
A General Practical Approach to PatternMatching over Ziv-Lempel Compressed TextGonzalo Navarro1 and Mathieu Ra�not21 Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago,Chile. gnavarro@dcc.uchile.cl. Partially supported by Fondecyt grant 1-990627.2 Institut Gaspard Monge, Cit�e Descartes, Champs-sur-Marne, 77454Marne-la-Vall�ee Cedex 2, France. raffinot@monge.univ-mlv.frAbstract. We address the problem of string matching on Ziv-Lempelcompressed text. The goal is to search a pattern in a text without un-compressing it. This is a highly relevant issue to keep compressed textdatabases where e�cient searching is still possible. We develop a gen-eral technique for string matching when the text comes as a sequence ofblocks. This abstracts the essential features of Ziv-Lempel compression.We then apply the scheme to each particular type of compression. Wepresent the �rst algorithm to �nd all the matches of a pattern in a textcompressed using LZ77. When we apply our scheme to LZ78, we obtaina much more e�cient search algorithm, which is faster than uncompress-ing the text and then searching on it. Finally, we propose a new hybridcompression scheme which is between LZ77 and LZ78, being in practiceas good to compress as LZ77 and as fast to search in as LZ78.1 IntroductionString matching is one of the most pervasive problems in computer science, withapplications in virtually every area. It is also one of the oldest and richest areaof development. The string matching problem is: given a pattern P = p1:::pmand a text T = t1:::tu, both sequences of symbols over a �nite alphabet � of size�, �nd all the occurrences of P in T . There are many algorithms to solve thisproblem, from classical to very recent [19, 8, 4, 14, 27, 9, 25]. The complexity ofthis problem is O(u) in the worst case and O(u log(m)=m) on average, where u =jT j and m = jP j, and there exist variants of [8, 9] which achieve this complexity.In practice, however, [27,25] are the fastest algorithms in most cases.Another old and rich area in computer science is text compression. Its aim isto exploit the redundancies of the text to reduce its space usage. There are manydi�erent compression schemes [5], among which the Ziv-Lempel family [31,32]is one of the best in practice because of their good compression ratios combinedwith e�cient compression and decompression times. Other compression schemesare Hu�man coding [15] and arithmetic coding [29], among others.Today's textual databases are an excellent example of applications whereboth problems are crucial: the texts should be kept compressed to save spaceand I/O time, and they should be e�ciently searched. Surprisingly, these two

combined requirements are not easy to achieve together, as the only solutionbefore the 90's was to process queries by uncompressing the texts and thensearching into them.The compressed matching problem was �rst de�ned by Amir and Benson [1]as the task of performing string matching in a compressed text without decom-pressing it. Given a text T , a corresponding compressed string Z = z1 : : : zn, anda pattern P , the compressed matching problem consists in �nding all occurrencesof P in T , using only P and Z. A naive algorithm, which �rst decompresses thestring Z and then performs standard string matching, takes time O(u + m).An optimal algorithm takes worst-case time O(n +m), where n = jZj. In [2], anew criterion, called extra space, for evaluating compressed matching algorithms,was introduced. According to the extra space criterion, algorithms should use atmost O(n) extra space, optimally O(m) in addition to the n-length compressed�le.We de�ne now a variation where we are required to report all the matchingpositions. That is, given P and Z, report all the jxj such that T = xPy. Theoptimal algorithm for this problem takes O(m + n + R) time, where R is thenumber of matches.Two di�erent approaches have emerged in the last years to combine com-pression and searching in textual databases. A �rst one is strongly orientedto natural language texts, which are assumed to be composed of words whichfollow some statistical rules. The basic idea is to compress the text using Hu�-man, where the words instead of the characters are taken as the symbols [7,22]. As Hu�man assigns a �xed code to each symbol, searching a given stringis a matter of compressing it and searching it in the compressed text using aclassical string matching algorithm with minor modi�cations [24, 23]. Despite itssimplicity, this approach is very e�ective on natural language text, with bettercompression ratios than those of the Ziv-Lempel family, and search time whichis between 2 and 8 times faster than the fastest algorithms for standard stringmatching over the uncompressed text. They are also able to search for complexpatterns (such as regular expressions) and allow errors in the matches, providedthat words are matched against words. The average search time for a simplepattern is close to O(m + n log(u=n)=(u=n)). The extra space is O(pu), whichis the same space necessary to decompress the text. A weakness of this schemeis that it does not work well on small texts (say, less than 10 Mb), since in thatcase the vocabulary is almost as big as the text itself. Also, it can be appliedonly to natural language texts.Another practical approach is an ad-hoc technique [20], which however isnot so fast, obtains compression ratios of near 70% (against 30% to 40% ofZiv-Lempel algorithms), and relies on the ASCII encoding.The second line of research considers Ziv-Lempel compression, which is basedon �nding repetitions in the text and replacing them with references to similarstrings previously appeared. LZ77 is able to reference any substring of the textalready processed, while LZ78 references only a single previous reference plus

a new letter that is added. In both cases, the referenced text to be found isnormally limited by a window which precedes the current text position.String matching in Ziv-Lempel compressed texts is much more complex, sincethe pattern can appear in di�erent forms across the compressed text. In [2] acompressed matching algorithm for LZ78 is presented, which works in time andspace O(m2 + n). For LZ77, the only result is [11], which is a randomized algo-rithm to determine in time O(m + n log2(u=n)) whether a pattern is present ornot in an LZ77-compressed text, but they do not �nd all the pattern occurrences.Other algorithms for di�erent speci�c search problems have been presented in[13,17]. This second branch is rather theoretical and, to the best of our knowl-edge, no actual implementations have been developed.In this paper we aim at e�cient algorithms for string matching on Ziv-Lempelcompressed texts. We present new theoretical developments but also give prac-tical implementations and experiments on our algorithms. Our main results are{ We develop a general technique for string matching on a text which is givenas a sequence of blocks. This abstracts the essential features of Ziv-Lempelcompressed texts and is the basis for the algorithms which run over speci�cmembers of the family.{ We apply our technique to LZ77-compressed texts. The result is the �rstalgorithm to search under this compression scheme (recall that [11] cannot�nd all the occurrences of the pattern). The algorithm, however, is O(u)time at best. In practice, the algorithm is slower than uncompressing thetext and searching it with a classical algorithm.{ We apply the technique to the LZ78 compression scheme. The result is analgorithm which turns out to be a practical implementation of the theoreticalproposal of [2]. This algorithm is O(n + R) time in the worst and averagecase, and is in practice twice as fast as decompressing and searching.{ We propose a hybrid compression scheme which is between LZ77 and LZ78,which keeps some of the good features of LZ77 and which can be searchedin O(min(u; n logm) + R) time on average (and O(min(u;mn) + R) in theworst case). In practice, the compression e�ciency is similar to LZ77 andthe search time is similar to LZ78.In all cases our preprocessing cost is O(�+m) and our extra space is O(n+R),almost the same necessary to decompress the text. Our approach is practical andrelies on bit-parallelism. Bit-parallelism is a general technique to take advantageof the fact that the computer operates in parallel over all the bits of the machineword, so that if a process is so simple that it can be expressed with bit operationswe can perform many of those steps in a single operation of the processor. If wecall w the length in bits of the machine word (typically 32 or 64), then thepossible speedups are up to O(w). The complexity results presented assumethat m = O(w), otherwise we have to multiply the u and n of our complexitiesby m=w.

