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Abstract. Compressed text (self-)indexes have matured up to a point
where they can replace a text by a data structure that requires less
space and, in addition to giving access to arbitrary text passages, support
indexed text searches. At this point those indexes are competitive with
traditional text indexes (which are very large) for counting the number
of occurrences of a pattern in the text. Yet, they are still hundreds to
thousands of times slower when it comes to locating those occurrences in
the text. In this paper we introduce a new compression scheme for suffix
arrays which permits locating the occurrences extremely fast, while still
being much smaller than classical indexes. In addition, our index permits
a very efficient secondary memory implementation, where compression
permits reducing the amount of I/O needed to answer queries.

1 Introduction and Related Work

Compressed text indexing has become a popular alternative to cope with the
problem of giving indexed access to large text collections without using up too
much space. Reducing space is important because it gives one the chance of main-
taining the whole collection in main memory. The current trend in compressed
indexing is full-text compressed self-indexes [13, 1, 4, 14, 12, 2]. Such a self-index
(for short) replaces the text by providing fast access to arbitrary text substrings,
and in addition gives indexed access to the text by supporting fast search for the
occurrences of arbitrary patterns. These indexes take little space, usually from
30% to 150% of the text size (note that this includes the text). This is to be
compared with classical indexes such as suffix trees [15] and suffix arrays [10],
which require at the very least 10 and 4 times, respectively, the space of the
text, plus the text itself. In theoretical terms, to index a text T = t1 . . . tn over
an alphabet of size σ, the best self-indexes require nHk + o(n log σ) bits for any
k ≤ α logσ n and any constant 0 < α < 1, where Hk ≤ log σ is the k-th order
empirical entropy of T [11, 13]1. Just the uncompressed text alone would need
n log σ bits, and classical indexes require O(n log n) bits on top of it.

The search functionality is given via two operations. The first is, given a
pattern P = p1 . . . pm, count the number of times P occurs in T . The second
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is to locate the occurrences, that is, to list their positions in T . Current self-
indexes achieve a counting performance that is comparable in practice with that
of classical indexes. In theoretical terms, for the best self-indexes the complexity
is O(m(1+ log σ

log log n )) and even O(1+ m
logσ n ), compared to O(m log σ) of suffix trees

and O(m log n) or O(m+log n) of suffix arrays. Locating, on the other hand, is far
behind, hundreds to thousands of times slower than their classical counterparts.
While classical indexes pay O(occ) time to locate the occ occurrences, self-indexes
pay O(occ logε n), where ε can in theory be any number larger than zero but is
in practice larger than 1. Worse than that, the memory access patterns of self-
indexes are highly non-local, which makes their potential secondary-memory
versions rather unpromising. Extraction of arbitrary text portions is also quite
slow and non-local compared to having the text directly available as in classical
indexes. The only implemented self-index which has more local accesses and
faster locate is the LZ-index [12], yet its counting time is not competitive.

In this paper we propose a suffix array compression technique that builds on
well-known regularity properties that show up in suffix arrays when the text they
index is compressible [13]. This regularity has been exploited in several ways in
the past [7, 14, 8], but we present a completely novel technique to take advantage
of it. We represent the suffix array using differential encoding, which converts the
regularities into true repetitions. Those repetitions are then factored out using
Re-Pair [6], a compression technique that builds a dictionary of phrases and
permits fast local decompression using only the dictionary (whose size one can
control at will, at the expense of losing some compression). We then introduce
some novel techniques to further compress the Re-Pair dictionary, which can be
of independent interest. We also use specific properties of suffix arrays to obtain
a much faster compression losing only 1%–14% of compression.

As a result, for several text types, we reduce the suffix array to 20–70% of
its original size, depending on its compressibility. This reduced index can still
extract any portion of the suffix array very fast by adding a small set of sampled
absolute values. We prove that the size of the result is O(Hk log(1/Hk)n log n)
bits for any k ≤ α logσ n and any constant 0 < α < 1. Note that this reduced
suffix array is not yet a self-index as it cannot reproduce the text.

