed br �nishes at text position j and we �nd a pat-tern piece ending inside br, then we can obtain the text characters Tj�len(r)+1:::j in re-verse order as char(r), char(ref(r)), char(ref(ref(r))), etc. If former characters are4
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sequence of LZ blocks portion needing lookaheadFigure 1: Our search method on compressed text.needed then we look at the previous block r�1 and obtain Tj�len(r)�len(r�1)+1:::j�len(r)in reverse order as char(r � 1), char(ref(r � 1)), char(ref(ref(r � 1))), and so on.However, it may be necessary to obtain some characters ahead of the last blockread. This is implemented with a lookahead mechanism, where the module that readsthe compressed text is m+ k blocks ahead. This guarantees that the required blockinformation is always present. Figure 1 illustrates.It is common to have overlapping veri�cation requirements when the error level kis not very low. To avoid reverifying many times the same text area, we keep trackof the last text position veri�ed and the state of the veri�cation algorithm at thatpoint. If the new requirement overlaps with the previous one we restart only fromthe last veri�ed text position using the stored search state, instead of initializing it.Let us consider the average complexity of this scheme. A probably optimal mul-tipattern search algorithm [KTS+98] takes time O(m2+n). For each occurrence of apiece we need to work O(m(m+2k)) = O(m2) with a classical algorithm, or O(m2=w)using Myers' algorithm (note that we cannot use average time �gures here because acandidate text area is not random). We use O(m2) for simplicity because the resultis basically the same. The number of text positions where some piece matches is(k + 1)u=�bm=(k+1)c. This gives a total search time ofO  m2 + n + ukm2�bm=(k+1)c!which is competitive against the existing O(k2n) complexity fork + 1 � mlog�(u=n) + log�m(1 + o(1))and competitive against an O(u) time decompression followed by an optimal searchalgorithm for k + 1 � m3 log�m(1 + o(1)) < m3 log�mThis shows that our approach is good in general when the error level permittedk=m is low enough. When compared to previous algorithms to search on compressedtext, a high compression ratio u=n goes against our algorithm because of our need touncompress candidate text areas. The inuence, however, is quite small (logarithmic).It is worthwhile to notice that the memory we need for searching is the samenecessary to decompress the �le. When the Ziv-Lempel dictionary is reinitialized we5



can do the same. We describe now three possible techniques for the multipatternsearch. These are later compared in the experiments.4.1 An Aho-Corasick TechniqueThe multipattern search algorithm on LZ compressed text [KTS+98] is based on thesimulation of the Aho-Corasick pattern matching machine [AC75]. A Mealy typesequential machine is built which processes the blocks one by one. It consists of twofunctions: Jump and Output de�ned on the domain Q � D, where Q is the set ofstates of the AC machine and D is the set of Ziv-Lempel blocks. For every block br,the machine makes just one state transition using Jump, which corresponds to theconsecutive state transitions of the AC machine caused by the string represented bybr. The AC machine being simulated may, however, pass through a state with outputsduring the consecutive state transitions. The function Output is used to avoid missingsuch outputs.The function Jump can be built in O(m2 + n) time using O(m2 + n) space, sothat it returns its value in O(1) time. The function Output can also be built atthe same time and space complexities, so that it returns in O(1) time a linear sizerepresentation of the set of outputs. On the other hand, the text scanning takesO(n + R) time, where R is the number of pattern occurrences. Thus, the algorithmruns in O(m2+ n+R) time using O(m2+n) space. The details are involved and thereader interested in them is referred to the original paper [KTS+98].4.2 A Boyer-Moore TechniqueAn existing Boyer-Moore technique to search a single pattern on compressed text[NT00] can be adapted to multipattern searching. The Boyer-Moore technique [BM77]consists in aligning the pattern in a text window and comparing the window textcharacters with the corresponding pattern characters. If a mismatch occurs, then asafe shift is computed, which permits to slide the window forward in the text withoutrisk of missing an occurrence. If no mismatch occurs, then a pattern occurrence isreported and the window is slid by 1.A number of techniques to adapt the idea to Ziv-Lempel compressed text havebeen presented [NT00]. The general idea is to use the explicit characters c of theblocks br = (s; c) to try to shift. Among the many shift functions proposed, we havebeen able to adapt the one which precomputes a tableBP (i; c) = min(fig [ fi� j; 1 � j � i ^ Pj = cg)which gives the maximum safe shift given that at window position i the text characteris c (this is similar to the Simpli�ed BM table, and can be easily computed in O(m2+m�) time).If the explicit characters do not permit a shift (i.e. BP (i; c) = 0), then we startto use the characters of the referenced blocks: char(s), char(ref(s)), etc. on all theblocks that overlap with the text window. If no window character permits a shift, amatch is reported. 6



