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Abstract
The r -index (Gagie et al., JACM 2020) represented a breakthrough in compressed indexing of
repetitive text collections, outperforming its alternatives by orders of magnitude. Its space usage,
O(r) where r is the number of runs in the Burrows–Wheeler Transform of the text, is however
larger than Lempel–Ziv and grammar-based indexes, and makes it uninteresting in various real-life
scenarios of milder repetitiveness. In this paper we introduce the sr -index, a variant that limits a
large fraction of the space to O(min(r, n/s)) for a text of length n and a given parameter s, at the
expense of multiplying by s the time per occurrence reported. The sr -index is obtained by carefully
subsampling the text positions indexed by the r -index, in a way that we prove is still able to support
pattern matching with guaranteed performance. Our experiments demonstrate that the sr -index
sharply outperforms virtually every other compressed index on repetitive texts, both in time and
space, even matching the performance of the r -index while using 1.5–3.0 times less space. Only some
Lempel–Ziv-based indexes achieve better compression than the sr -index, using about half the space,
but they are an order of magnitude slower.
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1 Introduction

The rapid surge of massive repetitive text collections, like genome and sequence read sets
and versioned document and software repositories, has raised the interest in text indexing
techniques that exploit repetitiveness to obtain orders-of-magnitude space reductions, while
supporting pattern matching directly on the compressed text representations [10, 21].

Traditional compressed indexes rely on statistical compression [22], but this is ineffective
to capture repetitiveness [15]. A new wave of repetitiveness-aware indexes [21] build on other
compression mechanisms like Lempel–Ziv [16] or grammar compression [14]. A particularly
useful index of this kind is the rlfm-index [18, 19], because it emulates the classical suffix
array [20] and this simplifies translating suffix-array based algorithms to run on it [17].

The rlfm-index represents the Burrows–Wheeler Transform (BWT) [3] of the text in
run-length compressed form, because the number r of maximal equal-letter runs in the BWT
is known to be small on repetitive texts. A problem with the rlfm-index is that, although it
can count the number of occurrences of a pattern using O(r) space, it needs to sample the
text at every sth position, for a parameter s, in order to locate each of those occurrences in
time proportional to s. The O(n/s) additional space incurred on a text of length n ruins
the compression on very repetitive collections, where r ≪ n. The recent r -index [11] closed
the long-standing problem of efficiently locating the occurrences within O(r) space, offering
pattern matching time orders of magnitude faster than previous repetitiveness-aware indexes.

In terms of space, however, the r -index is considerably larger than Lempel–Ziv based
indexes of size O(z), where z is the number of phrases in the Lempel–Ziv parse. Gagie
et al. [11] show that, on extremely repetitive text collections where n/r = 500–10,000, r

is around 3z and the r -index size is 0.06–0.2 bits per symbol (bps), about twice that of
the lz-index [15], a baseline Lempel–Ziv based index. However, r degrades faster than z

as repetitiveness drops: in an experiment on bacterial genomes in the same article, where
n/r ≈ 100, the r -index space approaches 0.9 bps, 4 times that of the lz-index; r also approaches
4z. Experiments on other datasets show that the r -index tends to be considerably larger
[23, 5, 6, 1].Indeed, in some realistic cases n/r can be over 1,500, but in most cases it is well
below: 40–160 on versioned software and document collections and fully assembled human
chromosomes, 7.5–50 on virus and bacterial genomes (with r in the range 4z–7z), and 4–9 on
sequencing reads; see Section 5. An r -index on such a small n/r ratio easily becomes larger
than the plain sequence data.

In this paper we tackle the problem of the (relatively) large space usage of the r -index. This
index manages to locate the pattern occurrences by sampling r text positions (corresponding
to the ends of BWT runs). We show that one can remove some carefully chosen samples so
that, given a parameter s, the index stores only O(min(r, n/s)) samples while its locating
machinery can still be used to guarantee that every pattern occurrence is located within O(s)
steps. We call the resulting index the subsampled r-index, or sr -index. The worst-case time
to locate the occ occurrences of a pattern of length m on an alphabet of size σ then rises
from O((m + occ) log(σ + n/r)) in the implemented r -index to O((m + s · occ) log(σ + n/r))
in the sr -index, which matches the search cost of the rlfm-index.

The sr -index can then be seen as a hybrid between the r -index (matching it when s = 1)
and the rlfm-index (obtaining its time with less space; the spaces become similar when
repetitiveness drops). In practice, however, the sr -index performs much better than both
on repetitive texts, sharply dominating the rlfm-index, the best grammar-based index [5],
and in most cases the lz-index, both in space and time. The sr -index can also get as fast as
the r -index while using 1.5–4.0 times less space. Its only remaining competitor is a hybrid
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between a Lempel–Ziv based and a statistical index [7]. This index can use up to half the
space of the sr -index, but it is an order of magnitude slower. Overall, the sr -index stays
orders of magnitude faster than all the alternatives while using practical amounts of space in
a wide range of repetitiveness scenarios.

