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Abstract. Full-text searching consists in locating the occurrences of a
given pattern P [1..m] in a text T [1..u], both sequences over an alpha-
bet of size σ. In this paper we define a new index for full-text searching
on secondary storage, based on the Lempel-Ziv compression algorithm
and requiring 8uHk +o(u log σ) bits of space, where Hk denotes the k-th
order empirical entropy of T , for any k = o(log

σ
u). Our experimental re-

sults show that our index is significantly smaller than any other practical
secondary-memory data structure: 1.4–2.3 times the text size including

the text, which means 39%–65% the size of traditional indexes like String

B-trees [Ferragina and Grossi, JACM 1999]. In exchange, our index re-
quires more disk access to locate the pattern occurrences. Our index is
able to report up to 600 occurrences per disk access, for a disk page of
32 kilobytes. If we only need to count pattern occurrences, the space can
be reduced to about 1.04–1.68 times the text size, requiring about 20–60
disk accesses, depending on the pattern length.

1 Introduction and Previous Work

Many applications require to store huge amounts of text, which need to be
searched to find patterns of interest. Full-text searching is the problem of locat-
ing the occ occurrences of a pattern P [1..m] in a text T [1..u], both modeled as
sequences of symbols over an alphabet Σ of size σ. Unlike word-based text search-
ing, we wish to find any text substring, not only whole words or phrases. This has
applications in texts where the concept of word does not exist or is not well de-
fined, such as in DNA or protein sequences, Oriental languages texts, MIDI pitch
sequences, program code, etc. There exist two classical kind of queries, namely:
(1) count(T, P ): counts the number of occurrences of P in T ; (2) locate(T, P ):
reports the starting positions of the occ occurrences of P in T .

Usually in practice the text is a very long sequence (of several of gigabytes,
or even terabytes) which is known beforehand, and we want to locate (or count)
the pattern occurrences as fast as possible. Thus, we preprocess T to build a data
structure (or index ), which is used to speed up the search, avoiding a sequential
scan. However, by using an index we increase the space requirement. This is
unfortunate when the text is very large. Traditional indexes like suffix trees [1]
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require O(u log u) bits to operate; in practice this space can be 10 times the text
size [2], and so the index does not fit entirely in main memory even for moderate-
size texts. In these cases the index must be stored on secondary memory and
the search proceeds by loading the relevant parts into main memory.

Text compression is a technique to represent a text using less space. We
denote by Hk the k-th order empirical entropy of a sequence of symbols T over
an alphabet of size σ [3]. The value uHk provides a lower bound to the number
of bits needed to compress T using any compressor that encodes each symbol
considering only the context of k symbols that precede it in T . It holds that
0 6 Hk 6 Hk−1 6 · · · 6 H0 6 log σ (log means log2 in this paper).

To provide fast access to the text using little space, the current trend is to use
compressed full-text self-indexes, which allows one to search and retrieve any part
of the text without storing the text itself, while requiring space proportional to
the compressed text size (e.g., O(uHk) bits) [4, 5]. Therefore we replace the text
with a more space-efficient representation of it, which at the same time provides
indexed access to the text. This has applications in cases where we want to
reduce the space requirement by not storing the text, or when accessing the text
is so expensive that the index must search without having the text at hand,
as occurs with most Web search engines. As compressed self-indexes replace
the text, we are also interested in operations display(T, P, ℓ), which displays a
context of ℓ symbols surrounding the pattern occurrences and extract(T, i, j),
which decompresses the substring T [i..j], for any text positions i 6 j.

The use of a compressed full-text self-index may totally remove the need
to use the disk. However, some texts are so large that their corresponding in-
dexes do not fit entirely in main memory, even compressed. Unlike what happens
with sequential text searching, which speeds up with compression because the
compressed text is transferred faster to main memory [6], working on secondary
storage with a compressed index usually requires more disk accesses in order
to find the pattern occurrences. Yet, these indexes require less space, which in
addition can reduce the seek time incurred by a larger index because seek time
is roughly proportional to the size of the data.