This structure can be used in two ways. One way is to attach it to a self-
index able of counting, which in this process identifies as well the segment of
the (virtual) suffix array where the occurrences lie. We can then locate the
occurrences by decompressing that segment using our structure. The result is a
self-index that needs 1–3 times the text size (that is, considerably larger than
current self-indexes but also much smaller than classical indexes) and whose
counting and locating times are competitive with those of classical indexes, far
better for locating than current self-indexes. In theoretical terms, assuming for
example the use of an alphabet-friendly FM-index [2] for counting, our index
needs O(Hk log(1/Hk)n log n+n) bits of space, counts in time O(m(1+ log σ

log log n ))

and locates the occ occurrences of P in time O(occ + log n).

A second and simpler way to use the structure is, together with the plain text,
as a replacement of the classical suffix array. In this case we must not only use



it for locating the occurrences but also for binary searching. The binary search
can be done over the samples first and then decompress the area between two
consecutive samples to finish the search. This yields a very practical alternative
requiring 0.8–2.4 times the text size (as opposed to 4) plus the text.

On the ther hand, if the text is very large, even a compressed index must
reside on disk. Performing well on secondary memory with a compressed index
has proved extremely difficult, because of their non-local access pattern. Thanks
to its local decompression properties, our reduced suffix array performs very well
on secondary memory. It needs the optimal ⌈ occ

B ⌉ disk accesses for locating the
occ occurrences, being B the disk block size measured in integers. On average,
if the compression ratio (compressed divided by uncompressed suffix array size)
is 0 ≤ c ≤ 1, we perform ⌈ c·occ

B ⌉ accesses. That is, our index actually performs
better, not worse (as it seems to be the norm), thanks to compression. We show
how to upgrade this structure to an efficient secondary-memory self-index.

We experimentally explore the compression performance we achieve, the time
for locating, and the simplified suffix array implementation, comparing against
previous work. Our structure stands out as an excellent practical alternative.

2 Compressing the Suffix Array

Given a text T = t1 . . . tn over alphabet Σ of size σ, where for technical reasons
we assume tn = $ is smaller than any other character in Σ and appears nowhere
else in T , a suffix array A[1, n] is a permutation of [1, n] such that TA[i],n ≺
TA[i+1],n for all 1 ≤ i < n, being “≺” the lexicographical order. By Tj,n we
denote the suffix of T that starts at position j. Since all the occurrences of a
pattern P = p1 . . . pm in T are prefixes of some suffix, a couple of binary searches
in A suffice to identify the segment in A of all the suffixes that start with P ,
that is, the segment pointing to all the occurrences of P . Thus the suffix array
permits counting the occurrences of P in O(m log n) time and reporting the occ
occurrences in O(occ) time. With an additional array of integers, the counting
time can be reduced to O(m + log n) [10].

Suffix arrays turn out to be compressible whenever T is. The k-th order
empirical entropy of T , Hk [11], shows up in A in the form of large segments
A[i, i + ℓ] that appear elsewhere in A[j, j + ℓ] with all the values shifted by one
position, A[j + s] = A[i+ s]+ 1 for 0 ≤ s ≤ ℓ. Actually, one can partition A into
runs of maximal segments that appear repeated (shifted by 1) elsewhere, and
the number of such runs is at most nHk + σk for any k [8, 13].

This property has been used several times in the past to compress A. Mäkinen’s
Compact Suffix Array (CSA) [7] replaces runs with pointers to their definition
elsewhere in A, so that the run can be recovered by (recursively) expanding the
definition and shifting the values. Mäkinen and Navarro [8] use the connection
with FM-indexes (runs in A are related to equal-letter runs in the Burrows-
Wheeler transform of T , basic building block of FM-indexes) and run-length
compression. Yet, the most successful technique to take advantage of those reg-
ularities has been the definition of function Ψ(i) = A−1[A[i] + 1] (or A−1[1] if



A[i] = n). It can be seen that Ψ(i) = Ψ(i−1)+1 within runs of A, and therefore
a differential encoding of Ψ is highly compressible [14].

We present a completely different method to compress A. We first represent
A in differential form: A′[1] = A[1] and A′[i] = A[i]−A[i− 1] if i > 1. Take now
a run of A of the form A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ ℓ. It is easy to see that
A′[j + s] = A′[i + s] for 1 ≤ s ≤ ℓ. We have converted the runs of A into true
repetitions in A′.