2 Background

The suffix array [20] SA[1..n] of a string T [1..n] over alphabet [1..σ] is a permutation of the
starting positions of all the suffixes of T in lexicographic order, T [SA[i]..n] < T [SA[i + 1]..n]
for all 1 ≤ i < n. The suffix array can be binary searched in time O(m log n) to obtain
the range SA[sp..ep] of all the suffixes prefixed by a search pattern P[1..m] (which then
occurs occ = ep − sp + 1 times in T ). Once they are counted (i.e., their suffix array range is
determined), those occurrences are located in time O(occ) by simply listing their starting
positions, SA[sp], . . . , SA[ep]. The suffix array can then be stored in n⌈lg n⌉ bits (plus the
n⌈lg σ⌉ bits to store T ) and searches for P in T in total time O(m log n + occ).

Compressed suffix arrays (CSAs) [22] are space-efficient representations of both the suffix
array (SA) and the text (T ). They can find the interval SA[sp..ep] corresponding to P[1..m]
in time tsearch(m) and access any cell SA[j] in time tlookup(n), so they can be used to search
for P in time O(tsearch(m) +occ tlookup(n)). Most CSAs need to store sampled SA values to
compute any SA[j] in order to support the locate operation, inducing the tradeoff of using
O((n/s) log n) extra bits to obtain time tlookup(n) proportional to a parameter s.

The Burrows–Wheeler Transform [3] of T is a permutation BWT[1..n] of T [1..n] defined
as BWT[i] = T [SA[i] − 1] (and T [n] if SA[i] = 1), which boosts the compressibility of T .
The fm-index [8, 9] is a CSA that represents SA and T within the statistical entropy of T , by
exploiting the connection between the BWT and SA. For counting, the fm-index resorts to
backward search, which successively finds the suffix array ranges SA[spi..epi] of P[i..m], for
i = m to 1, starting from SA[spm+1..epm+1] = [1..n] and then

spi = C[c] + rankc(BWT, spi+1 − 1) + 1,

epi = C[c] + rankc(BWT, epi+1),

where c = P[i], C[c] is the number of occurrences of symbols smaller than c in T , and
rankc(BWT, j) is the number of times c occurs in BWT[1..j]. Thus, [sp, ep] = [sp1, ep1] if
spi ≤ epi holds for all 1 ≤ i ≤ m.

For locating the occurrences SA[sp], . . . , SA[ep], the fm-index uses SA sampling as de-
scribed: it stores sampled values of SA at regularly spaced text positions, say multiples of s.
This is done via the so-called LF-steps: The BWT allows one to efficiently compute, given j

such that SA[j] = i, the value j′ such that SA[j′] = i− 1, called j′ = LF(j). The formula is

LF(i) = C[c] + rankc(BWT, i),

where c = BWT[i]. Note that the LF-steps virtually traverse the text backwards. By marking
with 1s in a bitvector B[1..n] the positions j∗ such that SA[j∗] is a multiple of s, we can start
from any j and, in k < s LF-steps, find some sampled position j∗ = LFk(j) where B[j∗] = 1.
By storing those values SA[j∗] explicitly, we have SA[j] = SA[j∗] + k.

By implementing BWT with a wavelet tree, for example, access and rankc on BWT can
be supported in time O(log σ), and the fm-index searches in time O((m + s · occ) log σ) [9].

Since the statistical entropy is insensitive to repetitiveness [15], however, the fm-index is
not adequate for repetitive datasets. The Run-Length FM-index, rlfm-index (and its variant
rlcsa) [18, 19], is a modification of the fm-index aimed at repetitive texts. Say that the
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BWT[1..n] is formed by r maximal runs of equal symbols, then r is relatively small in
repetitive collections (in particular, r = O(z log2 n), where z is the number of phrases of the
Lempel–Ziv parse of T [13]). The rlfm-index supports counting within O(r log n) bits, by
implementing the backward search over alternative data structures. In particular, it marks
in a bitvector Start[1..n] with 1s the positions j starting BWT runs, that is, where j = 1
or BWT[j] ̸= BWT[j − 1]. The first letter of each run is collected in an array Letter[1..r ].
Since Start has only r 1s, it can be represented within r lg(n/r) + O(r) bits. Within
this space, one can access any bit Start[j] and support operation rank1(Start, j), which
counts the number of 1s in Start[1..j], in time O(log(n/r)) [25]. Therefore, we simulate
BWT[j] = Letter[rank1(Start, j)] in O(r log n) bits. The backward search formula can be
efficiently simulated as well, leading to O((m + s · occ) log(σ + n/r)) search time. However,
the rlfm-index still uses SA samples to locate, and when r ≪ n (i.e., on repetitive texts), the
O((n/s) log n) added bits ruin the O(r log n)-bit space (s is typically O(log n) or close).

The r -index [11] closed the long-standing problem of efficiently locating the occurrences
of a pattern in a text using O(r log n)-bit space. The experiments showed that the r -index
outperforms all the other implemented indexes by orders of magnitude in space or in time to
locate pattern occurrences on highly repetitive datasets. However, other experiments on more
typical repetitiveness scenarios [23, 5, 6, 1] showed that the space of the r -index degrades
very quickly as repetitiveness decreases. For example, a grammar-based index (which can be
of size g = O(z log(n/z))) is usually slower but significantly smaller [5], and an even slower
Lempel–Ziv based index of size O(z) [15] is even smaller. Some later proposals [24] further
speed up the r -index by increasing the constant accompanying the O(r log n)-bit space. The
unmatched time performance of the r -index comes then with a very high price in space on all
but the most highly repetitive text collections, which makes it of little use in many relevant
application scenarios. This is the problem we address in this paper.

