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To allow fast searhes for patterns of any size, the index must allow aess toall su�xes of the text. These kind of indexes are alled full-text indexes. Optimalquery time, whih is O(m+ o) as every harater of P must be examined andthe o ourrenes must be reported, an be ahieved by using the su�x tree[19℄ as the index. In a su�x tree every su�x of the text is represented by a pathfrom the root to a leaf. The spae requirement of a su�x tree is very high. It anbe 12n bytes in pratie, even with a areful implementation [7℄. In addition, inany pratial implementation there is always an alphabet dependent fator onsearh times.The su�x array (SA) [11℄ is a redued form of the su�x tree. It representsonly the leaves of the su�x tree, via pointers to the starting positions of allthe su�xes. The array is lexiographially sorted by the pointed su�xes. Asu�x array takes 4n bytes, and searhes in O(m logn+o) time via two binarysearhes. One �nds the �rst ell i pointing to a su�x � P (lexiographially),and the other �nds the �rst ell j pointing to a su�x � p1p2 : : : pm�1(pm + 1).Then all the ell values at su�x array positions i : : : j�1 are the initial positionsof ourrenes of P in T .There is often a signi�ant amount of redundany in a su�x array, suhthat some array areas an be represented by links to other areas. Basially, it israther ommon that one area ontains the same pointers of the other area, allshifted by one text position. This observation has been intensively used reentlyin di�erent ways to obtain suint representations of su�x arrays and stillprovide fast searh time [8, 18, 5℄.The ompat su�x array (CSA) [14℄ makes diret use of that redundany toredue the spae usage of su�x arrays. Areas similar to others (modulo a shiftin text positions) are found and replaed by a diret link to the similar areas. Inpratie the CSA takes less than 2n bytes and an searh inO(m logn+o) time,whih in pratie turns out to be about twie as slow as the plain su�x array.Note that, like su�x trees and arrays, the CSA needs the text itself separatelyavailable.A reent trend in ompressed data strutures is that of self-indexes, whihinlude the text. Hene the text an be disarded and the index must providefuntions to obtain any desired text substring in reasonable time. Self-indexesopen the exiting possibility of the index taking less spae than the text, eveninluding it. Existing implemented self-indexes are the ompressed su�x arrayCSArray of Sadakane [18℄ (built on [8℄), the FM-index of Ferragina and Manzini[5, 6℄, and the LZ-index of Navarro [16℄. The �rst two take 0.6�0.8 times the textsize, while the LZ-index takes about 1.5 times the text size on English text.In this paper we introdue the ompressed CSA (CCSA), a self-index basedon the CSA whih is more ompat and represents a relevant spae-time trade o�in pratie. We retain the links of the CSA, but enode them in a ompat form.We also enode the text inside the CCSA by using small additional struturesthat permit searhing and displaying the text without aessing T . We showthat the CCSA needs O(n(1 +Hk logn)) bits for any k, and that it an �nd allthe ourrenes of P in T in O((m + o) logn) time. In an 80 Mb English text



example, the CCSA need 1:6n bytes, replaing the text. This is muh less thanthe 2:7n bytes needed by the CSA, about the same spae of the LZ-index, and2�3 times larger than other ompressed su�x arrays. Searhing the CCSA is 50times slower than the CSA, but 50�75 times faster than any other self-index thattakes less spae than the text. The CCSA is ompetitive against the LZ-index,and against ompressed su�x arrays versions tailored to use the same 1:6n spaeto boost their searh time.Our spae analysis represents indeed a ontribution with independent inter-est, as we relate the spae requirement of CCSA and CSA to the number of runsin Burrows-Wheeler transformed text [2℄. We show that this quantity is at mostj�jk + 2Hkn.2 The Compat Su�x Array (CSA)Let � be an ordered alphabet of size � = j�j. Then T = t1t2 : : : tn 2 �� is a(text) string of length n = jT j. A su�x of text T is a substring Ti:::n = ti : : : tn.We assume that the last text harater is tn = $, whih does not our elsewherein T and is lexiographially smaller than any other harater in �.De�nition 1 The su�x array of text T of length n = jT j is an array SA[1 : : : n℄that ontains all starting positions of the su�xes of the text T , suh thatTSA[1℄:::n < TSA[2℄:::n < : : : < TSA[n℄:::n, that is, array SA gives the lexiographiorder of all su�xes of the text T .The idea of ompating the su�x array is the following: Let ` � 0. Findtwo areas j : : : j + ` and i : : : i + ` of SA that are repetitive in the sense thatthe su�xes represented by j : : : j + ` are obtained, in the same order, from thesu�xes represented by i : : : i + ` by inserting the �rst symbol. In other words,SA[j + k℄ = SA[i + k℄ � 1 for 0 � k � `. Then replae the area j : : : j + ` ofSA by a link, stored in SA[j℄, to the area i : : : i+ `. This is alled a ompatingoperation. The areas may be ompated reursively, meaning that area i : : : i+ `(or some parts of it) may also be replaed by a link.Due to the reursive de�nition, we need three values to represent a link:� A pointer p to the entry that ontains the start of the linked area.� A value Æ suh that entry p+ Æ denotes the atual starting point after entryp is unompated.� The length of the linked area `.De�nition 2 A ompat su�x array (CSA) of text T of length n = jT j is anarray CSA[1 : : : n0℄ of length n0 � n, suh that for eah entry 1 � i � n0, CSA[i℄is either an expliit su�x or a triple (p; Æ; `), where p, Æ, and ` denote a link to anarea obtained by a ompating operation from the su�x array of T . The optimalCSA for T is suh that its length n0 is the smallest possible.