We assume a model of computation where a disk page of size B (able to store
b = ω(1) integers of log u bits, i.e. B = b logu bits) can be transferred to main
memory in a single disk access. Because of their high cost, the performance of
our algorithms is measured as the number of disk accesses performed to solve a
query. We count every disk access, which is an upper bound to the real number
of accesses, as we disregard the disk caching due to the operating system. We
can hold a constant number of disk pages in main memory. We assume that our
text T is static, i.e., there are no insertions nor deletions of text symbols.

There are not many works on full-text indexes on secondary storage, which
definitely is an important issue. One of the best known indexes for secondary
memory is the String B-tree [7], although this is not a compressed data structure.
It requires (optimal) O(logb u+ m+occ

b
) disk accesses in searches and (worst-case

optimal) O(u/b) disk pages of space. This value is, in practice, about 12.5 times
the text size (not including the text) [8], which is prohibitive for very large texts.



Clark and Munro [9] present a representation of suffix trees on secondary
storage (the Compact Pat Trees, or CPT for short). This is not a compressed
index, and also needs the text to operate. Although not providing worst-case
guarantees, the representation is organized in such a way that the number of
disk accesses is reduced to 3–4 per query. The authors claim that the space
requirement of their index is comparable to that of suffix arrays, needing about
4–5 times the text size (not including the text).

Mäkinen et al. [10] propose a technique to store a Compressed Suffix Array

on secondary storage, based on backward searching [11]. This is the only proposal
to store a (zero-th order) compressed full-text self-index on secondary memory,
requiring u(H0 + O(log log σ)) bits of storage and a counting cost of at most
2(1 + m⌈logB u⌉) disk accesses. Locating the occurrences of the pattern would
need O(log u) extra accesses per occurrence.

In this paper we propose a version of Navarro’s LZ-index [12] that can be
efficiently handled on secondary storage. Our index requires 8uHk + o(u log σ)
bits of space for k = o(logσ u). In practice the space requirement is about 1.4–
2.3 times the text size including the text, which is significantly smaller than any
other practical secondary-memory data structure. Although we cannot provide
worst-case guarantees at search time (just as in [9]), our experiments show that
our index is effective in practice, yet requiring more disk accesses than larger
indexes: our LZ-index is able to report up to 600 occurrences per disk access, for
a disk page of 32 kilobytes. On the other hand, count queries can be performed
requiring about 20–60 disk accesses (depending on the pattern length).

2 The LZ-index Data Structure

Assume that the text T [1..u] has been compressed using the LZ78 [13] algorithm
into n+1 phrases, T = B0 . . . Bn. We say that i is the phrase identifier of phrase
Bi. The data structures that conform the LZ-index are [12]:

1. LZTrie: is the trie formed by all the LZ78 phrases B0 . . . Bn. Given the
properties of LZ78 compression, this trie has exactly n + 1 nodes, each one
corresponding to a string.

2. RevTrie: is the trie formed by all the reverse strings Br
0 . . . Br

n. In this trie
there could be empty nodes not representing any block.

3. Node: is a mapping from block identifiers to their node in LZTrie.
4. RNode: is a mapping from block identifiers to their node in RevTrie.

Each of these four structures requires n log n(1+o(1)) bits if they are represented
succinctly. As n log u = uHk + O(kn log σ) 6 u log σ for any k [14], the final size
of the LZ-index is 4uHk + o(u log σ) bits of space for any k = o(logσ u).

We distinguish three types of occurrences of P in T , depending on the phrase
layout [12]. For locate queries, pattern occurrences are reported in the format
Jt, offsetK, where t is the phrase where the occurrence starts, and offset is the
distance between the beginning of the occurrence and the end of the phrase.
However, occurrences can be shown as text positions with little extra effort [15].



Occurrences of Type 1. The occurrence lies inside a single phrase (there are
occ1 occurrences of this type). Given the properties of LZ78, every phrase Bk

containing P is formed by a shorter phrase Bℓ concatenated to a symbol c. If
P does not occur at the end of Bk, then Bℓ contains P as well. We want to
find the shortest possible phrase Bi in the LZ78 referencing chain for Bk that
contains the occurrence of P . Since phrase Bi has the string P as a suffix, P r

is a prefix of Br
i , and can be easily found by searching for P r in RevTrie. Say

we arrive at node v. Any node v′ descending from v in RevTrie (including v
itself) corresponds to a phrase terminated with P . Thus we traverse and report
all the subtrees of the LZTrie nodes corresponding to each v′. Total locate time
is O(m + occ1).