3 The r-index Sampling Mechanism

Gagie et al. [11] provide an O(r log n)-bits data structure that not only finds the range
SA[sp..ep] of the occurrences of P in T , but also gives the value SA[ep], that is, the text
position of the last occurrence in the range. They then provide a second O(r log n)-bits data
structure that, given SA[j], efficiently finds SA[j − 1]. This suffices to efficiently find all the
occurrences of P, in time O((m + occ) log log(σ + n/r)) in their theoretical version.

In addition to the theoretical design, Gagie et al. and Boucher et al. [11, 2] provided a
carefully engineered r -index implementation. The counting data structures (which find the
range SA[sp..ep]) require, for any small constant ϵ > 0, r · ((1 + ϵ) lg(n/r) + lg σ +O(1)) bits
(largely dominated by the described arrays Start and Letter), whereas the locating data
structures (which obtain SA[ep], and SA[j − 1] given SA[j]), require r · (2 lg n +O(1)) further
bits. The locating structures are then significantly heavier in practice, especially when n/r
is not that large. Together, the structures use r · ((1 + ϵ) lg(n/r) + 2 lg n + lg σ +O(1)) bits
of space and perform backward search steps and LF-steps in time O( 1

ϵ log(σ + n/r)), so they
search for P in time O( 1

ϵ (m + occ) log(σ + n/r)).
For conciseness we do not describe the counting data structures of the r -index, which are

the same of the rlfm-index and which we do not modify in our index. The r -index locating
structures, which we do modify, are formed by the following components:

First[1..n]: a bitvector marking with 1s the text positions of the letters that are the first in
a BWT run. That is, if j = 1 or BWT[j] ̸= BWT[j − 1], then First[SA[j]− 1] = 1. Since
First has only r 1s, it is represented in compressed form using r lg(n/r)+O(r) bits, while
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Figure 1 Schematic example of the sampling mechanism of the r -index. There is a run border
between j3 − 1 and j3.

supporting rank1 in time O(log(n/r)) and, in O(1) time, the operation select1(First, j)
(the position of the jth 1 in First) [25]. This allows one find the rightmost 1 up to
position i, pred(First, i) = select1(First, rank1(First, i)).

FirstToRun[1..r]: a vector of integers (using r⌈lg r⌉ bits) mapping each letter marked in
First to the BWT run where it lies. That is, if the pth BWT run starts at BWT[j], and
First[i] = 1 for i = SA[j]− 1, then FirstToRun[rank1(First, i)] = p.

Samples[1..r]: a vector of ⌈lg n⌉-bit integers storing samples of SA, so that Samples[p] is
the text position SA[j]− 1 corresponding to the last letter BWT[j] in the pth BWT run.

These structures are used in the following way in the r -index implementation [11]:

Problem 1: When computing the ranges SA[sp..ep] along the backward search, we must also
produce the value SA[ep]. They actually compute all the values SA[epi]. This is stored
for SA[epm+1] = SA[n] and then, if BWT[epi+1] = P[i], we know that epi = LF(epi+1)
and thus SA[epi] = SA[epi+1]− 1. Otherwise, epi = LF(j) and SA[epi] = SA[j]− 1, where
j ∈ [spi+1..epi+1] is the largest position with BWT[j] = P[i]. The position j is efficiently
found with their counting data structures, and the remaining problem is how to compute
SA[j]. Since j must be an end of run, however, this is simply computed as Samples[p] + 1,
where p = rank1(Start, j) is the run where j belongs.

Problem 2: When locating we must find SA[j − 1] from i = SA[j]− 1. There are two cases:
j − 1 ends a BWT run, that is, Start[j] = 1, and then SA[j − 1] = Samples[p− 1] + 1,
where p is as in Problem 1;
j−1 is in the same BWT run of j, in which case they compute SA[j−1] = ϕ(i), where1

ϕ(i) = Samples[FirstToRun[rank1(First, i)]− 1] + 1 + (i− pred(First, i)). (1)

This formula works because, when j and j − 1 are in the same BWT run, it holds that
LF(j − 1) = LF(j) − 1 [8]. Figure 1 explains why this property makes the formula work.
Consider two BWT positions, j = j0 and j′ = j − 1 = j0 − 1, that belong to the same
run. The LF formula will map them to consecutive positions, j1 and j′

1 = j1 − 1. If j1 and
j1 − 1 still belong to the same run, LF will map them to consecutive positions again, j2

1 The special case where rank1(First, i) = 0 is handled separately.
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and j′
2 = j2 − 1, and once again, j3 and j′

3 = j3 − 1. Say that j3 and j3 − 1 do not belong
to the same run. This means that j3 − 1 ends a run (and thus it is stored in Samples)
and j3 starts a run (and thus SA[j3] − 1 is marked in First). To the left of the BWT
positions we show the areas of T virtually traversed as we perform consecutive LF-steps.
Therefore, if we know i = SA[j] − 1 = SA[j0] − 1, the nearest 1 in First to the left is at
pred(First, i) = SA[j3]− 1 (where there is an e in T ) and p = FirstToRun[rank(i)] is the
number of the BWT run that starts at j3. If we subtract 1, we have the BWT run ending at
j3 − 1, and then Samples[p− 1] is the position preceding SA[j3 − 1] (where there is a d in
T ). We add 1 + (i− pred(First, i)) = 4 to obtain SA[j0 − 1] = SA[j − 1].