To adapt the technique to search a set of pattern pieces P 0 : : : P k, we precomputea pessimistic B table which permits the minimum shift among all the patterns:B(i; c) = min0�r�kBP r (i; c)which is easily precomputed and clearly cannot lose any match. On the other hand,the fact that no text window character permits a shift does not immediately implythat one of the patterns has appeared. For example we can search for "abc" and"def", and a text window "aec" will not permit a positive shift.Hence, when a shift is not possible we have to obtain the characters of the textwindow and check directly for the presence of any of the patterns in the set. Obtainingthe window characters has already been done when trying to shift the window, andthe direct check can be done in time proportional to the window length by storing allthe patterns P r in a trie data structure.4.3 A Bit Parallel TechniqueThere exists a bit-parallel technique [NR99, KTS+99] to search a single pattern onZiv-Lempel compressed text. The technique uses bit-parallelism to store a set ofpattern positions. For each block of the compressed text we store the set of patternpre�xes which match a block su�x and the set of pattern su�xes which match ablock pre�x. The list of positions inside each block where there is an occurrence ofthe whole pattern is also maintained. Finally, the state of the search consists of thecurrent text position and a bit mask indicating the set of pattern pre�xes which havematched a su�x of the text read up to now.When a new block br = (s; c) appears, we carry out three actions: (i) compute itspre�xes, su�xes and internal matches; (ii) report the new occurrences; (iii) updatethe search state. The �rst part is done using the pre�xes, su�xes and internal matchesof s, to which c has to be added at the end. The second part is obtained by joining apattern pre�x which matches the text su�x read up to now with a pattern su�x thatmatches a pre�x of the new block. To those matches we have to add the positionsinside the new block where the whole pattern appears. Finally, the search stateis updated by knowing the length of the new block and the set of pattern pre�xeswhich match a su�x of the new block. The reader is referred to the original papers[NR99, KTS+99] for more details.The idea for multipattern searching is to carry out all the k+1 searches in parallelby packing the sets of pattern positions of all the patterns in a single computerword. The number of bits required for the bit-parallel simulation with one pattern isproportional to the pattern length m. Since we are now searching for k+1 subpatternsof length bm=(k + 1)c, the total length is at most m, so the space required is similarto that of an exact search for the original pattern.All the operations done on the bit masks to handle sets of pattern pre�xes andsu�xes can be easily adapted to the case where the information of several patternsis packed together. It is necessary to exercise some care to make sure that the infor-mation about one pattern does not overow onto the bit area of another pattern, butavoiding this with the use of the appropriate bit masks is an easy exercise.7



5 Experimental ResultsWe have implemented our algorithms on LZW, modifying Unix's Compress program(so we are able to search �les with ".Z" extension). We ran our experiments on anIntel Pentium III of 550 MHz and 64 Mb of RAM running Linux. The word length isw = 32 bits. We have compressed 10 Mb of Wall Street Journal articles (WSJ) and10 Mb of DNA. WSJ was compressed to 42.59% of its size and DNA to 27.71%.We have compared our three algorithms against previous work [KNU00, MKT+00]and against the naive approach of decompressing plus searching with the best availablealgorithms on uncompressed text.We have tested m = 10 to 30, and k = 1 to m=2. For each pattern length,we selected 100 random patterns from the text and used the same patterns for allthe algorithms. As the system times are negligible because of caching, we reportuser times only. We test the following algorithms: the previous work based on dy-namic programming over compressed text [KNU00] (DP), the previous work basedon bit-parallelism over compressed text [MKT+00] (BP), the naive approach of de-compressing plus searching using partitioning into k + 1 pieces [NBY99] (U+PP)and using bit-parallelism [Mye98] (U+BP), and our new algorithms using di�erentmultipattern search techniques: the Aho-Corasick method [KTS+98] (PP/AC), ouradaptation of the Boyer-Moore method [NT00] (PP/BM) and our adaptation of thebit-parallel method [NR99, KTS+99] (PP/BP).Figure 2 shows some results. Our methods improve by far over previous work. Inthe area where they are interesting (i.e. better than the naive approach) they are 10to 30 times faster than previous work. In order to enhance visibility we have had toleave out of the plots those DP and BP algorithms,but they take at least (i.e. form = 10; k = 1) more than 6 seconds. A rough and optimistic approximation of DP'ssearch time is 2 +0:65m+0:2mk seconds on WSJ and 1+ 0:25m+0:15mk on DNA,while BP is even slower.On the other hand, the new algorithms are faster than the naive approach of de-compressing and searching when k=m is low enough, where \low enough" depends alsoon the type of text and pattern length, e.g. the limit is more tolerant on shorter pat-terns and larger alphabets, as predicted by the analytical condition k=m � 1=3 log� m.The maximum acceptable k=m value on WSJ ranges from 40% for m = 10 to 30%for m = 30, while on DNA it is 20%. These ranges include most of the interestingcases in practical applications. Observe that in the best cases (lowest k) we are aboutthree times faster than the best naive approaches. We have included also the timenecessary just to decompress, since up to that time our approach is guaranteed to befaster than any decompress plus search approach.Finally, let us compare the di�erent implementations of our algorithm. In general,the PP/BP version is better, which is reasonable because the length of the pieces isbm=(k+1)c, which is normally not enough for the PP/BM variant to take advantageof the pattern length. The only cases where PP/BM is superior is on WSJ when theerror level is very low, i.e. k=m equal to 10% or less. PP/AC is slower than PP/BP,but this should change for longer patterns, as the bit-parallel simulation needs dm=weoperations. 8
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