The original idea of using CSA as an index [14℄ is to guarantee that a CSAis binary searhable. That is, not all areas of the su�x array are ompated; itis required that eah other entry of the CSA ontains a su�x. The searh for apattern then onsists of three phases: (i) A binary searh is exeuted over theentries of the CSA that ontain su�xes, (ii) the entries in the range found by theinitial binary searh are unompated, and (iii) the start and end of ourrenesis found by binary searhes over the unompated area.3 The Compressed CSAThe Compressed CSA (CCSA) is oneptually built on top of the CSA. It in-volves some slight hanges in the struture itself, and radial hanges in itsrepresentation. A omplete example is given in Fig. 1
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namely entries �P1�j<i `j�+ 1 to �P1�j<i `j�+ `i. The atual ontent is ob-tained by opying `i positions of SA from another area and subtrating 1 fromtheir ell values. The pair (pi; Æi) is a referene to the SA position where thearea to opy begins. The referene indiates position inside the CCSA array ando�set inside the pi-th blok (so it should hold 0 � Æi < `pi). The orrespondingabsolute SA position is sapos(pi; Æi), where sapos(p; Æ) = 1 + Æ +P1�j<p `j .The only ase where no proper referene exists is for SA entry with value n.In this ase we state that the entry should referene position 1.Furthermore, the CCSA array has to be of minimum size. That is, it annothappen that sapos(pi; Æi) = sapos(pi�1; Æi�1) + `i�1, as in this ase the CCSAentry i ould be merged with entry i � 1. However, we limit areas that an beextended so that the �rst haraters of all the su�xes pointed by the SA arearepresented by a single CCSA entry are equal.Coneptually, the CCSA struture needs the text separately available. How-ever, we propose now a representation both to ompress the CCSA and to getrid of the expliit representation of T .3.2 A Compat RepresentationThe CCSA array will be represented as follows. For eah blok (pi; Æi; `i) we willstore number ri = sapos(pi; Æi), whih gives the absolute SA position where thei-th CCSA blok points to. Additionally, an array L of n bits will signal the SApositions that start a blok in the CCSA. That is, L[j℄ = 1 i� there is a value1 � i � n0 suh that sapos(i; 0) = j in the CCSA.We will be interested in performing rank and selet queries over array L.These are de�ned as follows: rank(L; j) is the number of 1's in L up to position j,and selet(L; i) is the position j of the i-th �1� in L. It is possible to preproessL so that, using only o(n) additional spae, rank and selet queries an beanswered in onstant time [13, 3℄.Now, the omponents of triple (pi; Æi; `i) an be omputed as follows. First,pi = rank(L; ri), that is, the number of bloks beginnings up to position ri in theSA. Seond, Æi = ri � selet(L; pi), sine selet(L; pi) gives the initial positionof the blok where ri points inside. Finally, `i = selet(L; i+ 1) � selet(L; i),whih is the distane from the urrent blok beginning to the next.In order to disard the text, we need to supply a struture to replae it.It turns out that we will never need to aess Tj diretly but, rather, givensu�x array entry SA[i℄, we will aess TSA[i℄. This is muh easier, beause theharaters of T are sorted