These components make up, effectively, a sampling mechanism of O(r log n) bits (i.e.,
sampling the end of runs), instead of the traditional one of O((n/s) log n) bits (i.e., sampling
every sth text position).

4 Our Subsampled r-index

Despite its good performance on highly repetitive texts, the sampling mechanism introduced
by the r -index is excessive in areas where the BWT runs are short, because those induce
oversampled ranges on the text. In this section we describe an r -index variant we dub
subsampled r-index, or sr-index, which can be seen as a hybrid between the r -index and the
rlfm-index. The sr -index samples the text at end of runs (like the r -index), but in oversampled
areas it removes some samples to ensure that no three consecutive samples lie within distance
s (roughly as in the rlfm-index). It then handles text areas with denser and sparser sampling
in different ways.

4.1 Subsampling
The sr -index subsampling process removes r -index samples in oversampled areas. Concretely,
let t′

1 < · · · < t′
r be the text positions of the last letters in BWT runs, that is, the sorted

values in array Samples. For any 1 < i < r , we remove the sample t′
i if t′

i+1− t′
i−1 ≤ s, where

s is a parameter. This condition is tested and applied sequentially for i = 2, . . . , r − 1 (that
is, if we removed t′

2 because t′
3 − t′

1 ≤ s, then we next remove t′
3 if t′

4 − t′
1 ≤ s; otherwise we

remove t′
3 if t′

4 − t′
2 ≤ s). Let us call t1, t2, . . . the sequence of the remaining samples.

The arrays First, FirstToRun, and Samples are built on the samples ti only. That is,
if we remove the sample Samples[p] = t′, we also remove the 1 in First corresponding to
the first letter of the (p + 1)th BWT run, which is the one Eq. (1) would have handled
with Samples[p]. We also remove the corresponding entry of FirstToRun. Note that, if
j is the first position of the (p + 1)th run and j − 1 the last of the pth run, then if we
remove Samples[p] = SA[j − 1]− 1, we remove the corresponding 1 at position SA[j]− 1 in
First. Finally, note that FirstToRun must be adapted to point to the corresponding entry
of Samples, once some entries of the latter are removed.

It is not hard to see that subsampling avoids the excessive space usage when r is not
small enough, reducing it from O(r) to O(min(r , n/s)) entries for the locating structures.

▶ Lemma 1. The subsampled structures First, FirstToRun, and Samples use min(r , 2⌈n/(s+
1)⌉) · (2 lg n +O(1)) bits of space.

Proof. This is the same space as in the implemented r -index, with the number of samples
reduced from r to min(r , 2⌈n/(s + 1)⌉). We start with r samples and remove some, so there
are at most r. By construction, any remaining sample ti satisfies ti+1 − ti−1 > s, so if we cut
the text into blocks of length s + 1, no block can contain more than 2 samples. ◀
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Our index adds the following small structure on top of the above ones, so as to mark the
removed samples:

Removed[1..r]: A bitvector telling which of the original samples have been removed, that
is, Removed[p] = 1 iff the sample at the end of the pth BWT run was removed. We can
compute any rank1(Removed, p) in constant time using r + o(r) bits [4].

It is easy to see that, once the r -index structures are built, the sr -index subsampling, as
well as building and updating the associated structures, are lightweight tasks, easily carried
out in O(r) space and O(r log r) time. It is also possible to build the subsampled structures
directly without building the full sr -index sampling first, in O(n log(σ + n/r)) time: we
simulate a backward text traversal using LF-steps, so that we can build bitvector Removed.
A second similar traversal fills the 1s in First and the entries in FirstToRun and Samples
for the runs whose sample was not removed.

4.2 Solving Problem 1
For Problem 1, we must compute SA[j], where j is the end of the pth run, with p =
rank1(Start, j). This position is sampled in the r -index, where the problem is thus trivial:
SA[j] = Samples[p] + 1. However, in the sr -index it might be that Removed[p] = 1, which
means that the subsampling process removed SA[j]. In this case, we compute jk = LFk(j)
for k = 1, 2, . . . until finding a sampled value SA[jk] (i.e., jk = n or Start[jk + 1] = 1)
that is not removed (i.e., q = rank1(Start, jk) and Removed[q] = 0). We then compute
q′ = q − rank1(Removed, q), and SA[j] = Samples[q′] + k + 1.

The next lemma shows that we find a nonremoved sample for some k < s.

