Path Queries on Functions™

Travis Gagiel’?, Meng He3, and Gonzalo Navarro!*

1 CeBiB — Center for Biotechnology and Bioengineering

2 School of Computer Science and Telecommunications, Diego Portales
University, Chile. travis.gagie@gmail.com

3 Faculty of Computer Science, Dalhousie University, Canada. mhe@cs.dal.ca

4 Dept. of Computer Science, University of Chile, Chile. gnavarro@dcc.uchile.cl

—— Abstract

Let f : [l.n] — [l..n] be a function, and ¢ : [1..n] — [l..0] indicate a label assigned to each
element of the domain. We design several compact data structures that answer various queries
on the labels of paths in f. For example, we can find the minimum label in f*(i) for a given
i and any k > 0 in a given range [k;..k2], using nlgn + O(n) bits, or the minimum label in
7% () for a given i and k > 0, using 2nlgn + O(n) bits, both in time O(lgn/lglgn). By using
nlgo + o(nlgo) further bits, we can also count, within the same time, the number of labels
within a range, and report each element with such labels in O(1 + lgo/1glgn) additional time.
Several other possible queries are considered, such as top-t queries and 7-majorities.

1998 ACM Subject Classification E.1 Data Structures; E.4 Coding and Information Theory

Keywords and phrases Succinct data structures; Integer functions; Range queries; Trees and
permutations

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

We focus on the representation of integer functions where the domain coincides with the
image, f : [1..n] — [1..n]. This kind of functions were studied by Munro et al. [10], who
focused on how to compute efficiently powers of functions. A positive power is f¥(i), for
a given i € [1..n] and k > 0, whereas a negative power returns all the elements in the set
F7R@G) = {4, f¥(j) = i}, foragiven i € [1..n] and k > 0. They show that f can be represented
within nlgn + O(n) bits so that any positive power f¥(i) is computed in time O(1), and
any negative power f~¥(i) is listed in time O(|f~%(i)|). The main idea of Munro et al. is
summarized in their metaphor “functions are just hairy permutations”, in the sense that the
directed graph G(V, E) where V = [1..n] and E = {(1, f(7)),7 € [1..n]} has the form of a set
of cycles, where a tree may sprout from each node in each cycle (permutations, instead, are
decomposed into just a set of cycles).

In this article we go beyond the goal of simply listing the elements of powers of permuta-
tions. Instead, we seek to compute summaries on the elements belonging to paths in G. We
consider three kinds of paths P:

1. A positive path is formed by the distinct elements in f*1-*2 () = {f*(i), k € [k1..ko]} for

a given ¢ € [1.n] and 0 < ky < ko.

2. A negative path is formed by the distinct elements in f=%1-=%2(;i) = {j € f7%(i),k €

[k1..ko]} for a given i € [1.n] and 0 < k1 < ks.

* Supported with Basal Funds FB0001, Conicyt, Chile, and by Fondecyt grant 1-140796, Chile.
© Travis Gagie, Meng He, Gonzalo Navarro;
37 licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Path Queries on Functions

3. A negative path point is a particular case of a negative path, formed by the elements in
f7%(@3), for a given i € [1..n] and &k > 0.

In turn, we consider various kinds of summarizations. For maximum generality, let us
assume that the elements are assigned a label ¢ : [1..n] — [1..0], and we perform summary
queries on the labels. We consider the following queries on paths P: (1) Minimum or
mazimum queries: Return min{f(j),j € P} or max{((j),j € P}. (2) Selection queries:
Return the element of P with the rth smallest or largest label, including queries where the
value of r is relative to |P| such as median queries. (3) Top-t queries: Return a set M C P
formed by t elements with smallest or largest labels in P. (4) 7-Majority queries: Return
a set of labels whose relative frequency in P is over 7, for a given 0 < 7 < 1. (5) Range
queries: Let R = {j € P, £(j) € [t1, (2]}, given 1 < {1 < {5 < 0. A counting query asks for
|R|, whereas a reporting query requires listing all the elements in R.

As an application of summary queries on paths, suppose we are simulating a system to
prepare for situations in which we need to react quickly, e.g., natural disasters or conflicts or
critical-equipment failures. We run our simulation through some finite set of states and want
to store the traces such that later, given a start state in that set and a number of time-steps,
we can quickly return statistics about the states the simulation passes through from that
state in that many steps. Of course, we could precompute all the possible answers, but this
could take space quadratic in the number of states; we could iterate through all the relevant
states at query time, but this could take linear time. If our simulation is deterministic, our
problem reduces to storing a function (from states to states, with each state labelled by
satellite data) compactly such that we can efficiently answer path queries on it.

The case of positive paths is the easiest. We build on the recent results of He et al. [§]
and Chan et al. [3], who give succinet (and also larger) structures for various path queries
on trees. Then a relatively simple unfolding and doubling of the cycles in the graph G
allows us to directly apply their results to positive paths, with a small extra time penalty
to map from the domain of f to the nodes of G. For example, we can solve minimum
or maximum queries using nlgn + O(n) bits and O(lgn/lglgn) time, range queries in
nlgn + nlgo + O(n) + o(nlgo) bits and O(lgn/lglgn) time per returned element, and
selection queries in nlgn + 2nlgo + O(n) 4+ o(nlgo) bits and O(lgn/lglgn) time.