The next step is to take advantage of those repetitions in a way that per-
mits fast local decompression of A′. We resort to Re-Pair [6], a dictionary-based
compression method based on the following algorithm: (1) identify the most fre-
quent pair A′[i]A′[i+1] in A′, let ab be such pair; (2) create a new integer symbol
s ≥ n larger than all existing symbols in A′ and add rule s→ ab to a dictionary;
(3) replace every occurrence of ab in A by s2; (4) iterate until every pair has
frequency 1. The result of the compression is the table of rules (call it R) plus
the sequence of (original and new) symbols into which A′ has been compressed
(call it C). Note that R can be easily stored as a vector of pairs, so that rule
s→ ab is represented by R[s− n + 1] = a : b.

Any portion of C can be easily decompressed in optimal time and fast in
practice. To decompress C[i], we first check if C[i] < n. If it is, then it is an
original symbol of A′ and we are done. Otherwise, we obtain both symbols from
R[C[i] − n + 1], and expand them recursively (they can in turn be original or
created symbols, and so on). We reproduce u cells of A′ in O(u) time, and the
accesses pattern is local if R is small.

Since R grows by 2 integers (a, b) for every new pair, we can stop creating
pairs when the most frequent one appears only twice. R can be further reduced
by preempting this process, which trades its size for overall compression ratio.

A few more structures are necessary to recover the values of A: (1) a sampling
of absolute values of A at regular intervals l; (2) a bitmap L[1, n] marking the
positions where each symbol of C (which could represent several symbols of A′)
starts in A′; (3) o(n) further bits to answer rank queries on L in constant time
[5, 13]: rank(L, i) is the number of 1’s in L[1, i]. Thus, to retrieve A[i, j] we: (1)
see if there is a multiple of l in [i, j], extending i to the left or j to the right
to include such a multiple if necessary; (2) make sure we expand an integral
number of symbols in C, extending i to the left and j to the right until L[i] = 1
and L[j + 1] = 1; (3) use the mechanism described above to obtain A′[i, j] by
expanding C[rank(L, i), rank(L, j)]; (4) use any absolute sample of A included
in [i, j] to obtain, using the differences in A′[i, j], the values A[i, j]; (5) return
the values in the original interval [i, j] requested.

The overall time complexity of this decompression is the output size plus
what we have expanded the interval to include a multiple of l (i.e., O(l)) and
to ensure an integral number of symbols in C. The latter can be controlled by
limiting the length of the uncompressed version of the symbols we create.

2 If a = b it might be impossible to replace all occurrences, e.g. aa in aaa, but in such
case one can at least replace each other occurrence in a row.



2.1 Faster Compression

A weak point in our scheme is compression speed. Re-Pair can be implemented
in O(n) time, but needs too much space [6]. We have used instead an O(n log n)
time algorithm that requires less memory. We omit the details for lack of space.

We note that Ψ (which is easily built in O(n) time from A) can be used to
obtain a much faster compression algorithm, which in practice compresses only
slightly less than the original Re-Pair. Recall that Ψ(i) tells where in A is the
value A[i]+1. The idea is that, if A[i, i+ℓ] is a run such that A[j+s] = A[i+s]+1
for 0 ≤ s ≤ ℓ (and thus A′[j + s] = A′[i+ s] for 1 ≤ s ≤ ℓ), then Ψ(i+ s) = j + s
for 0 ≤ s ≤ ℓ. Thus, by following permutation Ψ we have a good chance of finding
repeated pairs in A′ (although, as explained, Re-Pair does a slightly better job).

The algorithm is thus as follows. Let i1 = A−1[1]. We start at i = i1 and
see if A′[i]A′[i + 1] = A′[Ψ(i)]A′[Ψ(i) + 1]. If this does not hold, we move on to
i← Ψ(i) and iterate. If the equality holds, we start a chain of replacements: We
add a new pair A′[i]A′[i + 1] to R, make the replacements at i and Ψ(i) and
move on with i← Ψ(i), replacing until the pair changes. When the pair changes,
that is A′[i]A′[i+1] 6= A′[Ψ(i)]A′[Ψ(i)+1], we restart the process with i← Ψ(i),
looking again for a new pair to create. When we traverse the whole A′ without
finding any pair to replace, we are done. With some care (omitted for lack of
space) this algorithm runs in O(n) time.