by index i, that is, given two text haraters a < b,all the text ourrenes of a appear before those of b in the SA. Moreover, sinethe �rst haraters of eah CCSA blok are the same, we will only require theharaters of the form TSA[sapos(i;0)℄.We store an array B of n0 bits, so that B[i℄ = 1 i� TSA[sapos(i;0)℄ 6=TSA[sapos(i�1;0)℄ or i = 1, that is, if the �rst harater of su�xes in CCSA bloki di�er from that in the previous blok. We also store an array of haraters S,of size at most �, where all the distint haraters appearing in T are stored in



lexiographi order. Hene, TSA[sapos(i;0)℄ = S[rank(B; i)℄, sine rank(B; i) tellshow many times the �rst su�x harater has hanged sine the beginning of theCCSA array, and S maps this number to the orresponding harater. Therefore,bit array B will be also preproessed for rank queries.The above strutures require n0 logn + n + n0 + � log� + o(n) bits. 1 Withthem we have enough information to determine the SA range that ontains theourrenes of a pattern P . In the following we will depit the searh algorithms.Later, we will onsider the problem of showing the text positions and ontextsfor the ourrenes, and introdue a few more strutures for that.3.3 Searh AlgorithmOur aim is to binary searh the CCSA just like the SA. Even if the SA is notexpliitly represented, we an perform suh a binary searh provided we are ableto extrat the �rstm haraters of a given entry SA[i℄, so as to ompare it againstour searh pattern P . Therefore, our problem is to extrat TSA[i℄:::SA[i℄+m�1without having T nor SA.Let us �rst onentrate in obtaining harater TSA[i℄. Let j = rank(L; i) bethe CCSA blok that ontains SA entry i. The o�set orresponding to entry iinside CCSA blok j is Æ = i� selet(L; j), so i = sapos(j; Æ). Sine all the �rstletters of bloks inside CCSA blok j are the same, we an rather feth haraterTSA[sapos(j;0)℄. As explained above, this is preisely S[rank(B; j)℄. Hene we anobtain the �rst harater TSA[i℄ = S[rank(B; j)℄.We need now to move to the next harater TSA[i℄+1. But this is easy toto obtain from the CCSA. Sine SA[i℄ orresponds to referene (j; Æ) in theCCSA, then position SA[i℄ + 1 orresponds to CCSA referene (pj ; Æj + Æ). Theorresponding SA entry is thus sapos(pj ; Æj + Æ) = rj + Æ.Hene, the algorithm obtains the m haraters by repeatedly omputing j  rank(L; i), getting harater S[rank(B; j)℄, and then moving to i  rj + i �selet(L; j). This learly takes O(m) time, and the whole binary searh takesO(m logn).3.4 Reporting Ourrene PositionsOne we determine the SA range where the ourrenes of P lie, we wish toshow those text positions where P ours. With the urrent strutures we donot have enough information to do that.We sample text positions at regular intervals of length I , that is, text posi-tions h + I , h + 2I , : : :, so that text position n is sampled, h = n mod I . Foreah sampled text position pos, pointed to by SA entry i, we store (i; pos) in anarray Hp, in inreasing i order. At reporting time, given a position i of SA toreport, we searh for i in Hp. If present, we immediately know its text positionpos. Otherwise, we swith to i0  rj + i � selet(L; j), where j = rank(L; i),whih is the SA position pointing to text position pos+ 1 (we do not yet know1 Our logarithms are all in base 2.