For negative path points, we unroll the cycles in a way that all the desired nodes in any
f7%(i) belong to a contiguous range within a single level of the tree. Then an appropriate
layout of the data associated with the node allows us to reduce queries on negative path
points to array range queries. Since array ranges are particular cases of tree paths, all the
complexities obtained for positive paths are inherited by negative path points, but in addition
we can perform other queries that have good solutions on array ranges. For example, we
can solve top-t queries [13] using nlgn + O(nlgT) bits, where T is the maximum ¢ value
permitted, in time O(t +1gn/lglgn). As another example, we can solve T-majority queries
using nlgn + (1 + €)nlg o bits, for any constant € > 0, in time O(lgn/lglgn + 1/7) [1].

The hardest case is the general negative paths. Our queries in this case are mapped into
a three-dimensional space, and thus the structures require O(nlgn) space in order to offer
polylogarithmic times. Still, there is no previous result in this case, and thus it is left open
whether those queries can be solved efficiently within linear space.

Travis Gagie, Meng He, and Gonzalo Navarro

Figure 1 On the left, the representation of a permutation as a directed graph. On the right, the
permutation is extended into a function.

2 Background

2.1 Rank and select on bitvectors

A bitvector B[1..n] can be represented in n + o(n) bits so as to perform operations rank
and select in constant time [5]. Operation ranky(B,i), for b € {0,1} and ¢ € [1..n], is
the number of occurrences of bit b in B[1..7]. Operation selecty(B,j), with b € {0,1} and
j € [1..ranky(B,n)], is the position of the jth occurrence of bit b in B.

2.2 Permutations and functions

Munro et al. [10] regard a permutation 7 on [1..n] as a directed graph G = (V, E), where
V = [l.n] and E = {(i,7(7)), ¢ € [1..n]}. This graph turns out to be a set of simple
cycles, which correspond to the cycle decomposition of 7. Figure 1 (left) shows the grahical
representation of permutation 7 = (36275 1 4), which is decomposed into the cycles (1 3 2 6),
(5), and (4 7). A function f : [1..n] — [1..n] is then regarded as an extension of permutations,
where a general tree may sprout from each node of the cycles. Figure 1 (right) illustrates
the case of f(1..24) = (5,1,23,11,3,24,18,8,1,4,23,18,18,22,9,22,4,3,2,2,6,9, 1,6), which
extends the cycles of our example .

From the results that are interesting to us, Munro et al. obtain two representations for
permutations 7. The first uses lgn! 4 o(n) bits and computes any 7(7) in time O(1) and any
77 1(i) in time O(Ign/lglgn). The second uses lgn! + O((n/t)lgn) bits, for any t < Ign,
and computes any 7(i) in time O(1) and any 7 1(i) in time O(t). For functions, they can
compute any positive power f¥(i), with k > 0, or negative power f~%(i) = {j, f*(j) = i},
with & > 0, in time O(¢) and O(t + | f~*(4)]), respectively, using nlgn(1 + 1/t) bits of space,
for any t < lgn.

2.3 Path queries on trees

He et al. [8] and Chan et al. [3] showed how to represent a tree where the nodes have labels
(or weights) in succinct space so as to support various queries on the paths of the tree. Let
us regard the trees as acyclic connected graphs G(V, E); then a path is a sequence of nodes

XX:3

XX:4

Path Queries on Functions

V1,2, ..., Up, such that every (vg,vi41) € E, and it can be specified by giving v; and vp.l
Given a general ordinal tree of n nodes, where each node v has a label £(v) € [1..0], they
support the following queries on paths P of the tree, among others:

1. Minimum/maximum queries, that is, find a node with the smallest or largest label in P,
are solved in time a(m,n) with a structure using O(m) bits of space on top of the raw
data, for any m > n, where « is the inverse of the Ackermann function [3].

2. Selection, that is, find the node holding the rth smallest label in P, is solved in time
O(lgo/l1glg o), with a structure using nH (¢) + o(nlgo) + O(n) bits of space. Here
H(¢) <lgo is the entropy of the distribution of the values ¢(v) over all the nodes v [8].

3. Range queries include counting, that is, how many nodes in P have labels in [¢;..65], and
reporting, that is, reporting all those nodes, given ¢; and ¢5. Both are solved within
nH(¢) + o(nlgo) + O(n) bits of space, supporting counting in time O(1 +1go/lglgn)
and reporting of 7 results in time O((r +1)(1+1go/lglgn)) [8]. By using more space, it
is possible to match the same results of two-dimensional range queries [3].

Those structures include an O(n)-bit representation of the tree topology. There are several
alternatives (see [15, Ch. 8]) using 2n + o(n) bits and supporting a wide set of navigation
operations on trees. For positive paths, it turns out that the representations for the path
queries used in this section [8, 3] support in constant time a few queries that will be useful:

Mapping from each tree node v to a unique identifier id(v) € [1..n], and from an identifier

i € [1..n] to the tree node, node(i).

Level ancestor queries, that is, given a node v and a distance d, anc(v,d) is the ancestor

of v at distance d (e.g., anc(v,0) is v and anc(v,1) is the parent of v).

The depth of a node, depth(v), where the depth of the root is 0.

The leftmost leaf of the subtree of a node, leftmost(v).

The lowest common ancestor of two nodes, lca(u,v).

For negative paths, instead, we will use the Fully-Functional (FF) representation [14],
which represents the tree using 2n parentheses: the tree is traversed in depth-first order,
writing an opening parenthesis when we reach a node and a closing one when we leave it.
Within 2n + o(n) bits it supports in constant time all of the above operations, plus fwd(z, d)
and bwd(z,d), defined as follows. Let excess(y) be the number of opening minus closing
parentheses up to position y in the parentheses sequence. Then fwd(z,d) (resp. bwd(x,d))
finds the closest position y to the right (resp. to the left) of x where excess(y) = excess(x)+d.
For example, if there is an opening (resp. closing) parenthesis at z, its corresponding closing
(resp. opening) parenthesis is at close(x) = fwd(x, —1) (resp. open(x) = bwd(x,0) + 1).