Occurrences of Type 2. The occurrence spans two consecutive phrases, Bk

and Bk+1, such that a prefix P [1..i] matches a suffix of Bk and the suffix P [i +
1..m] matches a prefix of Bk+1 (there are occ2 occurrences of this type). P can be
split at any position, so we have to try them all. For every possible split P [1..i]
and P [i + 1..m] of P , assume the search for P r[1..i] in RevTrie yields node vrev,
and the search for P [i + 1..m] in LZTrie yields node vlz . Then, we check each
phrase t in the subtree of vrev and report occurrence Jt, iK if Node[t+1] descends
from vlz . Each such check takes constant time. Yet, if the subtree of vlz has fewer
elements, we do the opposite: check phrases from vlz in vrev, using RNode[t−1].
The total time is proportional to the smallest subtree size among vrev and vlz .

Occurrences of Type 3. The occurrence spans three or more phrases, Bk−1

. . . Bℓ+1, such that P [i..j] = Bk . . . Bℓ, P [1..i − 1] matches a suffix of Bk−1

and P [j + 1..m] matches a prefix of Bℓ+1 (there are occ3 occurrences of this
type). As every phrase represents a different string (because of LZ78 properties),
there is at most one phrase matching P [i..j] for each choice of i and j. Thus,
occ3 is limited to O(m2) occurrences. We first identify the only possible phrase
matching every substring P [i..j]. This is done by searching for every P [i..j] in
LZTrie, recording in a matrix Clz [i, j] the corresponding LZTrie node. Then we
try to find the O(m2) maximal concatenations of successive phrases that match
contiguous pattern substrings. If P [i..j] = Bk . . . Bℓ is a maximal concatenation,
we check whether phrase Bℓ+1 starts with P [j + 1..m], i.e., we check whether
Node[ℓ+1] is a descendant of node Clz [j+1, m]. Finally we check whether phrase
Bk−1 ends with P [1..i−1], by starting from Node[i−1] in LZTrie and successively
going to the parent to check whether the last i− 1 nodes, read backwards, equal
P r[1..i − 1]. If all these conditions hold, we report an occurrence Jk − 1, i − 1K.
Overall locate time is O(m2 log m) worst-case and O(m2) on average.

3 LZ-index on Secondary Storage

The LZ-index [12] was originally designed to work in main memory, and hence
it has a non-regular pattern of access to the index components. As a result, it



is not suitable to work on secondary storage. In this section we show how to
achieve locality in the access to the LZ-index components, so as to have good
secondary storage performance. In this process we introduce some redundancy
over main-memory proposals [12, 15].

3.1 Solving the Basic Trie Operations

To represent the tries of the index we use a space-efficient representation similar
to the hierarchical representation of [16], which now we make searchable. We
cut the trie into disjoint blocks of size B such that every block stores a subtree
of the whole trie. We arrange these blocks in a tree by adding some inter-block

pointers, and thus the trie is represented by a tree of subtrees.
We cut the trie in a bottom-up fashion, trying to maximize the number of

nodes in each block. This is the same partition used by Clark and Munro [9], and
so we also suffer of very small blocks. To achieve a better fill ratio and reduce
the space requirement, we store several trie blocks into each disk page.

Every trie node x in this representation is either a leaf of the whole trie, or it
is an internal node. For internal nodes there are two cases: the node x is internal
to a block p or x is a leaf of block p (but not a leaf of the whole trie). In the
latter case, x stores a pointer to the representation q of its subtree. The leaf is
also stored as a fictitious root of q, so that every block is a subtree. Therefore,
every such node x has two representations: (1) as a leaf in block p; (2) as the
root node of the child block q.