pos), and repeat the proess. If we �nd (i0; pos0) in Hp, then the original textposition is pos0� 1. We repeat the proess until we �nd a referene in array Hp.Fast searhing of array Hp is possible by storing a bit array inHp[1 : : : n℄,suh that inHp[i℄ = 1 i� entry (i; pos) is present in Hp. If present, it is at Hpentry number rank(inHp; i), sine Hp entries are stored in inreasing order of i.Hene inHp is preomputed to answer rank queries in onstant time. We notethat only pos has to be stored in Hp, sine i is atually the searh key.If we sample one text position out of I = logn, then we an exeute at mostlogn steps in our quest for the text position, sine some text position must besampled in the range pos : : : pos+ logn� 1. Hene the total ost of the proessis O(logn). The extra spae needed is 2n+ o(n) bits, sine eah of the n= logntext positions needs logn bits for pos and inHp needs n+ o(n) bits.3.5 Showing Text ContextsSine the CCSA is a self-index, we must be able to show not only the textontext around an ourrene, but any text substring we are asked to. Say that,in general, we wish to show a text string of length ` starting at text positionpos, that is, retrieve Tpos:::pos+`�1.When we onsidered the binary searh, we saw that we an retrieve as manyharaters as we wish from the su�x pointed to by SA[i℄, given i. This time,however, we are given pos = SA[i℄ instead of i, so the �rst step is to �nd somesuitable i.We store in array Ht the same entries (i; pos) impliitly stored in Hp, thistime in inreasing order of pos. Atually, pos does not need to be stored sine atarray position j we have pos = h+ jI . Hene, at position Ht[b(pos� h)=I℄ we�nd entry (i; pos0), where pos0 is the largest sampled text position pos0 � pos.(For this to work properly we must add an entry Ht[0℄ orresponding to textposition 1.) Then, we an extrat `+ pos� pos0 text haraters from SA[i℄ withthe same method used in the binary searh. This will give us Tpos:::pos+`�1 asdesired. The overall time is O(` + logn) and we need other n bits to store theentries of Ht.3.6 The Whole PitureOur �nal CCSA struture is omposed of the following elements:� Array r of n0 entries ri.� Array L of n bits with strutures for rank and selet operations.� Array B of n0 bits with strutures for rank operations.� Array S of at most � haraters.� Array Hp storing 1+ bn= logn values i, plus bit vetor inHp of n bits withstrutures for rank operation.� Array Ht, storing 1 + bn= logn values pos.



Together, these strutures add n0 logn + 4n + n0 + � log� + o(n) bits. Weremark that the text needs not be stored separately. It is lear that the CCSAan be built in O(n) time from the su�x array, sine the most omplex part issimilar to the CSA onstrution, whih an be done in linear time [14℄.We an do better in terms of spae, at least in theory. A bit array of size nwhere only k bits are set an be preproessed for onstant-time rank and seletqueries and stored in log �nk� + o(n) bits [1℄. In partiular, our array B requiresonly O(� logn0) spae, while array inHp requires O(n log logn= logn) = o(n)spae.The �nal result, taking � as a small onstant to simplify, is that we needn0 logn + 3n+ o(n) bits. With this CCSA struture, we an searh for the oourrenes of a pattern of length m and show a text ontext of length ` aroundeah ourrene in worst-ase time O((m logn+o(`+logn))). If we only wantto show the text positions, the omplexity is O((m+ o) logn). If we only wantto know how many ourrenes there are, the omplexity is O(m logn).We an attain n0 logn+n+ o(n) spae by sampling one out of logn log lognentries in arraysHp and Ht. In this ase the time to report the ourrenes raisesto O(o logn log logn), and a text string an be displayed in O(`+logn log logn)time.All our spae analysis is given in terms of n0. In the next setion we showthat n0 = O(Hkn), and therefore the CCSA struture needs O(n(1 +Hk logn))bits of spae.4 An Entropy Bound on the Length of CSA and CCSAWe will now prove that the length n0 of the optimal CSA and the CCSA is atmost j�jk + 2Hkn, where Hk is the k-th order empirial entropy of T [12℄. Tobe preise, we obtain the bound when the indexes are built on the inverse stringT�1 = t�11 t�12 � � � t�1n = tntn�1 � � � t1 of T .Let us �rst reall some basi fats and de�nitions from [12℄. Let ni denote thenumber of ourrenes in T of the i-th symbol of �. The zero-order empirialentropy of the string T is H0(T ) = � �Xi=1 nin log nin ; (1)where 0 log0 = 0. If we use a �xed odeword for eah symbol in the alphabet,then H0n bits is the smallest enoding one an ahieve for T (H0 = H0(T )). Ifthe odeword is not �xed, but it depends on the k previous symbols that maypreede it in T , then Hkn bits is the smallest enoding one an ahieve for T ,where Hk = Hk(T ) is the k-th order empirial entropy of T . It is de�ned asHk(T ) = 1n XW2�k jWT jH0(WT ); (2)