2.4 Range queries on arrays

A much better studied particular case of path queries is that of range queries on an array
A[l..n] of labels in [1..0]. The following is a brief selection from a number of results reported
in the literature:

1. Minimum queries, where it is possible to find the position of a minimum in any range
Ali..j] in O(1) time with a structure that uses 2n + o(n) bits and does not access A [6].
An analogous result holds for maximum queries.

! They actually handle undirected graphs, supporting paths between any two nodes v and v. Those can
be easily decomposed into two directed paths, from u to lca(u,v) and from v to lca(u,v), where lca is
the lowest common ancestor operation.

Travis Gagie, Meng He, and Gonzalo Navarro XX:5

2. Selection queries, where we can set at construction time a maximum value R of r that
can be used in queries, and then a structure using O(nlg R) bits, without accessing A,
can answer queries in optimal time O(1 +1gr/lglgn) [13]. Note that we can set R =n
for maximum generality.

3. Top-t queries, that is, finding ¢ elements in A[i..j] with largest labels, can be answered in
optimal time O(t) with a structure that uses O(nlgT) bits and does not access A, where
T is an upper bound on the values of ¢ that can be queried [13].

4. T-majority queries, that is, finding the labels whose relative frequencies in A[i..j] are
above 7. This can be solved in optimal time O(1/7) and O(1 + e)nH (¢) + o(n) bits, for
any constant € > 0; this representation contains A in compressed form. The space can be
reduced to nH (£)(1 + o(1)) + o(n) bits, and still obtain any time in w(1/7) [1].

5. Range counting can be performed in O(1 +1go/lglgn) time, and reporting of the r
results can be done in time O((r 4+ 1)(1 4+ lgo/lglgn)), using nlgo + o(nlgo) bits [2].

2.5 Range queries in two dimensions

When the ranges are two-dimensional and the points have weights, most of the queries require
linear and even super-linear space. Some examples in the literature follow.

1. The top-t elements in a two-dimensional range of an n x n grid with points having weights
in [1..0] can be computed in time O((t + 1gn)lg®n), for any constant € > 0, with a data
structure that uses O(nlgn) bits [11, Lem. 7.1]. With ¢ = 1, this gives a structure for
range minima or maxima.

2. The rth largest element in a two-dimensional range can be obtained in time O(¢lgnlg, o)
with a structure using nlgnlg, c + O(nlgo) bits, for any £ € [2, 0] [12].

3. The same structure of the previous point can be used to find the 7-majorities in a range
in time O((1/7)¢1gnlg, o) [12].

4. Range counting queries in three dimensions (or in two dimensions and labels) can be
carried out in time O((Ign/lglgn)?) with a structure that uses O(nlg* /lglgn) bits of
space [9]. Within that space, each point can be reported in time O((Ign/lglgn)?) [9].

2+4¢ Tl)

By raising the space to O(nlg bits, for any constant € > 0, the time to report r

points is reduced to O(r + 1glgn) [4].

3 Positive Paths

A positive path of the form f**2(i) can be handled by converting the graph G that
represents f (recall Figure 1 (right)) into a single tree. The transformation is as follows:

1. We cut each cycle v1 — vo — ... = v, — v1 at an arbitrary position, say removing
the edge v, — v1. The result is a directed tree rooted at v. (with arrows pointing from
children to parents) where the cycle edges form the leftmost path.

2. We add a new leaf per cycle, which will be the leftmost child of v;.

We add an artificial root, which will be the parent of the roots v, of all the cycles.

4. We represent the resulting tree using the data structures of Section 2.3, for whichever
query we want to answer. The representation must support in constant time the operations
id, node, anc, depth, leftmost, and Ica.

5. We store a bitvector B[l..n + [+ 1], where [< n is the number of leaves added, or
equivalently the number of cycles in f, so that B[i] = 1 iff the tree node with identifier ¢
is one of the original nodes of G. We give rank and select support to B, so as to map the
tree node identifiers in [1..n + ! + 1] of the nodes that are in G to the interval [1..n].

w

XX:6

Path Queries on Functions

Figure 2 Our transformation to solve positive queries on functions using path queries on trees.

6. We store a permutation 7 that goes from the mapped node identifiers in [1..n] to the
corresponding domain elements, using the representation of Section 2.2.

Figure 2 exemplifies our construction on the function of Figure 1. The permutation 7 is
displayed in the form of numbers associated with the nodes. Note how we have broken the
cycle 3 = 23 - 1 — 5 — 3, for example.

Consider now a positive path query f*1-¥2(4). In the simplest case, we proceed as follows:
We compute v = node(select; (B, 771(i))), the node where the path query will start.
We compute the path extremes vs = anc(v, k1) and v, = anc(v, ka).

We carry out the desired query on the tree path from vy to ve.

Any node u returned by the query is mapped back to a domain value in constant time
using 7(rank (B, id(u))).

i s

In our example, we can compute a query on f!3(4) = (11,23,1) with this technique.
However, consider f14(15). Our technique maps the path to the domain elements (9, 1,5, ?),
whereas the correct domain elements to include were (9,1,5,3). This is because the path
goes through the node v, where we have cut the cycle. In general, both ki and ks may be
several times larger than the cycle length.