2 String Matching on BlocksWe describe now a general technique for string matching when the text is pre-sented as a sequence of atomic strings (here called \blocks") instead of a sequenceof characters. This technique is the basis for all the di�erent searching algorithmson Ziv-Lempel compressed text, which are described in the next sections.Our general assumption is that the blocks either have just one letter (thatwe can access directly) or are formed by a concatenation of previously seenblocks. We describe an online algorithm where we process the text block byblock. At any moment of the search we denote T 0 the text already processed (ofjT 0j characters). When we �nish the search, T 0 = T , i.e. the original text.The method works as follows. We process the blocks one by one. For eachnew block B, we compute a description for B which has all the information ofthe block which is relevant for the search. This description is denoted D(B) =(L;O; S; P;M), where{ L = jBj, that is, the length of B in characters;{ O = O�s(B) = the length in characters of the text we had processed whenB appeared;{ S = Su�(B) = all the pattern positions1 which either start a completeoccurrence of B inside the pattern, or start a proper pattern su�x whichmatches with a pre�x of B. Formally,Su�(B) = fjxj; P = xByg [fjxj; jxj> 0 ^ jzj > 0 ^ P = xz ^B = zyg ;{ P = Pref(B) = all the pattern positions which either follow a completeoccurrence of B inside the pattern, or follow a proper pattern pre�x whichmatches with a su�x of B. Formally,Pref(B) = fjxBj; P = xBy ^ jyj > 0g [fjzj; jzj > 0 ^ jyj > 0 ^ P = zy ^ B = x g ;{ M = Matches(B) = all the block positions where the pattern occurs (; ifjBj < jP j). Formally,Matches(B) = fjxj; B = xPyg :Figure 1 illustrates these concepts.The description D(B) of a new block B is obtained in two forms: (a) theblock is an explicit letter and then we obtain the description directly, or (b) theblock is a concatenation of other blocks previously known, and we obtain itsdescription by operating on the descriptions of the previous blocks.Once the description of the new block is computed, we use that descriptionto update the state of the search. This concludes the processing of the block andwe move to the next one. The state of the search contains the matches that havealready occurred and the potential matches in progress, that is,1 To simplify the notation, we number pattern positions starting at zero.

������
������
������

������
������
������

�������������������
�������������������
�������������������
�������������������

��������������������������������������
�������������������
�������������������
�������������������
�������������������

��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

S

P ������
������
������

������
������
������

����
����
����
��������

����
����
���������

�����
�����
�������������

����
����
����
��������

����
����
��������

����
����
����

S S S S

P PFig. 1. Pre�xes (P) and su�xes (S) for a long and a short block. The pattern has thediagonal tiling and the possible blocks have a bar tiling. The su�xes (dotted lines) andpre�xes (dashed lines) are pattern positions. Pre�xes are marked after the positionwhere they �nish, su�xes are marked at the position they start.{ Res(T 0) = the text positions that matched up to now, formallyRes(T 0) = fjxj; T 0 = xPyg ;{ Active(T 0) = the set of positions following the pattern pre�xes which matcha su�x of the current text. Formally,Active(T 0) = fjxj; jxj > 0 ^ jyj > 0 ^ P = xy ^ T 0 = zxg :Hence, when we complete the text processing and T 0 is not a text pre�xanymore but the whole text, Res(T) is our answer. The initial state of the searchis T 0 = �, and Res(�) = Active(�) = ;.We have de�ned already the information we keep, and consider now how tocompute that information. For the formulas that follow, we de�ne some auxiliaryfunctions, namely{ Lefti(X) = fx� i; x 2 Xg [fm� i;m� i+1; : : : ;m�1g, which receivesa set of Su�() positions not smaller than i, subtracts i to all them and thenadds new pattern positions �lling the hole left by the shift.{ Righti(X) = fx + i; x 2 Xg [f1; 2; : : : ; ig, which does the same forPref() positions, in the other direction.{ Addi(X) = fi+ x; x 2 Xg, which adds i to all the elements of the set.{ Subtri(X) = fi � x; x 2 Xg, which subtracts all the elements of the setfrom i.2.1 Description of a LetterThe base case of our scheme is to obtain the description of a block which is aletter a. The following is obtained by direct application of the general formulas.{ jBj = 1{ O�s(B) = jT 0j{ Su�(B) = fjxj; P = xayg{ Pref(B) = fjxaj; P = xay ^ jyj > 0g{ Matches(B) = if P = a then f0g else ;

2.2 Concatenating Two BlocksAssume that our block B is de�ned as the concatenation of one or more previousblocks. If only one previous block B0 is referenced, we just copy its de�nition. Weshow now how to concatenate two blocks, since the case of more than two blocksis a simple iteration over this procedure. We are given two blocks B1 and B2, andwe have to obtain the description for their concatenation D(B) = D(B1B2) =D(B1) �D(B2) (where we de�ne � as the concatenation of block descriptions).The formulas are as follows{ jBj = jB1j+ jB2j{ O�s(B) = jT 0j{ Su�(B) = Su�(B1) \ LeftjB1j(Su�(B2)){ Pref(B) = Pref(B2) \ RightjB2j(Pref(B1)){ Matches(B) = Matches(B1) [AddjB1j(Matches(B2))[(SubtrjB1j(Pref(B1) \ Su�(B2)) \ f0; 1; 2; : : : ; jBj�mg)We explain now the rationale for the formulas (see Figure 2). The �rst twoare immediate. For Su�(B), note that Su�(B1B2) considers that either a pre�xof B1 may be a su�x of P or B1 may be completely inside P followed by a pre�xof B2 matching the a su�x of P . That is, if the number i belongs to Su�(B1B2)then either{ i � m�jB1j, that is, a pre�x of B1B2 is a su�x of P . Notice that in this casealso a pre�x of B1 is a su�x of P . Since LeftjB1j will add all these positions,they will appear in the result if and only if they are present in Su�(B1),which is correct.{ i < m�jB1j, that is, B1 appears inside P and is immediately followed by anoccurrence of B2 (which can be a complete occurrence or share a pre�x withthe pattern su�x). If we subtract jB1j to the elements in Su�(B2), then weare interested in the positions which also appear in Su�(B1) (which sincei < m� jB1j can only correspond to complete occurrences of B1).The rationale for Pref() is analogous to Su�(). For Matches(B), there arethree parts. The �rst one is the matches which are inside B1, and the second oneis the same for B2 (displaced since now B2 comes after B1 in B). The third oneaccounts for matches that appear only when B1 and B2 are concatenated. If apre�x of the pattern is at the end of B1, and the corresponding su�x is at thebeginning of B2, then we have the pattern in B1B2. The Subtr converts patternto block positions and the �nal set which is intersected with the results ensuresthat we have really pre�xes and su�xes instead of substrings of the blocks.2.3 Updating the Search StateWe want now to update the state of our search by processing a new block Bwhose description has just been computed. The formulas to obtain the newRes(T 0B) and Active(T 0B) values from the old Res(T 0) and Active(T 0) ones are

������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

��

��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������

P S S S

B1 B2

B1 B2

B1 B2Fig. 2. Su�xes of the concatenation of two blocks. It is possible that the result involvesonly B1 (rightmost pair) or that it involves both. In this case B1 is completely insidethe pattern and B2 may or may not be totally inside (leftmost and middle pairs,respectively).{ Active(T 0B) = RightjBj(Active(T 0)) \ Pref(B){ Res(T 0B) = Res(T 0) [AddjT 0j(Matches(B)) [SubtrjT 0j(Active(T 0) \ Su�(B) \ fm�jBj;m�jBj+1; : : : ;m�1g)The new Active(T 0B) value considers that, since a new block B has beenadded to T 0, the pattern pre�xes that are su�xes of T 0B are those that arealready su�xes of B (i.e. Pref(B)), or those which are su�xes of T 0 and arefollowed by B in the pattern. As before, Right does the trick of considering bothcases in a single formula.The new value Res(T 0B) adds to Res(T 0) not only the matches which are com-pletely inside B, but also those which appear when T 0 is concatenated to B. Forthis sake, we consider pattern pre�xes which are su�xes of T 0 (i.e. Active(T 0)),and which are followed by the corresponding pattern su�x in B. The �nal in-tersection ensures that the complete pattern has appeared. Figure 3 illustrates.
������
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

P

B

P

P

PP

T’

������
������
������
������

������
������
������

������
������
������

������������������
������������������
������������������
������������������

�����������
�����������
�����������

�����������
�����������
�����������

P S

B

P P

T’Fig. 3. Updating the state of the search. In the �rst case we illustrate the updating ofActive(T 0) (a short block is added). In the second case we show how the matches areupdated (when a long block is added). In general both updates are necessary.3 A Bit-Parallel ImplementationUntil now, we have de�ned our algorithms in terms of sets of pattern positions.We present now a very well-suited implementation paradigm which allows toconvert the previous algorithms into e�cient implementations.

We use the technique called bit-parallelism [3]. This technique takes advan-tage of the fact that the processor works in parallel on all the bits of the computerword. We call w the number of bits of the computer word, which is 32 or 64 incurrent architectures. If one is able to map the elements of a set on bits, and toexpress the operations to perform on them by using only the operators providedby the processor (which are rather limited, i.e. bit shifts, masking, etc.), thenone can e�ectively parallelize the work on the set, obtaining speedups of up toO(w) over the original algorithm.This paradigm was invented in 1989 by Baeza-Yates and Gonnet [4] for atext searching algorithm called Shift-Or. If we consider m � w, then we keepthe state of the search in a computer word D, whose i-th bit tells whether thepre�x of length i of the pattern matches the current text su�x. All the bits startwith value zero, and a match is reported whenever the m-th bit of D signals amatch. The update formula upon reading a new text character isD0 = (D << 1) j S[a]where S[a] is a mask whose i-th bit tells whether Pi = a, we are assuming that0 represents a match and a 1 a mismatch, \j" is the bitwise-or of the computerword, and \<< `" is a bit shift operation which assigns the i-th bit to the(i + `)-th, setting the �rst ` bits to zero. Other operations allowed in mostarchitectures are bitwise-and (&), shift to the other direction (>>), and, whichis more sophisticated, arithmetic operations such as addition and subtractionwhich operate on the bit mask as if it were a number.The Shift-Or algorithm is O(n) provided m � w. If the computer word istoo short to hold one bit per pattern position, then dm=we computer words areused for the simulation, and the search takes in the worst case O(mn=w) time.It is not hard to show that on average it takes O(n), since O(1) computer wordshave active states on average.Our implementation can indeed be seen as a Shift-Or algorithm working onblocks instead of letters. The sets Pref(B), Su�(B), and Active(T 0) are repre-sented by bit masks. Hence, for blocks of one letter a we have Su�(B) = S[a] andPref(B) = (S[a] << 1). The formulas to concatenate blocks are directly trans-lated by noticing that Left` and Right` are converted into \>> `" and \<< `",respectively (taking care of the borders which must get active bits), and unionand intersection are converted into \j" and \&" respectively. Hence, all thoseoperations on sets are performed in O(1) time if m � w, and O(m=w) time ingeneral. In practical text searching we can assume m = O(w).On the other hand, the sets Res(T 0) and Matches(B) are explicitly storedin an array. However, it is not di�cult to see that the total amount of work tohandle them is O(R), where R is the number of occurrences of the pattern inthe text. The cost cannot be o(R) if we report all the occurrences.Hence, if f(n) concatenations are performed along all the process, our totalsearch cost is O(f(n) +R). The value of f(n) depends on the compression algo-rithm. We have also to add a preprocessing cost to build the S[] table, which isO(� +m).

In all cases, the space complexity of our algorithms is O(n + R), since weneed to store the descriptions of the blocks already seen and the matches found.Notice that this n refers in fact to the size of the compression window, and theR to the matches present in that window only.Finally, we consider the practical problem of uncompressing a neighborhoodof the occurrences. In practice it is undesirable that we just give the text posi-tions matching the pattern. It is much better to uncompress and show a neigh-borhood of the match. This neighborhood can be de�ned as the line holdingthe occurrence, the record (delimited by some given pattern), a �xed number ofcharacters, etc.Assume that we know a pattern position and want to show a neighborhood.We just decompress the surrounding blocks forward and backward, until from theplain text obtained we determine that the neighborhood has been decompressed.To decompress a block we have two cases: (a) the block is a letter, in which casewe deliver the letter, (b) the block is a concatenation of other blocks, in whichcase we decompress each of those blocks in turn. This process takes O(N) timeat most (where N is the size of the decompressed neighborhood), since at eachstep we either obtain one character of N or split the �nal text to be obtained,and it is not possible to split it more than O(N) times. This shows that it ispractical to show a part of a Ziv-Lempel compressed �le without necessarilyuncompressing the whole �le.4 LZ78 Compression4.1 Compression AlgorithmThe Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [32]) isbased on a dictionary of blocks, in which we add every new block computed.At the beginning of the compression, the dictionary contains a single block b0of length 0. The current step of the compression is as follows: if we assumethat a pre�x t1 : : : ti of T has been already compressed in a sequence of blocksZ = b1 : : : bc, all them in the dictionary, then we look for the longest pre�x of therest of the text ti+1 : : : tu which is a block of the dictionary. Once we found thisblock, say bk of length lk, we construct a new block bc+1 = (k; ti+lk+1), we writethe pair at the end of the compressed �le Z, i.e Z = b1 : : : bcbc+1, and we addthe block to the dictionary. It is easy to see that this dictionary is pre�x-closed(i.e. any pre�x of an element is also an element of the dictionary) and a naturalway to represent it is a trie.We give as an example the compression of the word ananas in Figure 4. The�rst block is (0; a), and next (0; n). When we read the next a, a is already theblock 1 in the dictionary, but an is not in the dictionary. So we create a thirdblock (1; n). We then read the next a, a is already the block 1 in the dictionary,but as do not appear. So we create a new block (1; s).The compression algorithm is O(u) in the worst case and e�cient in practiceif the dictionary is stored as a trie, which allows rapid searching of the new text