Each block p of N nodes and root node x consists basically of:

– the balanced parentheses (BP) representation [17] of the subtree, requiring
2N + o(N) bits;

– a bit-vector Fp[1..N ] (the flags) such that Fp[j] = 1 iff the j-th node of the
block (in preorder) is a leaf of p, but not a leaf of the whole trie. In other
words, the j-th node has a pointer to the representation of its subtree. We
represent Fp using the data structure of [18] to allow rank and select queries
in constant time and requiring N + o(N) bits;

– the sequence letsp[1..N ] of symbols labeling the arcs of the subtree, in pre-
order. The space requirement is N⌈log σ⌉ bits;

– only in the case of LZTrie, the sequence idsp[1..N ] of phrase identifiers in
preorder. The space requirement is N log n bits.

– a pointer to the leaf representation of x in the parent block;
– the depth and preorder of x within the whole trie;
– a variable number of pointers to child blocks. The number of child blocks of

a given block can be known from the number of 1s in Fp.
– an array Sizep such that each pointer to child block stores the size of the

corresponding subtree.

Using this information, given node x we are able to compute operations: parent(x)
(which gets the parent of x), child(x, α) (which yields the child of x by label α),
depth(x) (which gets the depth of x in the trie), subtreesize(x) (which gets the



size of the subtree of x, including x itself), preorder(x) (which gets the preorder
number of x in the trie), and ancestor(x, y) (which tells us whether x is ances-
tor of node y). Operations subtreesize, depth, preorder, and ancestor can be
computed without extra disk accesses, while operations parent and child require
one disk access in the worst case. In [?] we explain how to compute them.

Analysis of Space Complexity. In the case of LZTrie, as the number of
nodes is n, the space requirement is 2n+n+n logσ +n logn+ o(n) bits, for the
BP representation, the flags, the symbols, and phrase identifiers respectively. To
this we must add the space required for the inter-block pointers and the extra
information added to each block, such as the depth of the root, etc. If the trie
is represented by a total of K blocks, these data add up to O(K log n) bits. The
bottom-up partition of the trie ensures K = O(n/b), so the extra information
requires O(n

b
log n) bits. As b = ω(1), this space is o(n log n) = o(u log σ) bits.

In the case of RevTrie, as there can be empty nodes, we represent the trie
using a Patricia tree [19], compressing empty unary paths so that there are n 6

n′ 6 2n nodes. In the worst case the space requirement is 4n+2n+2n logσ+o(n)
bits, plus the extra information as before.

As we pack several trie blocks in a disk page, we ensure a utilization ratio of
50% at least. Hence the space of the tries can be at most doubled on disk.

3.2 Reducing the Navigation between Structures

We add the following data structures with the aim of reducing the number of
disk accesses required by the LZ-index at search time:

– Prelz [1..n]: a mapping from phrase identifiers to the corresponding LZTrie

preorder, requiring n log n bits of space.
– Rev[1..n]: a mapping from RevTrie preorder positions to the corresponding

LZTrie node, requiring n log u + n bits of space. Later in this section we
explain why we need this space.

– TPoslz[1..n]: if the phrase corresponding to the node with preorder i in
LZTrie starts at position j in the text, then TPoslz[i] stores the value j.
This array requires n log u bits and is used for locate queries.

– LR[1..n]: an array requiring n log n bits. If the node with preorder i in LZTrie

corresponds to the LZ78 phrase Bk, then LR[i] stores the preorder of the
RevTrie node for Bk−1.

– Sr[1..n]: an array requiring n log u bits, storing in Sr[i] the subtree size of
the LZTrie node corresponding to the i-th RevTrie node (in preorder). This
array is used for counting.

– Node[1..n]: the mapping from phrase identifiers to the corresponding LZTrie

node, requiring n log n bits. This is used to solve extract queries.

As the size of these arrays depends on the compressed text size, we do not need
that much space to store them: they require 3n logu + 3n logn + n bits, which
summed to the tries gives 8uHk + o(u log σ) bits, for any k = o(logσ u).



If the index is used only for count queries, we basically need arrays Prelz ,
LR, Sr, and the tries, plus an array RL[1..n], which is similar to LR but mapping
from a RevTrie node for Bk to the LZTrie preorder for Bk+1. All these add up
to 6uHk + o(u log σ) bits.