To handle this situation, we use the cycle as follows. First, if k1 > depth(v), then we set
vs < anc(vy, (k1 — depth(v)) mod c¢), where v; is the lowest node of the cycle and ¢ is the
cycle length. Similarly, if ko > depth(v), we set v, < anc(vy, (ko — depth(v)) mod ¢). For
this we compute v. = anc(v, depth(v) — 1), then vy = anc(leftmost(v.),1) and ¢ = depth(vy).

However, v, might not be an ancestor of v after this transformation, that is, depth(v.) >
depth(vs) or anc(vs, depth(vs) — depth(v,)) # ve. This means that the positive path is cut
into two tree paths: one from v, to v, and the other from v; to v.. In our example, fl"4(15)
is cut into the paths (9,1,5) and (3).

This can be handled if the query is decomposable, that is, we can obtain the answer
from the results on the two paths. For example, range counting and reporting are obviously
decomposable, whereas range minima (if we do not store the labels, as in the solution of
Section 2.3) and selection queries are not decomposable.

A final issue is that, if ks — k1 > ¢, we may visit the same domain values several times
along the positive path. Since we want to consider each distinct element only once, we
can solve this problem by splitting the query into up to three paths: one inside the tree

Travis Gagie, Meng He, and Gonzalo Navarro

where v belongs that sprouts from the cycle, and two on the cycle. We first compute
v" = lea(v,v1), to find the cycle node where the tree of v sprouts. Then a first path to
consider, if k1 < d = depth(v) — depth(v'), is the one corresponding to [k, min(ke,d — 1)].
If k3 > d, we then consider paths on the cycle, starting at node v’ and with the range
[k1,kS] = [max(0, k1 —d), ke — d]. If kb — k] > ¢— 1, we simply include the whole cycle, with
the path from vy to v.. Otherwise, we proceed as before.

Algorithm 1, in Appendix A, gives the complete procedure. We have then Theorem 1,
where the extra time is the one spent to compute 7~ 1(i) and the extra space is that of storing
m and B.

» Theorem 1. Let f : [1..n] — [1..n] be a function and € : [1..n] — [1..0] an assignment of
labels to the domain elements. Let there be a tree representation that performs in constant
time the operations id, node, anc, depth, leftmost, and lca, and in addition it solves a certain
decomposable path query on n-node trees with labels in [1..0] in T(n,o) time, using in total
S(n, o) bits of space. Then, there exists a data structure using nlgn + O(n) + S(n, o) bits
that answers the same query on the positive paths of f in time O(lgn/lglgn) + T(n, o).
There exists another data structure using nlgn(l+1/t) 4+ S(n,o) bits that answers the query
in time O(t) + T(n,0), for any t <lgn.

By considering the range queries of He et al. [8] (Section 2.3), we derive Corollary 2.

» Corollary 2. Let f : [1..n] — [1..n] be a function and ¢ : [1.n] — [1..0] an assignment of
labels to the domain elements. Then, there exists a data structure using nlgn+nH (€)+O(n)+
o(nlgo) bits that answers counting queries on the positive paths of f in time O(lgn/lglgn),
and also reports those r results in time O(lgn/lglgn+r(1+1lgo/lglgn)), where H(¢) <lgo
1s the entropy of the distribution of the values in £.

Non-decomposable path queries

When the query is not decomposable, we cannot allow splitting paths. Instead, we unroll the
cycles twice, as illustrated in Figure 3. More formally:

1. We cut each cycle v; — vo — ... = v, — v1 as before, removing the edge v. — v; and
leaving a tree rooted at v,.

2. We add a leaf as the leftmost child of vy, as before.

3. We add an upward path per cycle, starting at each tree root v., which repeats the cycle
with copies of the nodes. That is, we add edges v, — v} — v§ — ... — v/, _;. Each of the
new nodes v} is assigned the same label of v;.

4. We add an artificial root, which will be the parent of all the nodes v/,_; (or of the node
v = v, for cycles of length 1, since in those cases no v} nodes are added).

5. We represent the resulting tree using the data structures of Section 2.3, as before.

6. We store a bitvector B[l..n + g, where g <n 4+ 1 is the number of nodes added, so that
Bli] = 1 iff the tree node with identifier ¢ is one of the original nodes of G. As before, we
give rank and select support to B.

7. We store a permutation 7 that goes from the mapped node identifiers in [1..n] to the
corresponding domain elements, as before.

We can now compute v.,_; = anc(v, depth(v) — 1), v1 = anc(leftmost(v._;),1), ¢ =
(depth(v1) + 1)/2, and v, = anc(vy,c — 1). We also compute v’ = lca(vy,v) as before.
There are two cases. The first is that the path starts inside the subtree of v’, that is, if
k1 < d = depth(v) — depth(v’). In this case, we set vy = anc(v, k). Then, if ke —d < ¢, we

XX:7

XX:8

Path Queries on Functions

Figure 3 Our transformation to solve non-decomposable positive queries on functions using path
queries on trees.

set ve = anc(v, ko); otherwise we set v, = anc(v’,¢ — 1). Finally, we run the tree path query
from vy to ve.

The other case is that the path lies completely on the cycle, that is, k1 > d. We can first
exclude the condition ks — k1 > ¢, as in this case we simply query the path from v; to v,.
If ko — k1 < ¢, we find vy inside the path that goes from vy to v.: If depth(v) — k1 > ¢, we
set vy = anc(v, k1); otherwise we set vs = anc(vy, ((¢ — 1) — (depth(v) — k1)) mod ¢). We
then do the same to compute v, with k3. Finally, if v, is deeper than vs, we recompute
Ve = anc(ve, ¢). Now we can safely run the tree path query from vg to ve.