0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Fig. 4. Compression of the word ananas with the algorithm LZ78.pre�x (for each character of T we move once in the trie). The decompressionneeds to build the same dictionary (the pair that de�nes the block c is readat the c-th step of the algorithm), although this time it is not convenient tohave a trie, and an array implementation is preferable. Compared to LZ77, thecompression is rather fast but decompression is slow. LZ78 is used by Unix'sCompress program.Many variations on LZ78 exist, which deal basically with the best way to codethe pairs in the compressed �le, or with the best way to update the window. Aparticularly interesting variant is from Welch, called LZW [28]. In this case, theextra letter (second element of the pair) is not coded, but it is taken as the �rstletter of the next block (the dictionary is started with one block per letter). Avariant over this is presented by Miller and Wegman [21] (which we call LZMW),where the new block is not the previous one plus the �rst letter of the new one,but simply the concatenation of the previous and the new one.4.2 Pattern Matching in LZ78 Compressed FilesOur general algorithm for searching in a sequence of blocks Z = b1 : : : bn canbe directly applied if we consider the new letter added after each block createdby the LZ78 compression algorithm as a separate block. That is, each new pair(k; a) read at step c is taken as a reference to a previous block (bk) followed bya literal block (a). Hence, we compute the description of the concatenation ofbk and a and add it as the new block bc to our dictionary. At the same time,we update the state of the search using the description of bc just computed. Ofcourse, in practice we manage this one-letter block in a special way, to speed-upthe block concatenation. We keep all the descriptions of the blocks bk in an arraywhich is directly accessed.The algorithm we obtain is quite the same as in [2]. The main di�erences arethat we obtain this algorithm as a particular case of a general string search al-gorithm for text that comes in blocks, that their algorithm is originally designedfor LZW compression, and that we search all the occurrences of the pattern, notonly the �rst one. Moreover, we present a practical implementation based on

bit-parallelism, while [2] is a theoretical work that has not been implemented.To our knowledge ours is the �rst real implementation of this algorithm2. It isquite easy to adapt our algorithm to work on other variants of LZ78, such asLZW or LZMW. In particular we can easily adapt to di�erent window man-agement policies. The simplest one is that when the compressor memory is full,the dictionary is deleted and compression is restarted. Others try to remove theleast interesting blocks from the dictionary, e.g. [12]. Our searcher can followthe same steps of the compressor along the search, using the same amount ofmemory.4.3 AnalysisThe theoretical complexity of the pattern matching algorithm is O(n+R) (recallthat, as we use bit-parallelism, we have O(mn=w + R) time for long patterns).If n = o(u), this is faster than searching in the uncompressed text. In practicalterms, the algorithm is rather e�cient since no extra work apart from one blockconcatenation and one update of the search is performed per element of thecompressed �le.Our experimental results, however (Section 7), show that the algorithm takesin practice twice the time of a Shift-Or run on the uncompressed text. This isbecause Shift-Or is very simple, and although we process many characters of theuncompressed text in one shot, in practice the cost of each step is big enough toamortize any possible gain due to compression. A speci�c problem is the localityof reference: the compressed matching algorithm reads random positions in thearray of block de�nitions, while the uncompressed algorithm works basically in-place. The caching mechanism of the computer largely favors this last approach.However, there is a positive result. Searching the compressed �le with thisalgorithm is twice as fast as decompressing it and then searching the uncom-pressed �le. For this comparison we are assuming that the �le is compressedwith LZ77 (which is much faster than LZ78 to decompress) and consider thetime of gunzip, which is an optimized decompression software. Hence, if the textcollection is kept compressed (which is de�nitely of interest) then it is muchfaster to search directly the compressed �les.We have tried to further improve our algorithm. For instance, we have createda variant called Mark-LZ78. In this compression algorithm, we mark with a bitag for each block if the block is a leaf of the dictionary trie or not, to avoidstoring the block description if this block is not used anymore. However, as weshow in the experiments, the performance does not improve.5 LZ77 Compression5.1 Compression AlgorithmThe Ziv-Lempel compression algorithm of 1977 (usually named LZ77 [31]) is,in some sense, simpler than LZ78, since the basic idea is just to recognize two2 See, however, [18], in this very same conference.

repeated segments of the text and to mark the second as a reference (positionin the text and length of the repeated part) to the �rst one. More formally,assume that a pre�x t1 : : : ti of T has been already compressed in a sequence ofblocks Z = b1 : : : bc. We look for the longest pre�x v of ti+1 : : : tu which appearsalready in t1 : : : titi+1 : : : ti+jvj�1. Once we have it, say that we �nd it startingat position j � i, we add a new block (j; jvj) to the compressed �le Z. A specialcase occurs if v is empty, in which case ti+1 is a new letter and we code it witha special block (0; ti+1). With the same example ananas, we obtained: (0; a)nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 3) s; (0; a)(0; n)(1; 3)(0; s).Notice that the above de�nition allows that the referenced block overlapsthe one which is being compressed. Another variant avoids this for simplicity,i.e. v must be found in t1 : : : ti. In this case the compression of ananas be-comes: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 2) as; (0; a)(0; n)(1; 2)(1; 1)s; (0; a)(0; n)(1; 2)(1; 1)(0; s).Yet another variant codes the repeated block and then the letter which followsit in the still uncompressed text. There are many other variants as well, mainlyrelated to how to represent the pairs in the compressed �le and how to compressfast. In general, the position j is coded as the di�erence i+ 1� j, since the lastoccurrence of the block is used and v is normally restricted to not appear toofar away from ti.LZ77 compresses more than LZ78, both in theory and in practice. From a the-oretical point of view, the variant which allows overlaps can obtain a compressed�le of O(1) blocks in the best case, while the one not allowing overlaps obtainsat most O(log u). LZ78, on the other case, cannot obtain less than O(pu). Thisis easily seen by considering the best-case �le T = au. In practice it is also truethat LZ77 compresses more than LZ78. LZ77 is implemented in the Gnu gzipprogram.Compression is rather slow with LZ77. It is expensive in time and space to�nd the longest pre�x of the uncompressed part of the �le that appears alreadyin the compressed part. In theory, the compression is O(u) in time and space bythe use of a su�x tree or a DAWG automaton [31,30]. In practice, the search indone in a bu�er window and an large hash table is normally used, as in gzip. Anexperimental comparison of di�erent techniques to �nd the pre�x can be foundin [6]. The decompression algorithm, on the other hand, is very fast (faster thanfor LZ78) because to decompress a block is it just necessary to copy a part ofthe text and no dictionary has to be kept.5.2 Pattern Matching in LZ77 Compressed FilesOur algorithm for LZ77 is an adaptation of the general algorithm on blocks, witha main di�erence. On LZ77 compressed �les, when we want to process a newblock, the situation shown in Figure 5 generally occurs: the new block referencesa sequence of r contiguous previously processed blocks, but it overlaps with the�rst and last one (u and v in the Figure). That is, the new block does notexactly correspond to previously processed blocks. Therefore, we do not have allthe information on the blocks u and v that we need to concatenate the blocks.