After searching for all pattern substrings P [i..j] in LZTrie (recording in
Clz [i, j] the phrase identifier, the preorder, and the subtree size of the corre-
sponding LZTrie node, along with the node itself) and all reversed prefixes
P r[1..i] in RevTrie (recording in array Cr[i] the preorder and subtree size of the
corresponding RevTrie node), we explain how to find the pattern occurrences.

Occurrences of Type 1. Assume that the search for P r in RevTrie yields node
vr. For every node with preorder i, such that preorder(vr) 6 i 6 preorder(vr)+
subtreesize(vr) in RevTrie, with Rev[i] we get the node vlzi

in LZTrie repre-
senting a phrase Bt ending with P . The length of Bt is d = depth(vlzi

), and the
occurrence starts at position d − m inside Bt. Therefore, if p = preorder(vlzi

),
the exact text position can be computed as TPoslz[p]+d−m. We then traverse
all the subtree of vlzi

and report, as an occurrence of type 1, each node con-
tained in this subtree, accessing TPoslz[p..p + subtreesize(vlzi

)] to find the text
positions. Note that the offset d−m stays constant for all nodes in the subtree.

Note that every node in the subtree of vr produces a random access in LZTrie.
In the worst case, the subtree of vlzi

has only one element to report (vlzi
itself),

and hence we have occ1 random accesses in the worst case. To reduce the worst
case to occ1/2, we use the n extra bits in Rev: in front of the log u bits of each
Rev element, a bit indicates whether we are pointing to a LZTrie leaf. In such a
case we do not perform a random access to LZTrie, but we use the corresponding
log u bits to store the exact text position of the occurrence.

To avoid accessing the same LZTrie page more than once, even for different
trie blocks stored in that page, for each Rev[i] we solve all the other Rev[j]
that need to access the same LZTrie page. As the tries are space-efficient, many
random accesses could need to access the same page.

For count queries we traverse the Sr array instead of Rev, summing up the
sizes of the corresponding LZTrie subtrees without accessing them, therefore
requiring O(occ1/b) disk accesses.

Occurrences of Type 2. For occurrences of type 2 we consider every possible
partition P [1..i] and P [i+1..m] of P . Suppose the search for P r[1..i] in RevTrie

yields node vr (with preorder pr and subtree size sr), and the search for P [i +
1..m] in LZTrie yields node vlz (with preorder plz and subtree size slz). Then
we traverse sequentially LR[j], for j = plz..plz + slz , reporting an occurrence
at text position TPoslz[j] − i iff LR[j] ∈ [pr..pr + sr]. This algorithm has the
nice property of traversing arrays LR and TPoslz sequentially, yet the number
of elements traversed can be arbitrarily larger than occ2.

For count queries, since we have also array RL, we choose to traverse RL[j],
for j = pr..pr + sr, when the subtree of vr is smaller than that of vlz , counting
an occurrence only if RL[j] ∈ [plz..plz + slz].



To reduce the number of accesses from 2⌈ slz+1
b

⌉ to ⌈ 2(slz+1)
b

⌉, we interleave
arrays LR and TPoslz, such that we store LR[1] followed by TPoslz[1], then
LR[2] followed by TPoslz[2], etc.

Occurrences of Type 3. We find all the maximal concatenations of phrases
using the information stored in Clz and Cr. If we found that P [i..j] = Bk . . . Bℓ

is a maximal concatenation, we check whether phrase Bℓ+1 has P [j + 1..m]
as a prefix, and whether phrase Bk−1 has P [1..i − 1] as a suffix. Note that,
according to the LZ78 properties, Bℓ+1 starting with P [j + 1..m] implies that
there exists a previous phrase Bt, t < ℓ + 1, such that Bt = P [j + 1..m]. In
other words, Clz [j + 1, m] must not be null (i.e., phrase Bt must exist) and the
phrase identifier stored at Clz [j +1, m] must be less than ℓ+1 (i.e., t < ℓ+1). If
these conditions hold, we check whether P r[1..i− 1] exists in RevTrie, using the
information stored at Cr[i−1]. Only if all these condition hold, we check whether
Prelz [ℓ + 1] descends from the LZTrie node corresponding to P [j + 1..m] (using
the preorder and subtree size stored at Clz [j + 1, m]), and if we pass this check,
we finally check whether LR[Prelz[k]] (which yields the RevTrie preorder of the
node corresponding to phrase k−1) descend from the RevTrie node for P r[1..i−1]
(using the preorder and subtree size stored at Cr[i− 1]). Fortunately, we have a
high probability that Prelz [ℓ+1] and Prelz [k] need to access the same disk page.
If we find an occurrence, the corresponding position is TPoslz[Prelz [k]]−(i−1).