2.2 Analysis

We analyze the compression ratio of our data structure. Let N be the number of
runs in Ψ . As shown in [8, 13], N ≤ Hkn + σk for any k ≥ 0. Except for the first
cell of each run, we have that A′[i] = A′[Ψ(i)] within the run. Thus, we cut off
the first cell of each run, to obtain up to 2N runs now. Every pair A′[i]A′[i + 1]
contained in such runs must be equal to A′[Ψ(i)]A′[Ψ(i)+1], thus the only pairs
of cells A′[i]A′[i + 1] that are not equal to the “next” pair are those where i
is the last cell of its run. This shows that there are at most 2N different pairs
in A′, and thus the most frequent pair appears at least n

2N times. Because of
overlaps, it could be that only each other occurrence can be replaced, thus the
total number of replacements in the first iteration is at least βn, for β = 1

4N .
After we choose and replace the most frequent pair, we end up with at most

n−βn integers in A′. The number of runs has not varied, because a replacement
cannot split a run. Thus, the same argument shows that the second time we
remove at least β(n− βn) = βn(1 − β) cells. The third replacement removes at
least β(n − βn − βn(1 − β)) = βn(1 − β)2 cells. It is easy to see by induction
that the i-th iteration removes βn(1− β)i−1 cells.

After M iterations we have removed
∑M

i=1 βn(1−β)i−1 = n−n(1−β)M cells,
and hence the length of C is n(1−β)M and the length of R is 2M . The total size

is optimized for M∗ =
lnn+ln ln 1

1−β
−ln 2

ln 1

1−β

, where it is
2(ln n+ln ln 1

1−β
−ln 2+1)

ln 1

1−β

. Since

ln 1
1−β = ln 4N

4N−1 = 1
4N (1 + O( 1

N )), the total size is 8N ln n
4N + O(N) integers.

Since N ≤ Hkn + σk, if we stick to k ≤ α logσ n for any constant 0 < α < 1,



it holds σk = O(nα) and the total space is O(Hk log 1
Hk

n log n) + o(n) bits, as

even after the M∗ replacements the numbers need O(log n) bits.

Theorem 1. Our structure representing A′ using R and C needs O(Hk log 1
Hk

n log n) + o(n) bits, for any k ≤ α logσ n and any constant 0 < α < 1.

As a comparison, Mäkinen’s CSA [7] needs O(Hkn log n) bits [13], which is
always better as a function of Hk. Yet, both tend to the same space as Hk goes
to zero. Other self-indexes are usually smaller.

We can also show that the simplified replacement method of Section 2.1
reaches the same asymptotic space complexity (proof omitted for lack of space).

2.3 Compressing the Dictionary

We now develop some techniques to reduce the dictionary of rules R without
affecting C. Those can be of independent interest to improve Re-Pair in general.

A first observation is that, if we have a rule s→ ab and s is only mentioned
in another rule s′ → sc, then we could perfectly remove rule s→ ab and rewrite
s′ → abc. This gives a net gain of one integer, but now we have rules of varying
length. This is easy to manage, but we prefer to go further. We develop a tech-
nique that permits eliminating every rule definition that is used within R, once
or more, and gain one integer for each rule eliminated. The key idea is to write
down explicitly the binary tree formed by expanding the definitions (by doing a
preorder traversal and writing 1 for internal nodes and 0 for leaves), so that not
only the largest symbol (tree root) can be referenced later, but also any subtree.

For example, assume the rules R = {s→ ab, t → sc, u→ ts}, and C = tub.
We could first represent the rules by the bitmap RB = 100100100 (where s
corresponds to position 1, t to 4, and u to 7) and the sequence RS = ab1c41
(we are using letters for the original symbols of A′, and the bitmap positions as
the identifiers of created symbols3). We express C as 47b. To expand, say, 4, we
go to position 4 in RB and compute rank0(RB, 4) = 2 (number of zeros up to
position 4, rank0(i) = i− rank(i)). Thus the corresponding symbols in RS start
at position 3. We extract one new symbol from RS for each new zero we traverse
in RB, and stop when the number of zeros traversed exceeds the number of ones
(this means we have completed the subtree traversal). This way we obtain the
definition 1c for symbol 4.