▶ Lemma 2. If there is a removed sample t′
j such that ti < t′

j < ti+1, then ti+1 − ti ≤ s.

Proof. Since our subsampling process removes samples left to right, by the time we removed
t′
j , the current sample ti was already the nearest remaining sample to the left of t′

j . If the
sample following t′

j was the current ti+1, then we removed t′
j because ti+1 − ti ≤ s, and we

are done. Otherwise, there were other samples to the right of t′
j , say t′

j+1, t′
j+2, . . . , t′

j+k, that
were consecutively removed until reaching the current sample ti+1. We removed t′

j because
t′
j+1− ti ≤ s. Then, for 1 ≤ l < k, we removed t′

j+l (after having removed t′
j , t′

j+1, . . . , t′
j+l−1)

because t′
j+l+1 − ti ≤ s. Finally, we removed t′

j+k because ti+1 − ti ≤ s. ◀

This implies that, from a removed sample Samples[p] = t′, surrounded by the remaining
samples ti < t′ < ti+1, we can perform only k = t′ − ti < s LF-steps until jk = LF(k)(j)
satisfies SA[jk]− 1 = ti and thus it is stored in Samples[q] and not removed.

If we followed verbatim the modified backward search of the r -index, finding every
SA[epi], we would perform O(m · s) steps on the sr -index. We now reduce this to O(m + s)
steps by noting that the only value we need is SA[ep] = SA[ep1]. Further, we need to
know SA[epi+1] to compute SA[epi] only in the easy case where BWT[epi+1] = P[i] and so
SA[epi] = SA[epi+1]− 1. Otherwise, the value SA[epi] is computed afresh.

We then proceed as follows. We do not compute any value SA[epi] during backward
search; we only remember the last (i.e., smallest) value i′ of i where the computation was not
easy, that is, where BWT[epi′+1] ̸= P[i′]. Then, SA[ep1] = SA[epi′ ]− (i′ − 1) and we need to
apply the procedure described above only once: we compute SA[j], where j is the largest
position in [spi′+1..epi′+1] where BWT[j] = P [i′], and then SA[epi′ ] = SA[j]− 1.

Algorithm 1 gives the complete pseudocode that solves Problem 1. Note that, if P does
not occur in T (i.e., occ = 0) we realize this after the O(m) backward steps because some
spi > epi, and thus we do not spend the O(s) extra steps.

CPM 2021
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Algorithm 1 Counting pattern occurrences on the sr -index.
Input : Search pattern P[1..m].
Output : Returns suffix array range [sp, ep] for P and SA[ep].

1 sp ← 1; ep ← n + 1
2 i← m; i′ ← m + 1
3 while i ≥ 1 and sp ≤ ep do
4 p← rank1(Start, ep)
5 if Letter[p] ̸= P[i] then
6 i′ ← i; p′ ← p

7 c← P[i]
8 sp ← C[c] + rankc(BWT, sp − 1) + 1
9 ep ← C[c] + rankc(BWT, ep)

10 if sp > ep then return “P does not occur in T ”
11 if i′ = m + 1 then return [sp, ep] and SA[ep] = SA[n]−m (SA[n] is stored)
12 c← P[i′]
13 q ← selectc(Letter, rankc(Letter, p′)) (supported by the rlfm-index/r -index)
14 j ← select1(Start, q + 1)− 1
15 k ← 0
16 while (j < n and Start[j + 1] = 0) or Removed[q] = 1 do
17 j ← LF(j)
18 q ← rank1(Start, j)
19 k ← k + 1
20 return [sp, ep] and SA[ep] = Samples[q − rank1(Removed, q)] + k + 1− (i′ − 1)

4.3 Solving Problem 2

For Problem 2, finding SA[j − 1] from i = SA[j]− 1, we first proceed as in Problem 1, from
j−1. We compute j′

k = LFk(j−1) for k = 0, . . . , s−1. If any of those j′
k is the last symbol of

its run (i.e., j′
k = n or Start[j′

k + 1] = 1), and the sample corresponding to this run was not
removed (i.e., Removed[q] = 0, with q = rank1(Start, j′

k)), then we can obtain immediately
SA[j′

k] = Samples[q′] + 1, where q′ = q− rank1(Removed, q), and thus SA[j − 1] = SA[j′
k] + k.

Unlike in Problem 1, SA[j − 1] is not necessarily an end of run, and therefore we are not
guaranteed to find a solution for 0 ≤ k < s. However, the following property shows that, if
there were some end of runs j′

k, it is not possible that all were removed from Samples.

▶ Lemma 3. If there are no remaining samples in SA[j − 1]− s, . . . , SA[j − 1]− 1, then no
sample was removed between SA[j − 1]− 1 and its preceding remaining sample.

Proof. Let ti < SA[j − 1] − 1 < ti+1 be the samples surrounding SA[j − 1] − 1, so the
remaining sample preceding SA[j − 1] − 1 is ti. Since ti < SA[j − 1] − s, it follows that
ti+1 − ti > s and thus, by Lemma 2, no samples were removed between ti and ti+1. ◀

This means that, if the process above fails to find an answer, then we can directly use
Eq. (1), as we prove next.