Extract Queries. In [?] we explain how to solve extract queries.

4 Experimental Results

For the experiments of this paper we consider two text files: the text wsj (Wall
Street Journal) from the trec collection [20], of 128 megabytes, and the XML file
provided in the Pizza&Chili Corpus1, downloadable from http://pizzachili.

dcc.uchile.cl/texts/xml/dblp.xml.200MB.gz, of 200 megabytes. We searched
for 5,000 random patterns, of length from 5 to 50, generated from these files.
As in [8], we assume a disk page size of 32 kilobytes. We compared our results
against the following state-of-the-art indexes for secondary storage:

Suffix Arrays (SA): following [21] we divide the suffix array into blocks of
h 6 b elements (pointers to text suffixes), and move to main memory the
first l text symbols of the first suffix of each block, i.e. there are u

h
l extra

symbols. We assume in our experiments that l = m holds, which is the best
situation. At search time, we carry out two binary searches [22] to delimit
the interval [i..j] of the pattern occurrences. Yet, the first part of the binary
search is done over the samples without accessing the disk. Once the blocks
where i and j lie are identified, we bring them to main memory and finish
the binary search, this time accessing the text on disk at each comparison.

1 http://pizzachili.dcc.uchile.cl
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Fig. 1. Count cost vs. space requirement for the different indexes we tested.

Therefore, the total cost is 2+2 logh disk accesses. We must pay ⌈ occ
b
⌉ extra

accesses to report the occurrences of P within those two positions. The space
requirement including the text is (5 + m

h
) times the text size.

String B-trees [7]: in [8] they pointed out that an implementation of String

B-trees for static texts would require about 2 + 2.125
k

times the text size
(where k > 0 is a constant) and the height h of the tree is 3 for texts of
up to 2 gigabytes, since the branching factor (number of children of each
tree node) is b′ ≈ b

8.25 . The experimental number of disk accesses given by
the authors is O(log k)(⌊m

b
⌋ + 2h) + ⌈ occ

b′
⌉. We assume a constant of 1 for

the O(log k) factor, since this is not clear in the paper [8, Sect. 2.1] (this is
optimistic). We use k = 2, 4, 8, 16, and 32.

Compact Pat Trees (CPT) [9]: we assume that the tree has height 3, ac-
cording to the experimental results of Clark and Munro. We need 1 + ⌊ occ

b
⌋

extra accesses to locate the pattern occurrences. The space is about 4–5
times the text size (plus the text).

We restrict our comparison to indexes that have been implemented, or at
least simulated, in the literature. Hence we exclude the Compressed Suffix Arrays

(CSA) [10] since we only know that it needs at most 2(1+m⌈logb u⌉) accesses for
count queries. This index requires about 0.22 and 0.45 times the text size for the
XML and WSJ texts respectively, which, as we shall see, is smaller than ours.
However, CSA requires O(log u) accesses to report each pattern occurrence2.

2 The work [23] extends this structure to achieve fast locate. The secondary-memory
version is still a theoretical proposal and it is hard to predict how will it perform,
so we cannot meaningfully compare it here.
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Fig. 2. Locate cost vs. space requirement for the different indexes we tested. Higher
means better locate performance.