Let us now reduce the dictionary by expanding the definition of s within t
(even when s is used elsewhere). The new bitmap is RB = 11000100 (where
t = 1, s = 2, and u = 6), the sequence is RS = abc12, and C = 16b. We can
now remove the definition of t by expanding it within u. This produces the new
bitmap RB = 1110000 (where u = 1, t = 2, s = 3), the sequence RS = abc3 and
C = 21b. Further reduction is not possible because u’s definition is only used

3 In practice letters are numbers up to n−1 and the bitmap positions are distinguished
by adding them n − 1.



from C4. At the cost of storing at most 2|R| bits, we can reduce R by one integer
for each definition that is used at least once within R.

The reduction can be easily implemented in linear time, avoiding the suc-
cessive renamings of the example. We first count how many times each rule is
used within R. Then we traverse R and only write down (the bits of RB and
the sequence RS for) the entries with zero count. We recursively expand those
entries, appending the resulting tree structure to RB and leaf identifiers to RS .
Whenever we find a created symbol that does not yet have an identifier, we give
it as identifier the current position in RB and recursively expand it. Otherwise
the expansion finishes and we write down a leaf (a "0") in RB and the identifier
in RS . Then we rewrite C using the renamed identifiers.

3 Towards a Text Index

As explained in the Introduction, the reduced suffix array is not by itself a text
index. We explore now different alternatives to upgrade it to full-text index.

3.1 A Main Memory Self-Index

One possible choice is to add one of the many self-indexes able of counting the
occurrences of P in little space [1, 2, 14, 4]. Those indexes actually find out the
area [i, j] where the occurrences of P lie in A. Then locating the occurrences
boils down to decompressing A[i, j] from our structure.

To fix ideas, consider the alphabet-friendly FM-index [2]. It takes nHk +
o(n log σ) bits of space for any k ≤ α logσ n and constant 0 < α < 1, and can
count in time O(m(1 + log σ

log log n )). Our additional structure dominates the space

complexity, requiring O(Hk log(1/Hk)n log n) + o(n) bits for the representation
of A′. To this we must add O((n/l) log n) bits for the absolute samples, and the
extra cost to limit the formation of symbols that represent very long sequences.
If we limit such lengths to l as well, we have an overhead of O((n/l) log n) bits,
as this can be regarded as inserting a spurious symbol every l positions in A′

to prevent the formation of longer symbols. By choosing l = log n we have
O(Hk log(1/Hk)n log n + n) bits of space, and time O(occ + log n) for locating
the occurrences. Other tradeoffs are possible, for example having n log1−ε n bits
of extra space and O(occ + logε n) time, for any 0 < ε < 1.

Extracting substrings can be done with the same FM-index, but the time
to display ℓ text characters is, using n log1−ε n additional bits of space, O((ℓ +
logε n)(1+ log σ

log log n )). By using the structure proposed in [3] we have other nHk +

o(n log σ) bits of space for k = o(logσ n) (this space is asymptotically negligible)
and can extract the characters in optimal time O(1 + ℓ

logσ n ).

Theorem 2. There exists a self-index for text T of length n over an alphabet

of size σ and k-th order entropy Hk, which requires O(Hk log(1/Hk)n log n +

4 It is tempting to replace u in C, as it appears only once, but our example is artificial:
A symbol that is not mentioned in R must appear at least twice in C.



n log1−ε n) + o(n log σ) bits of space, for any 0 ≤ ε ≤ 1. It can count the oc-

currences of a pattern of length m in time O(m(1 + log σ
log log n )) and locate its occ

occurrences in time O(occ + logε n). For k = o(logσ n) it can display any text

substring of length ℓ in time O(1 + ℓ
logσ n ). For larger k ≤ α logσ n, for any

constant 0 < α < 1, this time becomes O((ℓ + logε n)(1 + log σ
log log n )).

3.2 A Smaller Classical Index

A simple and practical alternative is to use our reduced suffix array just like the
classical suffix array, that is, not only for locating but also for searching, keeping
the text in uncompressed form as well. This is not anymore a compressed index,
but a practical alternative to a classical index.

The binary search of the interval that corresponds to P will start over the
absolute samples of our data structure. Only when we have identified the interval
between consecutive samples of A where the binary search must continue, we
decompress the whole interval and finish the binary search. If the two binary
searches finish in different intervals, we will also need to decompress the intervals
in between for locating all the occurrences. For displaying, the text is at hand.