A final issue is how to map back the nodes u = v} that the algorithm may return. Note
that we know the cycle where the query was performed, so we know ¢ and vy. Thus, if
depth(u) < ¢, we know that u is a created node, and replace it with anc(vy, (c—1) — depth(u))
before mapping it to the domain of f. Algorithm 2, in Appendix A, gives the pseudocode.

Since we have up to n newly created nodes for which we have to store labels, we have
Theorem 3.

» Theorem 3. Let f: [1.n] — [1..n] be a function and £ : [1..n] — [1..0] an assignment of
labels to the domain elements. Let there be a tree representation that performs in constant
time the operations id, node, anc, depth, leftmost, and lca, and it addition it solves a certain
non-decomposable path query on n-node trees with labels in [1..0] in T'(n, o) time, using in total
S(n, o) bits of space. Then, there exists a data structure using nlgn+O(n)+S(2n+1,0) bits
that answers the same query on the positive paths of f in time O(lgn/lglgn) +T(2n+1,0).
There ezists another data structure using nlgn(l+1/t) +S(2n +1,0) bits that answers the
query in time O(t) + T(2n+ 1,0), for any t <lgn.

By considering the minimum/maximum and the selection queries of He et al. [8] (Sec-
tion 2.3), we derive Corollaries 4 and 5.

» Corollary 4. Let f : [1..n] — [1..n] be a function and € : [1..n] — [1..0] an assignment of
labels to the domain elements. Then, there exists a data structure using nlgn 4+ O(n) bits
that answers minimum/mazimum queries on the positive paths of f in time O(lgn/lglgn).

Travis Gagie, Meng He, and Gonzalo Navarro

—h

122152019/6[24 21]8
00000TT1O0T

Figure 4 The same tree for decomposable positive queries (without the extra root), showing how
the levels are deployed to aid in negative path points.

There exists another structure using (1 + €)nlgn + O(m) bits, for any constant € > 0 and
any m > n, that answers the queries in time a(m,n).

» Corollary 5. Let f : [1..n] — [1..n] be a function and ¢ : [1.n] — [1..0] an assignment of
labels to the domain elements. Then, there exists a data structure using nlgn+2nH (£)+0(n)+
o(nlg o) bits that answers selection queries on the positive paths of f in time O(lgn/lglgn),
where H(L) <lgo is the entropy of the distribution of the values in £.

4 Negative Path Points

Figure 4 shows the same tree of Figure 2, now showing clearly the resulting levels of the
tree, and without the extra root. The result is a forest, which we will store with the
FF representation [14]. The figure illustrates an important point: all the nodes in f~% (i)
correspond to the descendants at distance k of the node corresponding to i. For example
f72(1) = {3,11,22,15,20,19}. These form a range if we deploy the nodes in levelwise order.

Just as for positive paths, we will store a bitvector B indicating which nodes are originally
in G (i.e., not the added leaves) and a permutation 7 on [1..n] mapping from the identifiers of
those nodes in G (after being mapped to [1..n] using B) to domain elements. The information
on the nodes (such as the labels) will be stored in levelwise order, with a permutation p
on [1..n] mapping from the levelwise deployment to the tree identifier of the node. Let
v = node(select, (B, 7 1(i))) be the node corresponding to domain element i, and assume v is
not on the cycle of its component in G. Then the elements of f~*(i) are the descendants of v at
distance k. The leftmost such descendant is found with v; = fwd(v, k), whereas the rightmost
one is vy = open(bwd(close(v),k + 1) + 1). Then the range of values where the information
on the elements of f~%(i) is stored is [p~!(rank, (B, id(v1))), p~* (rank, (B, id(vs)))]. Note
that any element at position j in the levelwise deployment can be converted into a domain
element with 7(p(j)). Figure 4 shows how f~2(9) is mapped to the range containing (16, 14),
which is within the level containing (18,4, 16, 14) (disregard for now bitvector L and the way
levels are interlaced in the array).

When v is on a cycle (of length ¢), then we can go to its predecessor in the cycle (taking
the arrow backwards) and collect the descendants at distance k — 1 in its sprouting tree, then

XX:9

XX:10

Path Queries on Functions

to its predecessor and collect its descendants at distance k — 2, and so on. Given the way we
have converted G into a tree, all these nodes are indeed the descendants of v at distance k;
consider again f~2(1) in Figure 4. However, the situation can be more complicated because,
if the trees sprouting from the cycle are tall enough, then we could run over the whole cycle
in backward direction and return again to v, now looking for descendants at distance k — c.
Therefore, not only we have to include the descendants of v at distance k, but also all the
elements in the whole tree where v belongs at depths depth(v) + k — ¢, depth(v) + k — 2¢,
and so on.

To handle this case, we will store the levelwise information on the nodes of each tree of
the forest in an interlaced order of the levels: levels 1, ¢+ 1, 2¢ + 1, and so on, then levels 2,
¢+ 2, 2¢+ 2, and so on, until levels ¢, 2¢, 3¢, and so on. A bitvector L[1..n] with rank and
select support will mark, in the levelwise ordered domain, the first node at a level of the form
l 4 tc in each tree, for all 1 <[< ¢. Figure 4 shows the levelwise deployment. The nodes
of the first tree are listed as 5,18,4,16,14 for [= 1, then 1,7,12,13,10,17 for [= 2, then
23,9,2 for [= 3, and finally 3,11, 22,15,20,19 for [= 4. The following two trees are then
listed as 6,24, 21 and 8. The bitvector L marks the beginnings of the change in tree or in [.