Fig. 1 shows the time/space trade-offs of the different indexes for count

queries, for patterns of length 5 and 15. As it can be seen, our LZ-index requires
about 1.04 times the text size for the (highly compressible) XML text, and 1.68
times the text size for the WSJ text. For m = 5, the counting requires about 23
disk accesses, and for m = 15 it needs about 69 accesses. Note that for m = 5,
there is a difference of 10 disk accesses among the LZ-index and String B-trees,
the latter requiring 3.39 (XML) and 2.10 (WSJ) times the space of the LZ-
index. For m = 15 the difference is greater in favor of String B-Trees. The SA
outperforms the LZ-index in both cases, the latter requiring about 20% the space
of SA. Finally, the LZ-index needs (depending on the pattern length) about 7–23
times the number of accesses of CPTs, the latter requiring 4.9–5.8 (XML) and
3–3.6 (WSJ) times the space of LZ-index.

Fig. 2 shows the time/space trade-offs for locate queries, this time showing
the average number of occurrences reported per disk access. The LZ-index re-
quires about 1.37 (XML) and 2.23 (WSJ) times the text size. The LZ-index is
able of reporting about 597 (XML) and 63 (WSJ) occurrences per disk access
for m = 5, and about 234 (XML) and 10 (WSJ) occurrences per disk access for
m = 15. The average number of occurrences found for m = 5 is 293,038 (XML)
and 27,565 (WSJ); for m = 15 there are 45,087 and 870 pattern occurrences on
average. String B-trees report 3,449 (XML) and 1,450 (WSJ) occurrences per
access for m = 5, and for m = 15 the results are 1,964 (XML) and 66 (WSJ)
occurrences per access, while requiring 2.57 (XML) and 1.58 (WSJ) times the
space of the LZ-index.

Fig. 3 shows the cost for the different parts of the LZ-index search algorithm,
in the case of XML (WSJ yields similar results): the work done in the tries (la-
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Fig. 3. Cost for the different parts of the LZ-index search algorithm.

beled “tries”), the different types of occurrences, and the total cost (“total”).
The total cost can be decomposed in three components: a part linear on m (trie
traversal), a part linear in occ (type 1), and a constant part (type 2 and 3).

5 Conclusions and Further Work

The LZ-index [12] can be adapted to work on secondary storage, requiring up
to 8uHk + o(u log σ) bits of space, for any k = o(logσ u). In practice, this value
is about 1.4–2.3 times the text size, including the text, which means 39%–65%
the space of String B-trees [7]. Saving space in secondary storage is important
not only by itself (space is very important for storage media of limited size, such
as CD-ROMs), but also to reduce the high seek time incurred by a larger index,
which usually is the main component in the cost of accessing secondary storage,
and is roughly proportional to the size of the data.

Our index is significantly smaller than any other practical secondary-memory
data structure. In exchange, it requires more disk accesses to locate the pattern
occurrences. For XML text, we are able to report (depending on the pattern
length) about 597 occurrences per disk access, versus 3,449 occurrences reported
by String B-trees. For English text (WSJ file from [20]), the numbers are 63 vs.
1,450 occurrences per disk access. In many applications, it is important to find
quickly a few pattern occurrences, so as to find the remaining while processing
the first ones, or on user demand (think for example in Web search engines).
Fig. 3 (left, see the line “tries”) shows that for m = 5 we need about 11 disk
accesses to report the first pattern occurrence, while String B-trees need about
12. If we only want to count the pattern occurrences, the space can be dropped
to 6uHk + o(u log σ) bits; in practice 1.0–1.7 times the text size. This means
29%–48% the space of String B-trees, with a slowdown of 2–4 in the time.

We have considered only number of disk accesses in this paper, ignoring seek
times. Random seeks cost roughly proportionally to the size of the data. If we
multiply number of accesses by size of the indexes, we get a very rough idea of
the overall seek times. We can see that the smaller size of our LZ-index should
favor it in practice. For example, it is very close to String B-trees for counting
on XML and m = 5 (Fig. 1). This product model is optimistic, but counting
only accesses is pessimistic.



As future work we plan to handle dynamism and the direct construction on
secondary storage, adapting the method of [16] to work on disk.

References

1. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words. NATO ISI Series, Springer-Verlag (1985) 85–96

2. Kurtz, S.: Reducing the space requeriments of suffix trees. Softw. Pract. Exper.
29(13) (1999) 1149–1171

3. Manzini, G.: An analysis of the Burrows-Wheeler transform. JACM 48(3) (2001)
407–430
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