▶ Lemma 4. If there are no remaining samples in SA[j − 1] − s, . . . , SA[j − 1] − 1, then
subsampling removed no 1s in First between positions i = SA[j]− 1 and pred(First, i).
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Algorithm 2 Locating pattern occurrences on the sr -index.
Input : Global array Res[1..occ] of results, range [sp, ep] to report, SA[ep].
Output : Fills Res[i] = SA[sp − 1 + i] for all 1 ≤ i ≤ occ.

1 Res[ep − sp + 1]← SA[ep] (known from backward search)
2 if sp < ep then locate(sp, ep − 1, 0)

3 Proc locate(sm, em, k)
4 if k = s then
5 for im = em, . . . , sm do
6 i← Res[im− sp + 2]− 1
7 Res[im− sp + 1]← ϕ(i) (Eq. (1))

8 else
9 if Start[em + 1] = 1 then

10 q ← rank1(Start, em)
11 if Removed[q] = 0 then
12 Res[em− sp + 1]← Samples[q − rank1(Removed, q)] + 1 + k

13 em← em− 1

14 q ← rank1(Start, sm)
15 while sm ≤ em do
16 im← select1(Start, q + 1)
17 if im− 1 > em then im← em + 1
18 locate(sm, im− 1, k + 1)
19 sm← im

20 q ← q + 1

Proof. Let ti < SA[j − 1] − 1 < ti+1 be the samples surrounding SA[j − 1] − 1, and
k = SA[j − 1]− 1− ti. Lemma 3 implies that no sample existed between SA[j − 1]− 1 and
SA[j−1]−k = ti +1, and there exists one at ti. Consequently, no 1 existed in First between
positions SA[j]− 1 and SA[j]− k (inclusively), and there exists one in SA[j]− 1− k. Indeed,
pred(First, i) = SA[j]− 1− k. ◀

A final twist, which does not change the worst-case complexity but improves performance
in practice, is to reuse work among successive occurrences. Let BWT[sm..em] be a maximal
run inside BWT[sp..ep]. For every sm ≤ j ≤ em, the first LF-step will lead us to LF(j) =
LF(sm) + (j − sm); therefore we can obtain them all with only one computation of LF.
Therefore, instead of finding SA[sp], . . . , SA[ep] one by one, we report SA[ep] (which we know)
and cut BWT[sp..ep − 1] into maximal runs using bitvector Start. Then, for each maximal
run BWT[sm..em], if the end of run BWT[em] is sampled, we report its position and continue
recursively reporting SA[LF(sm)..LF(sm) + (em− sm)− 1]; otherwise we continue recursively
reporting SA[LF(sm)..LF(sm) + (em− sm)]. Note that we must add k to the results reported
at level k of the recursion. By Lemma 2, every end of run found in the way has been
reported before level k = s. When k = s, then, we use Eq. (1) to obtain SA[em], . . . , SA[sm]
consecutively from SA[em + 1], which must have been reported because it is ep or was an
end of run at some level of the recursion.

Algorithm 2 gives the complete procedure to solve Problem 2.
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4.4 The basic index, sr-index0

We have just described our most space-efficient index, which we call sr -index0. Its space and
time complexity is established in the next theorem.

▶ Theorem 5. The sr-index0 uses r ·((1+ϵ) lg(n/r)+lg σ+O(1))+min(r, 2⌈n/(s+1)⌉) ·2 lg n

bits of space, for any constant ϵ > 0, and finds all the occ occurrences of P[1..m] in T in
time O( 1

ϵ (m + s · occ) log(σ + n/r)).

Proof. The space is the sum of the counting structures of the r -index and our modified
locating structures, according to Lemma 1. The space of bitvector Removed is O(r) bits,
which is accounted for in the formula.

As for the time, we have seen that the modified backward search requires O(m) steps if
occ = 0 and O(m + s) otherwise (Problem 1). Each occurrence is then located in O(s) steps
(Problem 2). In total, we complete the search with O(m + s · occ) steps.

Each step involves O( 1
ϵ log(σ + n/r)) time in the basic r -index implementation, including

Eq. (1). Our index includes additional ranks on Start and other constant-time operations,
which are all in O(log(n/r)). Since the First now has O(min(r, n/s)) 1s, however, operation
rank1 on it takes time O(log(n/ min(r, n/s))) = O(log max(n/r, s)) = O(log(n/r + s)). Yet,
this rank is computed only once per occurrence reported, when using Eq. (1), so the total
time per occurrence is still O(log(n/r + s) + s · log(σ + n/r)) = O(s · log(σ + n/r)). ◀

Note that, in asymptotic terms, the sr -index is never worse than the rlfm-index with
the same value of s and, with s = 1, it boils down to the r -index. Using predecessor data
structures of the same asymptotic space of our lighter sparse bitvectors, the logarithmic
times can be reduced to loglogarithmic [11], but our focus is on low practical space usage.

Note also that this theorem can be obtained by simply choosing the smallest between
the r -index and the rlfm-index. In practice, however, the sr -index performs much better than
both extremes, providing a smooth transition that retains sparsely indexed areas of T while
removing redundancy in oversampled areas. This will be demonstrated in Section 5.