With this arrangement, we only have to find as before ps = p~1(rank, (B, id(v3))), the
second endpoint of the range, and then p; = select (L, ranky (L, p2)), the beginning of the
nodes of the tree of vy with its same [value. Figure 4 shows how vy is found for f~2(23),
and then the range includes up to the beginning of [= 1 in its tree, to contain (5, 18,4).

The final issue is how to determine if v is or not on the cycle. We can do this by computing,
similarly to the positive paths, v, = anc(v, depth(v)), vo = leftmost(v.) as the leftmost leaf,?
and then v is in the cycle iff vy descends from v, that is, v < vy < close(v).

Finally, we can build on the levelwise deployment of the node data any array range query
data structure we desire. Algorithm 3, in Appendix A, shows the pseudocode.

The time per query is that of the array range query, plus the time needed to compute

1 a constant number of times; answers are converted back to domain values by

71 and p~
computing p and 7 in constant time. Apart from the array range query structures, we are

storing two permutations and some bitvectors. We then have Theorem 6.

» Theorem 6. Let f : [1..n] — [1..n] be a function and £ : [1..n] — [1..0] an assignment of
labels to the domain elements. Let there be an array range query data structure that, on
an array A[l..n] of values in [1..0], answers queries in time T(n,o) using S(n,o) bits of
space. Then, there exists a data structure using 2nlgn+ O(n)+ S(n, o) bits that answers the
same query on the negative path points of f in time O(lgn/lglgn) + T'(n,o). There exists
another data structure using 2nlgn(1 + 1/t) + S(n, o) bits that answers the query in time
O(t) + T(n,0), for any t <lgn.

By considering the various array range queries of Section 2.4, we can derive Corollaries 7
to 10, among others.

» Corollary 7. Let f : [1.n] — [1..n] be a function and ¢ : [1.n] — [1..0] an assignment
of labels to the domain elements. Then, there exists a data structure using 2nlgn + O(n)
bits that finds the elements of f~*(i) with the minimum and the mazimum labels, for any
i € [1.n] and k > 0, in time O(lgn/lglgn). There exists another data structure using
2nlgn(1 + 1/t) + O(n) bits that answers the query in time O(t), for any t <lgn.

2 This operation can be computed in this representation with selecty(ranky (vc) + 1) — 1 on the sequence
of parentheses, which has rank and select support.

Travis Gagie, Meng He, and Gonzalo Navarro

» Corollary 8. Let f : [1..n] — [1..n] be a function and € : [1.n] — [1..0] an assignment of
labels to the domain elements. Then, there exists a data structure using 2nlgn + O(nlg R)
bits that finds the element with the rth largest label in f~*(i), for any i € [L..n], k > 0, and
1 <r <R, in time O(lgn/lglgn). It can also list the r elements with the largest or smallest
values in f~%(i) in time O(r +1gn/lglgn).

» Corollary 9. Let f : [1.n] — [1..n] be a function and ¢ : [1.n] — [1..0] an assignment
of labels to the domain elements. Then, there exists a data structure using 2nlgn + (1 +
e)nH (0) + O(n) bits, where € > 0 is any constant and H({) is the entropy distribution of
the labels, that finds the T-majorities in the labels of f~%(i), for any i € [1..n], k > 0, and
0<7 <1, intime O(1/7 +1gn/lglgn).

» Corollary 10. Let f : [1..n] — [1..n] be a function and £ : [1..n] — [1..0] an assignment of
labels to the domain elements. Then, there exists a data structure using 2nlgn +nH(£) +
o(nlgo) + O(n) bits, where H({) is the entropy distribution of the labels, that counts the
number of labels of f~*(i) within a range, for anyi € [1..n], k > 0, and range of labels, in time
O(lgn/lglgn). It can then list those r elements in time O(lgn/lglgn + (1 +1go/lglgn)).

5 Negative Paths

For ranges of negative values of k, f~[¥1-*21(j), our solution maps the queries into two-
dimensional ranges, which require more space and/or time than previous ones. We preserve
the same tree as in Section 4, but this time the mapping from nodes v is done to pairs
(preorder(v), depth(v)). Here preorder(v) = id(v) is the preorder of the node in the FF
representation. Therefore, once we have mapped the domain element 7 to a tree node v, and
determined that v is not on the cycle, we have that the query encompasses the two dimensional
range [preorder(v) .. preorder(v) + subtreesize(v) — 1] x [depth(v) + k1 .. depth(v) + ko]. All
these operations are supported in constant time with the FF representation [14]. We now
perform the desired query on a structure that handles two-dimensional points (possibly with
labels). The returned points (p,d) are then mapped to the nodes with preorder p, node(p),
which is also supported in constant time.

For the case where v is on the cycle, we will use another arrangement. Note that we
want to consider, in addition to the previous range, all the nodes in the tree of v with
a depth that is between di = depth(v) + k1 and dy = depth(v) + k2, modulo ¢, but not
reaching the range [d;..ds], as that one is already handled. To this end, we will map the
nodes v to pairs (depth(v) div ¢, depth(v) mod c), and will query for the points in the range
[0..dy div ¢ — 1] X [d1 mod ¢..ds mod ¢]. If, however, d; mod ¢ > ds mod ¢, then we split
the second range into [d; mod c¢..c — 1] and [0..d2 mod c].