The cost of this search is O(m log n) plus the time needed to decompress the
portion of A between two absolute samples. We can easily force the compressor to
make sure that no symbol in C spans the limit between two such intervals, so that
the complexity of this decompression can be controlled with the sampling rate
l. For example, l = O(log n) guarantees a total search time of O(m log n + occ),
just as the suffix array version that requires 4 times the text size (plus text).

Theorem 3. There exists a full-text index for text T of length n over an alphabet

of size σ and k-th order entropy Hk, which requires O(Hk log(1/Hk)n log n + n)
bits of space in addition to T , for any k ≤ α logσ n and any constant 0 < α < 1.
It can count the occurrences of a pattern of length m in time O(m log n) and

locate its occ occurrences in time O(occ + log n).

3.3 A Secondary Memory Index

In [9], an index of size nH0 + O(n log log σ) bits is described, which can identify
the area of A containing the occurrences of a pattern of length m (and thus
count its occurrences) using at most 2m(1 + ⌈logB n⌉) accesses to disk, where
B log n is the number of bits in a disk block. However, this index is extremely
slow to locate the occurrences: each locate needs O(logε n) random accesses to
disk, where in practice ε = 1. This is achieved by storing the inverse of Ψ [14].

If, instead, we keep only the data structures for counting, and use our reduced
suffix array, we can obtain ⌈ occ

B ⌉ accesses to report the occ occurrences, which
is worst-case optimal. Assume table R is small enough to fit in main memory
(recall we can always force so, losing some compression). Then, we read the
corresponding area of C from disk, and uncompress each cell in memory without
any further disk access (the area of C to read can be obtained from an in-memory



binary search over an array storing the absolute position of the first C cell of
each disk block). On average, if we achieved compression ratio c ≤ 1, we will
need to read c ·occ cells from C, at a cost of ⌈ c·occ

B ⌉. Therefore, we achieve for the
first time a locating complexity that is better thanks to compression, not worse.
Note that Mäkinen’s CSA would not perform well at all under this scenario, as
the decompression process is highly non-local.

To extract text passages of length ℓ we could use compressed sequence mech-
anisms like [3], which easily adapt to disk and have local decompression.

4 Experimental Results

We present three series of experiments in this section. The first one regards
compression performance, the second the use of our technique as a plug-in for
boosting the locating performance of a self-index, and the third the use of our
technique as a classical index using reduced space. We use text collections ob-
tained from the PizzaChili site, http://pizzachili.dcc.uchile.cl.

Compression performance. In Section 2.1 we mentioned that compression time
of our scheme would be an issue and gave an approximate method based on Ψ
which should be faster. Table 1 compares the performance of the exact Re-Pair
compression algorithm (RP) and that of the Ψ -based approximation (RPΨ). We
take absolute samples each 32 positions.

Collection, size Method Index Size Compr. Re-Pair Expected Dict. Main Compr. with
(MB), H3/H0 (MB) Ratio Time (s) decompr. compr. memory 5% in RAM
xml, 100, RP 94.04 23.51% 25986 6939.99 57% 49% 34.29%
26.28% RPΨ 102.76 25.69% 260 7570.49 57% 51% 81.85%

RPC 99.82 24.96% 25129 134.99 58% 47% 35.86%
dna, 100, RP 333.96 83.55% 11150 5.01 79% 19% 95.52%
97.02% RPΨ 339.45 84.86% 546 4.73 78% 20% 101.4%
english, 100, RP 221.31 55.33% 93421 238.31 59% 43% 87.98%
53.05% RPΨ 241.33 60.33% 485 202.79 60% 44% 99.33%
pitches, 50, RP 115.54 57.77% 15371 33.71 70% 21% 67.54%
61.37% RPΨ 124.32 62.16% 180 26.78 67% 25% 85.36%
proteins, 100, RP 286.66 71.67% 3143 58.97 80% 10% 79.58%
97.21% RPΨ 295.15 73.78% 641 52.52 75% 13% 91.83%
sources, 100, RP 151.81 37.95% 106173 2046.80 58% 48% 64.03%
40.74% RPΨ 176.15 44.04% 377 1778.79 58% 50% 95.67%

Table 1. Index size and build time using Re-Pair (RP) and its Ψ -based approximation
(RPΨ). For the xml case, we also include a Re-Pair version (RPC) with rules up to
length 256. Compression ratio compares with the 4n bytes needed by a suffix array.