4.5 A faster and larger index, sr-index1

The sr -index0 guarantees locating time proportional to s and uses almost no extra space. On
the other hand, on Problem 2 it performs up to s LF-steps for every occurrence, even when
this turns out to be useless. The variant sr -index1 adds a new component, also small, to
speed up some cases:

Valid: a bitvector storing one bit per (remaining) sample in text order, so that Valid[q] = 0
iff there were removed samples between the qth and the (q + 1)th 1s of First.

With this bitvector, if we have i = SA[j]− 1 and Valid[rank1(First, i)] = 1, we know
that there were no removed samples between i and pred(First, i) (even if they are less than
s positions apart). In this case we can skip the computation of LFk(j − 1) of sr -index0, and
directly use Eq. (1). Otherwise, we must proceed exactly as in sr -index0 (where it is still
possible that we compute all the LF-steps unnecessarily). More precisely, this can be tested
for every value between sm and em so as to report some further cells before recursing on the
remaining ones, in lines 14–19 of Algorithm 2.

The space and worst-case complexities of Theorem 5 are preserved in sr -index1.
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4.6 Even faster and larger, sr-index2

Our final variant, sr -index2, adds a second and significantly larger structure:

ValidArea: an array whose cells are associated with the 0s in Valid. If Valid[q] = 0, then
d = ValidArea[q − rank1(Valid, q)] is the distance from the qth 1 in First to the next
removed sample. Each entry in ValidArea requires ⌈lg s⌉ bits, because removed samples
must be at distance less than s from their preceding sample, by Lemma 2.

If Valid[rank1(First, i)] = 0, then there was a removed sample at pred(First, i) + d,
but not before. So, if i < pred(First, i) + d, we can still use Eq. (1); otherwise we must
compute the LF-steps LFk(j − 1) and we are guaranteed to succeed in less than s steps. This
improves performance considerably in practice, though the worst-case time complexity stays
as in Theorem 5 and the space increases by at most r lg s bits.

5 Experimental Results

We implemented the sr -index in C++14, on top of the SDSL library2, and made it available
at https://github.com/duscob/sr-index.

We benchmarked the sr -index against available implementations for the r -index, the
rlfm-index, and several other indexes for repetitive text collections.

Our experiments ran on a hardware with two Intel(R) Xeon(R) CPU E5-2407 processors at
2.40 GHz and 250 GB RAM. The operating system was Debian Linux kernel 4.9.0-14-amd64.
We compiled with full optimization and no multithreading.

Our reported times are the average user time over 1000 searches for patterns of length
m = 10 obtained at random from the texts. We give space in bits per symbol (bps) and
times in microseconds per occurrence (µs/occ). Indexes that could not be built on some
collection, or that are out of scale in space or time, are omitted in the corresponding plots.

5.1 Tested indexes
We included the following indexes in our benchmark; their space decrease as s grows:

sr-index: Our index, including the three variants, with sampling values s = 4, 8, 16, 32, 64.
r-index: The r -index implementation we build on.3
rlcsa: An implementation of the run-length CSA [19], which outperforms the actual rlfm-index

implementation.4 We use text sampling values s = n/r × f/8, with f = 8, 10, 12, 14, 16.
csa: An implementation of the CSA [28], which outperforms in practice the fm-index [8, 9].

This index, obtained from SDSL, acts as a control baseline that is not designed for
repetitive collections.We use text sampling parameter s = 16, 32, 64, 128.

g-index: The best grammar-based index implementation we are aware of [5].5 We use
Patricia trees sampling values s = 4, 16, 64.

lz-index and lze-index: Two variants of the Lempel–Ziv based index [15].6
hyb-index: A hybrid between a Lempel–Ziv and a BWT-based index [7].7 We build it with

parameters M = 8, 16, the best for this case.

2 From https://github.com/simongog/sdsl-lite.
3 From https://github.com/nicolaprezza/r-index.
4 From https://github.com/adamnovak/rlcsa.
5 From https://github.com/apachecom/grammar_improved_index.
6 From https://github.com/migumar2/uiHRDC.
7 From https://github.com/hferrada/HydridSelfIndex.
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Collection Size n/r Collection Size n/r

influenza 147.6 51.2 DNA-001 100.0 142.4
cere 439.9 39.9 DNA-003 100.0 58.3
para 409.4 27.4 DNA-010 100.0 26.0
escherichia 107.5 7.5 DNA-030 100.0 11.6
einstein 447.7 1611.2 HLA 53.7 161.4
kernel 238.0 92.4 Chr19 2,819.3 89.2
worldleaders 44.7 81.9 Salmonella 3,840.5 43.9
coreutils 195.8 43.8 Reads 2,565.5 8.9

Table 1 Basic characteristics of the repetitive texts used in our benchmark. Size is given in MB.