We solve this by computing recursively the descriptions of the two blocksu and v with the same method. That is, we simulate that we are back in thetext, where those blocks appeared, and compute their description (this maytrigger more recursive invocations with the same purpose). When we �nallyobtain the descriptions of u and v, we concatenate all the referenced blocks toobtain the description of the new block. Another possibility is that the new blockis completely inside another block already processed, in which case we have torecursively consider the blocks that de�ne the referenced block.
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
��
��
��

��
��
��

���
���
���

���
���
���

Blocks already computed

v New BlockuFig. 5. Recursive computation of the description of a block in LZ77 compressed �les.We explain now a technique to concatenate the r blocks in low average time.Instead of computing Pref(B) and Su�(B) of the �rst block, then concatenatingwith the second, then to the third, until the r blocks are concatenated, wecompute Su�(B) from the �rst block to the r-th and Pref(B) from the r-thblock to the �rst one. We analyze this shortly.5.3 Analysis and ImprovementsWe analyze now the many aspects of our algorithm and propose some improve-ments.Block concatenation. If we use the proposed block concatenation technique, wehave that in the worst case only the �rst m blocks can a�ect Su�(B) and onlythe last m blocks can a�ect Pref(B), so the worst case time for concatenatingthe blocks becomes O(min(u;mn)).We show now that on average only O(logm) blocks are processed untilSu�(B) becomes stable. Each new block character we process will either ex-tend the current su�xes of the set Su�(B) or make them disappear from theset. Each su�x is removed from the set with probability 1� 1=� (i.e. if the newcharacter block cannot extend it). Before we read the block characters all the mpattern positions are in Su�(B), and therefore on average no pattern positionsremain in the set after O(logm) block characters are read (after the i-th char-acter is read, the pattern positions m� i to m� 1 cannot be removed from theset, but their situation cannot change anyway).Even if we consider all blocks of length 1 (the worst), we work on averageO(n logm) because of concatenations. The same reasoning holds for Pref(B).

The only part of the block concatenation which cannot skip blocks is thecomputation of Matches(B). However, this adds up O(R) time along all thesearch. Therefore, the total time for block concatenation is O(min(u; n logm) +R) on average.Finding the blocks. We consider now how to �nd the indices of the block thatde�ne a text position j. We keep an array with the blocks already seen. Binarysearching the text position among these blocks adds O(n logn) to the cost. In-stead, we keep a table of O(n) entries where the element i points to the blockwhere the text position biu=nc is de�ned. By accessing this table we directlyarrive at the correct block with an average inaccuracy of O(u=n), and a �-nal binary search �nds the correct position, for a total cost of O(n log(u=n))(in practice a linear search is faster for the �nal part). This gives good re-sults in practice. Another alternative is that the compressor does not store thetext position and length of the repeated part, but instead it gives the blocknumbers involved and the o�sets inside u and v. Since a text position needsO(logu) bits and a block number plus an o�set inside the block needs on aver-age dlog2 ne+dlog2(u=n)e = O(log u) bits, the order of compression ratio shouldnot worsen. We show in the experiments that this version of the algorithm (calledBlock-LZ77) is faster than the plain version, since no searching of the text po-sition is necessary. However, compression ratios worsen signi�cantly in practicedue to round-o�s.Computing partial blocks. However, the really costly part of the algorithm isnot here, but in the recursive computation of the partial blocks u and v. If weconsider that each time we perform a recursive call we \split" the original blockB at a new position, then it is clear that at most jBj recursive calls can bedone until we have split it in single characters and therefore we have found thede�nition of each one. This shows that the total cost of the recursive calls isO(u) in the worst case. Our experiments suggest that this is also the averagecase, but we were not able to prove it.Consider now the cost of the recursive invocations in the case where thenew block B is strictly inside its referencing block. For instance, a letter whichrepeats inside a large block could trigger a long chain of recursive invocationsuntil its real de�nition is found. In the worst case, we could have a block ofsize s which references one of size s � 1, and this one references another of sizes � 2, and so on. We would work O(s), but the size of the text at that pointis O(s2). Hence, at text position i we cannot work more than pi, which givesa total worst-case cost of O(npu), which is too high. This problem does notdisappear if the compressor always stores the �rst occurrence of the repeatedblock instead of the last one, because we may not point to the �rst occurrencewhen we consider partial blocks.Hence the total amount of work is !(u) in the worst case whenever n =!(pu), and we conjecture that this is also the average case. See the left plot ofFigure 6, where we have experimented with the English text described in Sec-tion 7. Least squares �tting shows that a good model for the number of recursive

invocations per text character is 0:177 + 0:1 lnu (with less than 0.5% error inthe approximation). The experiment suggests that the algorithm is O(u log u)on average. This is, unfortunately, worse than uncompressing and searching. Wepresent now some techniques to improve this situation.Improvements. A �rst improvement we tried consisted in storing more informa-tion than simply one description per block. For instance, when we compute thedescription for the partial blocks u and v (which are not part of the originalsequence of blocks), we could store instead of discarding them. If later anotherblock needs the description of u and v, we have already computed them. Fig-ure 6 (right plot) shows that the total amount of recursive calls is reduced usingthis technique, and we conjecture that in this case we work O(u) (least squares�tting yields a complexity of O(u0:99927)). These blocks, however, cannot be eas-ily stored in the array of blocks since they do not belong to the sequence. Ahashing implementation gave bad results in practice, that is, the cost to add thenew blocks outweighted the gains of having them already computed. This couldchange for longer texts, if the orders of the two algorithms are di�erent.
200 400 600 800 1000 12000.4