The approximation runs 5 to 280 times faster and just loses 1%–14% in
compression ratio. RP runs at 3 to 100 sec/MB, whereas RPΨ needs 0.26 to
0.65 sec/MB. Most of the indexing time is spent this compression; the rest adds
up around 120 sec overall in all cases.



Compression ratio varies widely. On XML data we achieve 23.5% compres-
sion (the reduced suffix array is smaller than the text!), whereas compression
is extremely poor on DNA. In many text types of interest we slash the suffix
array to around half of its size. Below the name of each collection we wrote the
percentage H3/H0, which gives an idea of the compressibility of the collection
independent of its alphabet size (e.g. it is very easy to compress DNA to 25%
because there are mainly 4 symbols but one chooses to spend a byte for each in
the uncompressed text, otherwise DNA is almost incompressible).

Other statistics are available. In column 6 we measure the average length of
a cell of C if we choose uniformly in A (longer cells are in addition more likely
to be chosen for decompression). Those numbers explain the times obtained for
the next series of experiments. Note that they are related to compressibility, but
not as much as one could expect. Rather, the numbers obey to a more detailed
structure of the suffix array: they are higher when the compression is not uniform
across the array. In those cases, we can limit the maximum length of a C cell. To
show how this impacts compression ratio and decompression speed, we include
a so-called RPC method for xml (which has the largest C lengths). RPC forbids
a rule to cross a 256-cell boundary. We can see that compression ratio is almost
the same, worsening by 6.17% on xml (and less on others, not shown).

In column 7 we show the compression ratio achieved with the technique of
Section 2.3, charging it the bitmap introduced as well. It can be seen that the
technique is rather effective. Column 8 shows the percentage of the compressed
structure (i.e., the compressed version of R) that should stay in RAM in order
to be able to access C and the samples in secondary memory, as advocated in
Section 3.3. Note that the percentage is not negligible when compression is good,
and that 100 minus the percentage almost gives the percentage taken by C. The
last column shows how much compression we would achieve if the structures
that must reside on RAM were limited to 5% of the original suffix array size
(this is measured before dictionary compression, so it would be around 3% after
compression). We still obtain attractive compression performance on texts like
XML, sources and pitches (recall that on secondary memory the compression
ratio translates almost directly to decompression performance). As expected,
RPΨ does a much poorer job here, as it does not choose the best pairs early.

A plugin for self-indexes. Section 3.1 considers using our reduced suffix array
as a plugin to provide fast locate on existing self-indexes. In this experiment we
plug our structure to the counting structures of the alphabet-friendly FM-index
(AFI [2]), and compare the result against the original AFI, the Sadakane’s CSA
[14] and the SSA [2, 8], all from PizzaChili. We increased the sampling rate of
the locating structures of AFI, CSA and SSA, to match the size of our index
(RPT). To save space we exclude DNA and pitches.

Fig. 1 shows the results. The experiment consists in choosing random ranges
of the suffix array and obtaining the values. This simulates a locating query
where we can control the amount of occurrences to locate. Our reduced suffix
array has a constant time overhead (which is related to column 6 in Table 1 and
the sample rate of absolute values) and from then on the cost per cell located is



very low. As a consequence, it crosses sooner or later all the other indexes. For
example, it becomes the fastest on XML after locating 4,000 occurrences, but it
needs just 6 occurrences to become the fastest on proteins. However, the RPC
version shows an impressive (more than 500-fold) improvement on the cost per
cell, standing as an excellent alternative when compression is so good.
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Fig. 1. Time to locate occurrences, as a function of the number of occurrences to locate.
On xml, RPC becomes the fastest when extracting more than 2 results.

A classical reduced index. Finally, we test our reduced suffix array as a re-
placement of the suffix array, that is, adding it the text and using it for binary
searching, as explained in Section 3.2. We compare it with a plain suffix array
(SA) and Mäkinen’s CSA (MakCSA [7]), as the latter operates similarly.

Fig. 2 shows the result. The CSA offers space-time tradeoffs, whereas those of
our index (sample rate for absolute values) did not significantly affect the time.
Our structure stands out as a relevant space/time tradeoffs, especially when
locating many occurrences (i.e. on short patterns).
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