5.2 Collections
We benchmark various repetitive text collections; Table 1 gives some basic measures on them.

PizzaChili: A generic collection of real-life texts of various sorts and repetitiveness levels,
which we use to obtain a general idea of how the indexes compare. We use 4 collections of
microorganism genomes (influenza, cere, para, and escherichia) and 4 versioned document
collections (the English version of einstein, kernel, worldleaders, coreutils).8

Synthetic DNA: A 100KB DNA text from PizzaChili, replicated 1,000 times and each copied
symbol mutated with a probability from 0.001 (DNA-001, analogous to human assembled
genomes) to 0.03 (DNA-030, analogous to sequence reads). We use this collection to study
how the indexes evolve as repetitiveness decreases.

Real DNA: Some real DNA collections to study other aspects:
HLA: A dataset with copies of the short arm (p arm) of human chromosome 6 [27].9

This arm contains about 60 million base pairs (Mbp) and it includes the 3 Mbp HLA
region. That region is known to be highly variable, so the r -index sampling should be
sparse for most of the arm and oversample the HLA region.

Chr19 and Salmonella: Human and bacterial assembled genome collections, respectively,
of a few billion base pairs. We include them to study how the indexes behave on more
massive data. Chr19 is the set of 50 human chromosome 19 genomes taken from the
1000 Genomes Project [30], whereas Salmonella is the set of 815 Salmonella genomes
from the GenomeTrakr project [29].

Reads: A large collection of sequence reads, which tend to be considerably less repetitive
than assembled genomes.10 We include this collection to study the behavior of the
indexes on a popular kind of bioinformatic collection with mild repetitiveness. In
Reads the sequencing errors have been corrected, and thus its n/r ≈ 9 is higher than
the n/r ≈ 4 reported on crude reads [6].

5.3 Results
Figures 2 and 3 show the space taken by all the indexes and their search time.

8 From http://pizzachili.dcc.uchile.cl/repcorpus/real.
9 From ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/fasta/hla_gen.fasta.
10 From https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR008613.
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Figure 2 Space-time tradeoffs for the PizzaChili collections.
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Figure 3 Space-time tradeoffs for the synthetic and real DNA datasets.
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A first conclusion is that sr -index2 always dominates sr -index0 and sr -index1, so we will
refer to it simply as sr -index from now on. The plots show that the extra information we
associate to the samples makes a modest difference in space, while time improves considerably.
This sr -index can be almost as fast as the r -index, and an order of magnitude faster than
all the others, while using 1.5–4.0 less space than the r -index. Therefore, as promised, we
are able to remove a significant degree of redundancy in the r -index without affecting its
outstanding time performance.

In all the PizzaChili collections, the sr -index dominates almost every other index, out-
performing them both in time and space. The only other index on the Pareto curve is the
hyb-index, which can use as little as a half of the space of the sweet spot of the sr -index, but
still at the price of being an order of magnitude slower. This holds even on escherichia, where
n/r is well below 10, and both the rlcsa and the csa become closer to the sr -index.

In general, in all the collections with sufficient repetitiveness, say n/r over 25, the sr -index
sharply dominates as described. As repetitiveness decreases, with n/r reaching around 10,
the rlcsa and the csa approach the sr -index and outperform every other repetitiveness-aware
index, as expected. This happens on escherichia (as mentioned) and Reads (where the sr -index,
the rlcsa, and the csa behave similarly). This is also the case on the least repetitive synthetic
DNA collection, DNA-030, where the mutation rate reaches 3%. In this collection, the
repetitiveness-unaware csa largely dominates all the space-time map.

We expected the sr -index to have a bigger advantage over the r -index on the HLA dataset
because its oversampling is concentrated, but the results are similar to those on randomly
mutated DNA with about the same n/r value (DNA-001). In general, the bps used by the
sr -index can be roughly predicted from n/r; for example the sweet spot often uses around
40r total bits, although it takes 20r–30r bits in some cases. The r -index uses 70r–90r bits.

The bigger collections (Chr19, Salmonella, Reads), on which we could build the BWT-
related indexes only, show that the same observed trends scale to gigabyte-sized collections
of various repetitiveness levels.

6 Conclusions

We have introduced the sr -index, an r -index variant that solves the problem of its relatively
bloated space while retaining its high search performance. The sr -index is orders of magnitude
faster than the other repetitiveness-aware indexes, while outperforming most of them in
space as well. It matches the time performance of the r -index while using 1.5–4.0 less space.

Unlike the r -index, the sr -index uses little space even in milder repetitiveness scenarios,
which makes it usable in a wider range of bioinformatic applications. For example, it
uses 0.25–0.60 bits per symbol (bps) while reporting each occurrence within a microsecond
on gigabyte-sized human and bacterial genomes, where the original r -index uses 0.95–1.90
bps. In general, the sr -index outperforms classic compressed indexes on collections with
repetitiveness levels n/r over as little as 7 in some cases, though in general it is reached
by repetitiveness-unaware indexes when n/r approaches 10, which is equivalent to a DNA
mutation rate around 3%.

Compared to the rlfm-index, which for pattern searching is dominated by the sr -index, the
former can use its regular text sampling to compute any entry of the suffix array or its inverse
in time proportional to the sampling step s. Obtaining an analogous result on the sr -index,
for example to implement compressed suffix trees, is still a challenge. Other proposals for
accessing the suffix array faster than the rlfm-index [12, 26] illustrate this difficulty: they
require even more space than the r -index.
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