1.6
0.40.60.81.01.21.4 u 200 400 600 800 1000 12000.4

1.6
0.40.60.81.01.21.4 nFig. 6. Number of recursive invocations (thick line) and block concatenations (thin line)per text character, for natural language text. The left plot shows the basic algorithmand the right plot shows the improvement of adding the computed blocks.Another improvement, which gave good practical results, was to try to com-pute less (instead of more) information. Our aim was to avoid the recursive com-putation of u and v. Hence, instead of computing their descriptions recursively,we pessimistically assume that they match all the pattern positions. If they areshort enough we will not have a match even assuming this, and we could processthem without actually obtaining their descriptions. Only when we �nd a (pos-sible) match we backtrack to the point where it could have been started andcompute correctly the involved blocks. For each block, we store whether it hasbeen correctly or pessimistically computed. As we show in the experiments, this

improves search time for patterns of length 15 or more in practice. However, themethod is limited since we cannot skip more than m characters of T withouthaving at least one character correctly computed, hence in the very best case wepay O(u=m) with this speedup. We call this algorithm Skip-LZ77 (and combinedwith Block-LZ77 it yields Skip-Block-LZ77).Final remarks. Even with all these improvements, the experiments show thatthis algorithm is much slower than decompressing (with gunzip) and search-ing (with Shift-Or). Although ours is the �rst algorithm to directly search inLZ77-compressed text, we believe that it is not possible in practice to beat adecompress-then-search approach. The root of this limitation lies in the need torecursively compute u and v. Another consequence of the existence of partialblocks is that, even if the compressor uses a window of �xed size to select thestrings to repeat, we need to keep in memory all the previous blocks, since even ifthey are not directly referenced anymore, we may need to resort to them in caseof partial blocks. We propose in the next section a slightly di�erent compressionscheme which gets rid of all the aspects of LZ77 compression that degrade thesearching performance.We �nish this section with a couple of comments. First, as it is clear from thealgorithm, we do not handle the case of overlapping compression, i.e. when thereferenced block can overlap with the new block B. Although we could handleit, the result is the same in cost as if the compressor avoided such overlapping(i.e. performing many steps, where a step ends when an overlap occurs). Second,other variants of LZ77 are easily accommodated. Finally, we notice that a neigh-borhood of size N around the occurrences can be obtained using the generalmechanism at O(Npu) cost (or, according to the empirical results, O(N log u)cost). This is because of the cost to �nd the de�nitions of the incomplete blocks.6 A New Hybrid Compression AlgorithmIt became clear in the previous section that the worst part of the cost of theLZ77 search algorithm was due to the cost of recursively computing partialblocks, and of �nding the block corresponding to a text position. We designa new compression algorithm between LZ78 and LZ77, to have multiple-blockcompression (not just one block like in LZ78), but also to avoid the recursivesituation which appears in searching LZ77-compressed �les (Figure 5).We propose the following algorithm. Assume that a pre�x t1 : : : ti of T hasbeen already compressed in a sequence of block Z = b1 : : : bc. We look now forthe longest pre�x v of ti+1 : : : tu which is represented by a sequence br : : : br+h al-ready present in the compressed �le. If there are many alternative choices for thesame v, we take the one with the minimum of blocks (to reduce the cost of con-catenations). And if still several possibilities occur, we take the �rst occurrence(the minimum in the number of the �rst block). We code this new block by (r; h).As in LZ77, if v is empty (i.e the letter ti+1 is new), we code a special block(0; ti+1). With the same example ananas, we obtain: (0; a) nanas; (0; a)(0; n)anas; (0; a)(0; n)(1; 1) as; (0; a)(0; n)(1; 1)(1; 0) s; (0; a)(0; n)(1; 1)(1; 0)(0; s).

The main advantage of this compression scheme is that it avoids the recursivecase in the LZ77 pattern matching (Figure 5), because we know already that thenew block corresponds directly to a concatenation of already processed blocks.Moreover, we do not need to search the text position in the blocks, since we candirectly access the relevant blocks.The compression can still be performed in O(u) time by using a sparse su�xtree [16] where only the block beginnings are inserted and when we fall outof the trie we take the last node visited which corresponds to a block ending.Decompression is slower than for LZ77, since we need to keep track of the blocksalready seen to be able to retrieve the appropriate text. Finally, the compressionratio is in principle worse than for LZ77 since we are limited in the text segmentsthat we can use. On the other hand, the numbers to code are smaller since wecode block positions in O(log n) bits instead of text positions in O(log u) bits.Moreover, if we use a simple trick, the compression is in general better than forLZ78 since we are not limited to using just one block. The trick is to representthe pairs (r; 0) as (2r), and the pairs (r; h+1) as (2r+1; h). This pays o� becausethe second element of the pair is frequently zero.The searching algorithm is like that of LZ77 except because we do not needto search for the blocks and we do not have to recursively �nd the partial blocksu and v (they simply do not exist now). From the analysis of the LZ77 patternmatching algorithm we have that we work O(min(u; n logm) + R) on averageand O(min(u;mn) + R) in the worst case (thanks to the improved algorithmto concatenate blocks). In practice, this algorithm performance is very close toLZ78 pattern matching. We also tried a marked version (called Mark-Hybrid)where for each block a bit is stored which tells whether or not the block will beused again, but as for LZ78, the search time does not improve in practice.Unlike LZ77, we can use less memory if the compressor restricts the referencesto a window of the text. Since there are no recursive references, those blockswhich are far away in the past need not be stored since they will not be referencedanymore. Hence, as in LZ78, we need the same memory as the compressor. Awindow of size N can be displayed in O(N) time.7 Experimental ResultsWe show in this section our empirical results on the behavior or our search andcompression schemes. We �rst study the compression techniques and later thesearch performance.We use mainly two �les for the experiments. One is an English literary text(from B. Franklin) of 1.29 Mb, �ltered to lower-case and with separators normal-ized. The other is the DNA chain of \h.inuenzae", of 1.36 Mb. For comparativepurposes, we also show the results on some �les of the the Calgary Corpus3: twobooks (book*), six tro�-formatted scienti�c articles (paper*) and three sourceprogram codes (prog*).3 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/