An exception occurs if ko — k1 > ¢, since then the two types of ranges overlap and we could
count points twice. In this case we take, in this second arrangement, the range [0..dy div ¢ —
1] x [0..c — 1], and reduce the range within the subtree of v to [preorder(v)..preorder(v) +
subtreesize(v) — 1] X [(dg div ¢) - ¢..dg].

Note that in this case we have to complete the query from the results of up to 3 two-
dimensional ranges, so the query must be decomposable. We then obtain Theorem 11.

» Theorem 11. Let f: [1.n] — [1..n] be a function and ¢ : [1..n] — [1..0] an assignment of
labels to the domain elements. Let there be a two-dimensional range query data structure that,
on an n X n grid with values in [1..0], answers decomposable queries in T(n,o) time using
in S(n,o) bits of space. Then, there exists a data structure using 2nlgn + O(n) + S(n, o)
bits that answers the same query on the negative paths of f in time O(lgn/lglgn) +T(n, o).

XX:11

XX:12

Path Queries on Functions

There exists another data structure using 2nlgn(l + 1/t) + S(n, o) bits that answers the
query in time O(t) + T(n, o), for any t <lgn.

We can combine the theorem with various results on querying two-dimensional grids of
points with labels (or weights); recall Section 2.5. We obtain Corollaries 12 and 13.

» Corollary 12. Let f : [1.n] — [1..n] be a function and € : [1..n] — [l..0] an assignment
of labels to the domain elements. Then, there exists a data structure using O(nlgn) bits
that answers minima and mazima queries on the negative paths of f in time O(1g*™*n), and
top-t queries in time O((t +1gn)lg®n), for any constant ¢ > 0.

» Corollary 13. Let f: [1.n] — [1..n] be a function and £ : [1..n] — [1..0] an assignment of
labels to the domain elements. Then, there exists a data structure using O(n Ig? n/lglgn)
bits that answers range counting queries on the negative paths of f in time O((lgn/lglgn)?),
and reports the r values in time O((r + 1)(gn/lglgn)?). By using slightly more space,
O(n1g®Tn) bits for any constant € > 0, the time to report is reduced to O(r + lglgn).

6 Conclusions

Munro et al. [10] studied how to represent an integer function f : [1..n] — [1..n] so as to
efficiently find all the elements of positive and negative powers of f. We have now considered,
for the first time, queries on ranges of positive or negative powers of f. For positive powers,
we essentially retain optimal storage space and almost match the best results of path queries
on trees [8, 3]. Negative powers lead to a set of domain values. For a single negative power,
we basically double the space while almost retaining the performance of the corresponding
array range query. For a range of negative powers, we resort to three-dimensional range
queries, where time and space are essentially multiplied by O(Ign).

Our results consider queries on arbitrary labels on [1, o] attached to the domain elements.
Appendix B gives a few improved results for the simpler case where the queries are run over
the domain elements themselves.

This is the first study on this problem, and it is not clear whether the results can be
improved, in particular it is not clear if queries on ranges of negative powers of f must resort
to three-dimensional range queries.

—— References

1 D. Belazzougui, T. Gagie, J. I. Munro, G. Navarro, and Y. Nekrich. Range majorities and
minorities in arrays. CoRR, abs/1606.04495, 2016.

2 P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search structures
on a grid with applications to text indexing. In Proc. 11th WADS, LNCS 5664, pages
98-109, 2009.

3 T. M. Chan, M. He, J. I. Munro, and G. Zhou. Succinct indices for path minimum, with
applications to path reporting. In Proc. 22nd ESA, LNCS 8737, pages 247-259, 2014.

4 T. M. Chan, K. G. Larsen, and M. Patragcu. Orthogonal range searching on the RAM,
revisited. In Proc. 27th SoCG, pages 1-10, 2011.

5 D. R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.

6 J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries
on static arrays. SIAM Journal on Computing, 40(2):465-492, 2011.

7 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th SODA, pages 841-850, 2003.

Travis Gagie, Meng He, and Gonzalo Navarro XX:13

8 M. He, J. I. Munro, and G. Zhou. Succinct data structures for path queries. In Proc. 20th
ESA, LNCS 7501, pages 575-586, 2012.

9 J. J4j4, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for multi-
dimensional dominance reporting and counting. In Proc. 15th ISAAC, pages 558-568,
2004.

10 J.I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permutations
and functions. Theoretical Computer Science, 438:74-88, 2012.

11 G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear space. In
Proc. 23rd SODA, pages 1066-1078, 2012.

12 G. Navarro, Y. Nekrich, and L. M. S. Russo. Space-efficient data-analysis queries on grids.
Theoretical Computer Science, 482:60-72, 2013.

13 G. Navarro, R. Raman, and S. S. Rao. Asymptotically optimal encodings for range selection.
In Proc. 34th FSTTCS, pages 291-302, 2014.

14 G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees. ACM
Transactions on Algorithms, 10(3):article 16, 2014.

15 Gonzalo Navarro. Compact Data Structures — A practical approach. Cambridge University
Press, 2016.

XX:14 Path Queries on Functions

A Pseudocodes

We give detailed pseudocodes for the main procedures described in the paper. In Algorithm 1,
it is possible to reduce the case of three paths to two, since those of lines 9 and 23 can be
concatenated into one, but we opt for simplicity.

Algorithm 1: Computing decomposable queries on positive paths.
1 Proc Positive(i, k1, k2)

2 | v < node(selecty (B, 7 1(i)))
3 ve < anc(v, depth(v) — 1)

4 vy < anc(leftmost(v.), 1)

5 ¢ < depth(vy)
6
7
8
9

v+ lea(vy,v)
d + depth(v) — depth(v')
if k1 < d then
L Compute path query from anc(v, k1) to anc(v, min(ke,d — 1))

10 if ko > d then

11 kf < max(0,k; — d)

12 ky ko —d

13 if k5 — k7 > c—1 then

14 L Compute path query from vy to v,

15 else

16 if k1 < depth(v’) then vs < anc(v',k})
17 else vy « anc(vy, (k) — depth(v")) mod c)
18 if k) < depth(v') then v, < anc(v', k})
19 else v, + anc(vy, (k5 — depth(v')) mod c)
20 if depth(vs) > depth(ve) and anc(vs, depth(vs) — depth(v.)) = v, then
21 L Compute path query from v, to v,

22 else

23 Compute path query from v, to v,

24 L Compute path query from v; to v,

25 Return the composition of all the path queries performed; resulting nodes u are
| converted into domain values 7(ranky (B, id(u)))

Travis Gagie, Meng He, and Gonzalo Navarro

Algorithm 2: Computing non-decomposable queries on positive paths.

1
2
3
4
5
6
7
8
9

10
11

12
13
14

15
16
17
18
19
20
21

22
23

Proc Positive(i, k1, ko)

v < node(select; (B, 7 1(i)))
vl _q < anc(v, depth(v) — 1)
vy < anc(leftmost(v._),1)

¢ < (depth(vy) +1)/2

v+ lea(vy,v)

d + depth(v) — depth(v')

if k1 < d then

vs < anc(v, k1)

if ko —d < c then v, < anc(v, ka)
else v, + anc(v’,c—1)

Ise if ko — k1 > ¢ then
Vg < VU1
Ve ¢ Ve

c—1

@

else
if depth(v) — k1 > ¢ then v, <+ anc(v, k1)
else vy + anc(vy, ((c — 1) — (depth(v) — k1)) mod c)
if depth(v) — ko > ¢ then v, < anc(v, ka)
else v, < anc(vy, ((c — 1) — (depth(v) — ko)) mod ¢)
if depth(vs) < depth(ve) then

L Ve < anc(ve, ¢)

Compute path query from v, to v,
Return the answers; resulting nodes u are converted into domain values
m(ranky (B, id(u))), but if depth(u) < ¢ we first set u < anc(v1, (¢ — 1) — depth(u))

Algorithm 3: Computing queries on negative path points.

1
2
3
4
5
6
7
8

9
10
11

12
13

Proc Negative(i, k)

v < node(select; (B, m=1(i)))
Ve + anc(v, depth(v))
vo < leftmost(v.)
vy = open(bwd(close(v), k + 1) + 1)
po = p~L(rank, (B, id(v2)))
if v <y < close(v) then

L p1 selecty(L, ranky (L, pa))

else

L vy + fwd(v, k)
p1 < p~(ranky (B, id(v1)))

Compute array range query on [py, ps]

Return the answers; resulting positions j are converted into domain values w(p(j)).

XX:15

XX:16

Path Queries on Functions

B Functions Without Labels

In the simple case where the function has no assigned labels, or said another way, we may
assume £(i) = i for the queries, we can do better than Corollaries 2 and 5. Both path query
structures [8] store the sequence of labels (now domain elements) in node identifier order, and
represent it with a wavelet tree [7]. This structure allows us, with a query similar to select,
to find the occurrence of element 4, thus effectively computing 771(4), in time O(Ign/lglgn).
Instead of returning the node identifier, they may return the label, that is, the domain
element, by accessing the wavelet tree in the same time. Therefore, they do not require
the permutation to map from elements to nodes. In the case of Corollary 5, where we have
duplicated nodes v}, we may use the select-like operation to find the two places where an
element is mentioned in the labels, and choose the one with largest depth to avoid starting
the query from a node v}. Since the wavelet tree has each distinct element mentioned once
or twice, its entropy is essentially maximal, and we have the following results for this case.

» Corollary 14. Let f : [1.n] — [l..n] be a function. Then there exists a data structure
using nlgn + o(nlgn) bits that answers counting queries on the positive paths of f in time
O(lgn/lglgn), and also reports those r results in time O((r + 1)lgn/lglgn).

» Corollary 15. Let f : [1..n] — [1..n] be a function. Then, there exists a data structure
using 2nlgn + o(nlgn) bits that answers selection queries on the positive paths of f in time

O(lgn/lglgn).

We can also simplify Corollary 10, where the structures used perform the equivalent to
select queries on the sequence of labels. Here, we can find where the domain value ¢ appears
in the sequence, and then map it to the tree using p and B. Then there is no need for
permutation 7, and we can subtract nlgn bits to the space in this corollary.3

» Corollary 16. Let f : [1.n] — [1..n] be a function. Then, there exists a data structure
using 2nlgn+o(nlgn) bits, that counts the number of elements of f~*(i) within a range, for
any i € [1..n], k > 0, and range of elements, in time O(lgn/lglgn). It can then list those r
elements in time O((r + 1)1gn/lglgn).

3 The same happens in Corollary 9, but the query makes no sense if the labels are all unique.

	Introduction
	Background
	Rank and select on bitvectors
	Permutations and functions
	Path queries on trees
	Range queries on arrays
	Range queries in two dimensions

	Positive Paths
	Negative Path Points
	Negative Paths
	Conclusions
	Pseudocodes
	Functions Without Labels