7.1 Compression PerformanceIt is interesting to study the compression performance of the algorithms for tworeasons: �rst, we propose a hybrid compression scheme which we have to evaluatein terms of compression ratios. Second, our search algorithms use a techniqueto code the pairs which speeds up search time but which is suboptimal: thenumbers are stored in as many bytes as needed (using the highest bit to denoteif there are more bytes or not).We �rst compare the number of bits needed to code a �le with our hybridcompression scheme against the same number for LZ77 and LZ78. We call thisapproach \bit-coding". This is aimed to give and idea of the expected compres-sion performance when the �le is compressed with a real technique (such as Elias[10] or Hu�man codes). Many other improvements are possible. A deeper studyof the best techniques for our hybrid compressor is deferred for future study.Table 1 shows the results. The \Ideal" column counts exactly the bits usedby each number stored in the compressed �le, while both \Elias" columns countthe number of bits needed to represent the numbers using these codes4 [10].The letters, on the other hand, are Hu�man coded. For English and DNA weshow in a second line the percentages for di�erent variants of the compressors:Block-LZ77, Mark-LZ78 and Mark-Hybrid, respectively. With our Hybrid com-pression method, we obtain estimated compression ratios comparable to LZ77.The Hybrid and LZ77 compression is better than LZ78 except for DNA, whereonly two bits are necessary to code a letter. Block-LZ77, on the other hand,compresses quite badly.We now perform a practical comparison using our byte-coding techniquesagainst good LZ77 and LZ78 compressors, namely gzip and Compress respec-tively. This is to show how much compression are we loosing in order to ease thesearching process.Table 2 shows the compression ratios achieved. The percentages in the sec-ond row of English and DNA have the same meaning as before. Interestingly,Compress is better than gzip on DNA, which rarely happens on natural languagetexts. Our compression ratios show a penalty with respect to those of gzip. Ourbyte compression method is very simple, and these results show in which pro-portion our compression ratios could be improved by engineering techniques,keeping in mind that complicating the encoding of the numbers risks slowingdown the pattern matching process.7.2 Search AlgorithmsWe compare now the search time for our algorithms against the decompressingand searching approach. The experiments were run on a Sun UltraSparc-1 of 167MHz, with 64 Mb of RAM, running Solaris 2.5.1. We consider user time, whichis within 2% of accuracy with 95% con�dence. Time is expressed in secondseverywhere in this section.4 Recall that Elias- precedes the number x by its length in unary, while Elias-� usesElias- to code that length that precedes the number.

File Size Ideal Elias- Elias-�(Kb) LZ77 LZ78 Hybrid LZ77 LZ78 Hybrid LZ77 LZ78 HybridEnglish 1,324 29.67% 36.15% 29.28% 59.34% 64.01% 58.57% 48.96% 52.04% 46.17%52.45% 38.01% 31.24% 104.9% 82.31% 62.48% 74.25% 54.71% 48.75%DNA 1,390 28.03% 25.30% 29.08% 56.06% 47.33% 58.18% 45.77% 37.71% 46.40%47.21% 26.77% 31.15% 94.43% 67.62% 62.30% 73.14% 39.91% 49.03%book1 751 34.10% 40.70% 35.62% 68.20% 70.83% 71.25% 41.26% 44.96% 41.50%book2 597 29.33% 40.21% 30.44% 58.66% 69.46% 60.89% 35.51% 44.41% 35.72%paper1 52 32.33% 46.20% 34.29% 64.53% 77.01% 68.59% 41.05% 51.92% 41.91%paper2 80 32.68% 43.00% 34.80% 65.27% 72.84% 69.60% 41.08% 48.28% 42.01%paper3 45 35.10% 45.50% 38.12% 70.07% 76.23% 76.24% 44.84% 51.36% 46.55%paper4 13 37.60% 47.95% 41.07% 74.74% 78.30% 82.15% 49.92% 54.81% 51.55%paper5 12 39.85% 50.79% 41.74% 79.13% 82.42% 83.49% 52.63% 57.92% 52.39%paper6 37 33.60% 47.72% 35.69% 67.03% 79.08% 71.38% 42.91% 53.72% 43.81%progc 39 32.21% 47.99% 34.16% 64.24% 79.14% 68.32% 41.24% 53.96% 41.95%progl 70 22.45% 39.10% 23.30% 44.82% 65.83% 44.92% 28.04% 43.85% 27.65%progp 48 21.34% 40.36% 22.46% 42.54% 66.95% 46.60% 27.16% 45.33% 28.46%Table 1. Estimated compression ratios with three di�erent methods. For each numberin the compressed �le, if we note n the bits needed to code it, then Ideal counts only n,Elias- counts 2n and Elias-� counts n+2dlog2 ne. The second line (in italics) of Englishand DNA correspond to Block-LZ77, Mark-LZ78 and Mark-Hybrid, respectively.File gzip Compress Byte-LZ77 Byte-LZ78 Byte-HybridEnglish 35.58% 38.90% 44.49% 54.41% 43.29%79.32% 56.20% 45.24%DNA 30.44% 27.96% 41.07% 43.17% 42.23%75.24% 44.90% 44.22%book1 40.76% 43.19% 53.21% 59.92% 53.30%book2 33.83% 41.05% 45.60% 58.55% 46.53%paper1 34.94% 47.17% 54.70% 66.17% 52.67%paper2 36.19% 43.99% 54.65% 62.02% 52.10%paper3 38.89% 47.63% 60.19% 67.92% 58.75%paper4 41.66% 52.36% 69.20% 75.71% 68.24%paper5 41.78% 55.04% 72.27% 79.47% 68.16%paper6 34.72% 49.06% 56.84% 69.33 % 54.76%progc 33.51% 48.32% 54.97% 67.99% 51.95%progl 22.71% 37.89% 37.82% 55.30% 35.47%progp 22.77% 38.90% 35.97% 57.20% 34.20%Table 2. Compression ratios for classical compressors and our byte versions. Thesecond (italics) lines of English and DNA correspond to Block-LZ77, Mark-LZ78 andMark-Hybrid, respectively.

In general, searching a compressed text has the additional advantage overthe uncompressed text that it performs less I/O. However, this is relevant ifwe compare compressed versus uncompressed searching. This is not what wecompare here: we consider that the text is always compressed. Hence, we measurethe cost of searching it without decompressing versus the cost of decompressingit and then searching. Clearly the last task can be done using an intermediatebu�er in main memory, and therefore the I/O is the same in both cases.Figure 7 compares the marked and unmarked versions of LZ78 and the Hybridcompressor. As it can be seen, there is no advantage in practice by the use ofmarking. Therefore, we do not further consider the marked versions. Anotherconclusion we take from the �gure is that the searcher for Hybrid compressionis slightly faster than for LZ78 on English but slower for DNA. This may berelated to the good performance of the LZ78 compressor on DNA.
� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 300.15

0.23
0.150.170.190.210.23

m � � � � � �� � � � � � �� � � � � �� � � � � � �5 305 10 15 20 25 300.13
0.21
0.130.150.170.190.21

m� LZ78� Mark-LZ78 � Hybrid� Mark-HybridFig. 7. Comparison between the marked and unmarked versions of LZ78 and Hybridcompressors. The left plot is for English text and the right one for DNA.Figure 8 compares all the search algorithms together, as well as decompres-sion (with gunzip) plus search time (with Shift-Or and BNDM [25], a bit-parallelsearcher which is the fastest in practice together with [27]). It can be seen thatBlock-LZ77 improves signi�cantly over LZ77, and that the Skip-LZ77 versionsimprove as the pattern length grows. However, all the LZ77 search algorithmsare not competitive against decompressing and searching, especially on DNA.On the other hand, both the Hybrid and LZ78 search algorithms are twice asfast as decompressing and searching.Table 3 compares the time to search a random 10-letter pattern on English,DNA and the selected �les of the Calgary Corpus. We consider the time todecompress with gunzip and to search with Shift-Or (as seen, for m = 10 the

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 300.0
1.6
0.00.20.40.60.81.01.21.4 m

� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 302.23.22.22.42.62.83.0 � � � � � � �� � � � � � �5 305 10 15 20 25 300.01.00.00.20.40.60.81.0 m� LZ77� Skip-LZ77 � Block-LZ77� Skip-Block-LZ77 � LZ78� Hybrid gunzip + Shift-Orgunzip + BNDMFig. 8. Comparison of the search algorithms. The dotted line is the time taken bygunzip alone. The left plot is for English text and the right one for DNA.time is very close to BNDM). We show the results for LZ78 and Hybrid only, asLZ77 has been shown to be much inferior.8 ConclusionsWe have focused in the problem of string matching on Ziv-Lempel compressedtext. This is an important practical problem, as it is of interest keep the textscompressed and at the same time being able to e�ciently search on them.We presented a general paradigm to search in a text that is expressed as asequence of blocks, which abstracts the main features of Ziv-Lempel compression.Then, we applied the technique to the di�erent variants, i.e. LZ77 and LZ78. ForLZ78, we are able to search in half the time of uncompressing and searching, whilefor LZ77 our algorithm, although much slower, is the �rst one proposed to searchon LZ77 compressed text. This motivated us to present a new hybrid compressiontechnique which allows to search as fast as in LZ78 but which keeps many of thefeatures of LZ77 compression, being in practice similar in compression ratios.Therefore, we are able to search in a compressed text faster than uncompress-ing and then searching. In general, on the other hand, searching on compressedtext at the same speed of on uncompressed text seems di�cult to achieve inpractice because of a basic problem of locality of reference.

File gunzip Shift-Or LZ78 HybridEnglish 28.80 8.90 17.24 (45.7%) 16.65 (44.2%)DNA 28.10 9.21 15.10 (40.5%) 17.27 (46.3%)book1 18.40 4.92 10.91 (46.8%) 11.42 (49.0%)book2 12.40 4.14 8.01 (48.4%) 7.78 (47.0%)paper1 1.80 1.67 1.88 (54.2%) 1.92 (55.3%)paper2 2.40 1.76 2.07 (49.8%) 2.18 (52.4%)paper3 1.80 1.60 1.73 (50.9%) 1.88 (55.3%)paper4 1.20 1.48 1.50 (56.0%) 1.59 (59.3%)paper5 0.80 1.42 1.52 (68.5%) 1.54 (69.4%)paper6 1.90 1.53 1.69 (49.3%) 1.78 (51.9%)progc 1.50 1.55 1.73 (56.7%) 1.75 (57.4%)progl 1.90 1.72 1.88 (51.9%) 1.84 (50.8%)progp 1.20 1.62 1.74 (61.7%) 1.70 (60.3%)Table 3. Search times for di�erent �les, in 1/100-th of seconds. The percentages indi-cate the time of the compressed searching as a fraction of uncompressing plus Shift-Orsearching.Future work involves studying better the performance of our hybrid com-pression, both in theory and in practice (especially on �nding better methods toencode the numbers while keeping the good search times). We also plan to workmore in understanding the behavior of the LZ77 search algorithm. Finally, weplan to allow for more exible search, including features such as allowing classesof characters and Hamming errors (some work has been already done in [26]).This is a �eld where important theoretical and practical development is nec-essary, and we have presented new results in both aspects. We hope that moreimprovements are to come.References1. A. Amir and G. Benson. E�cient two-dimensional compressed matching. In Proc.Second IEEE Data Compression Conference, pages 279{288, March 1992.2. A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching in Z-compressed �les. Journal of Computer and System Sciences, 52(2):299{307, 1996.3. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World ComputerCongress, volume I, pages 465{476. Elsevier Science, September 1992.4. R. Baeza-Yates and G. Gonnet. A new approach to text searching. Communica-tions of the ACM, 35(10):74{82, October 1992.5. T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, New Jersey,1990.6. T. Bell and D. Kulp. Longest-match string searching for Ziv-Lempel compression.Software{ Practice and Experience, 23(7):757{771, July 1993.7. J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compressionscheme. Communications of the ACM, 29:320{330, 1986.8. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communicationsof the ACM, 20(10):762{772, 1977.

9. A. Czumaj, Maxime Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq,W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.Algorithmica, 12:247{267, 1994.10. P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-actions on Information Theory, 21:194{203, 1975.11. M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. In27th ACM Annual Symposium on the Theory of Computing, pages 703{712, 1995.12. E. Fiala and D. Greene. Data compression with �nite windows. Communicationsof the ACM, 32(4):490{505, 4 1989.13. L. Gasieniec, M.Karpinksi, W.Plandowski, and W. Rytter. E�cient algorithms forLempel-Ziv encodings. In Proc. SWAT'96, 1996.14. R. N. Horspool. Practical fast searching in strings. Software Practice and Experi-ence, 10:501{506, 1980.15. D. Hu�man. A method for the construction of minimum-redundancy codes. Proc.of the I.R.E., 40(9):1090{1101, 1952.16. J. K�arkk�ainen and E. Ukkonen. Sparse su�x trees. In COCOON'96, pages 219{230, 1996. LNCS v. 1090.17. M. Karpinski, A. Shinohara, and W. Rytter. Pattern matching problem for stringswith short descriptions. Nordic Journal of Computing, 4(2):172{186, 1997.18. T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-and approach to patternmatching in lzw compressed text. In Proc. CPM'99, 1999. To appear.19. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.SIAM Journal on Computing, 6(1):323{350, 1977.20. U. Manber. A text compression scheme that allows fast searching directly in thecompressed �le. ACM Transactions on Information Systems, 15(2):124{136, 1997.21. V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In Combi-natorial Algorithms on Words, volume 12 of NATO ASI Series F, pages 131{140.Springer-Verlag, 1985.22. A. Mo�at. Word-based text compression. Software Practice and Experience,19(2):185{198, 1989.23. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matchingon compressed text. In Proc. SPIRE'98, pages 90{95. IEEE CS Press, 1998.24. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on com-pressed text allowing errors. In Proc. SIGIR'98, pages 298{306. York Press, 1998.25. G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fastextended string matching. In Proc. CPM'98, LNCS v. 1448, pages 14{33, 1998.26. G. Navarro and M. Ra�not. A general practical approach to pattern matching overZiv-Lempel compressed text. Technical Report TR/DCC-98-12, Dept. of ComputerScience, Univ. of Chile, 1998.27. D. Sunday. A very fast substring search algorithm. Communications of the ACM,33(8):132{142, August 1990.28. T. A. Welch. A technique for high performance data compression. IEEE ComputerMagazine, 17(6):8{19, June 1984.29. I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression. Com-munications of the ACM, 30(6):520{541, 1987.30. M. Zipstein. Data compression with factor automata. Theor. Comput. Sci.,92(1):213{221, 1992.31. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Trans. Inf. Theory, 23:337{343, 1977.32. J. Ziv and A. Lempel. Compression of individual sequences via variable lengthcoding. IEEE Trans. Inf. Theory, 24:530{536, 1978.