where WT is a onatenation of all symbols tj (in arbitrary order) suh thatWtj is a substring of T . String W is the k-ontext of eah suh tj . Note thatthe order in whih the symbols tj are permuted in WT does not a�et H0(WT ),and hene we have not �xed any partiular order for WT .The Burrows-Wheeler transform [2℄, denoted by bwt(T ), is a permutation ofthe text. Run-length enoding of bwt(T ) is losely related to the ompressionahieved by the CSA. The runs in bwt(T ) (maximal repeats of one symbol)orrespond to links in the CCSA; if we onstrut the optimal CCSA for stringT with the restrition that the su�xes inside eah linked area must start withthe same symbol, then the length of the CCSA is equal to the number of runsin bwt(T ). To state this onnetion formally, reall from [12℄ that bwt(T ) =t�1SA[1℄�1t�1SA[2℄�1 � � � t�1SA[n℄�1, where t�10 = t�1n = # and SA is the su�x arrayof T�1. Symbol # =2 � preedes all symbols of � in the lexiographi order. 2Now, if su�xes SA[j℄; SA[j + 1℄; : : : ; SA[j + `℄ are replaed by a link to su�xesSA[i℄; SA[i + 1℄; : : : ; SA[i + `℄ in CCSA, then SA[j + r℄ = SA[i + r℄ � 1 andt�1SA[i+r℄�1 = t�1SA[i+r0℄�1 for all 0 � r; r0 � `. Sine the linked areas are maximalin CCSA, eah run in bwt(T ) orresponds to exatly one link in CCSA (omittingthe degenerate ase of tn). Thus, the length n0 of the optimal CCSA equals thenumber of runs in bwt(T ).We will now prove that the number of runs in bwt(T ) is at most j�jk+2Hkn.Let rle(S) be the run-length enoding of string S, that is, a sequene of pairs(si; `i) suh that sisi+1 � � � si+`�1 is a maximal run of symbol si (i.e., si�1 6= siand si+` 6= si), and all suh maximal runs are listed in rle(S) in the order theyappear in S. The length jrle(S)j of rle(S) is the number of pairs in it. Notiethat jrle(S)j � jrle(S1)j + jrle(S2)j + � � � + jrle(Sp)j, where S1S2 � � �Sp = S isany partition of S.Reall string WT as de�ned in Eq. (2) for a k-ontext W of a string T .Note that we an apply any permutation to WT so that (2) still holds. Now,bwt(T ) an be given as a onatenation of strings WT for W 2 �k, if we �x thepermutation of eah WT and the relative order of all strings WT appropriately[12℄. As a onsequene, we have thatjrle(bwt(T ))j � XW2�k jrle(WT )j; (3)where the permutation of eah WT is now �xed by bwt(T ). In fat, Eq. (3)holds also if we �x the permutation of eah WT so that jrle(WT )j is maximized.This observation gives a tool to upper bound jrle(bwt(T ))j by the sum of odelengths when zero-order entropy enoding is applied to eah WT separately. Wenext show that jrle(WT )j � 1 + 2jWT jH0(WT ).First notie that if j�WT j = 1 then jrle(WT )j = 1 and jWT jH0(WT ) = 0, soour laim holds. Let us then assume that j�WT j = 2. Let x and y (x � y) be thenumber of ourrenes of the two letters, say a and b, in WT , respetively. We2 We follow the onvention of Manzini [12℄; the original transformation [2℄ uses Tinstead of T�1.



have thatH0(WT ) = �(x=(x+y)) log(x=(x+y))�(y=(x+y)) log(y=(x+y)) � x=(x+y);(4)sine � log(x=(x+y)) � 1 (beause x=(x+y) � 1=2) and �(y=(x+y)) log(y=(x+y)) > 0. The permutation of WT that maximizes jrle(WT )j is suh that there isno run of symbol a longer than 1. This makes the number of runs in rle(WT ) tobe 2x+ 1. By using Eq. (4) we have thatjrle(WT )j � 2x+ 1 = 1 + 2jWT jx=(x+ y) � 1 + 2jWT jH0(WT ): (5)We are left with the ase j�WT j > 2. This ase splits into two sub-ases: (i) themost frequent symbol ours at least jWT j=2 times in WT ; (ii) all symbols ourless than jWT j=2 times in WT . Case (i) beomes analogous to ase j�WT j = 2one x is rede�ned as the sum of ourrenes of symbols other than the mostfrequent. In ase (ii) jrle(WT )j an be jWT j. On the other hand, jWT jH0(WT )must also be at least jWT j, sine it holds that � log(x=jWT j) � 1 for x � jWT j=2,where x is the number of ourrenes of any symbol in WT . Therefore we anonlude that Eq. (5) holds for any WT .Combining Eqs. (2) and (5) we get the following result:Theorem 3 The length of the run-length enoded Burrows-Wheeler transformedtext of length n is at most j�jk + 2Hkn, for any �xed k � 1.As a diret onsequene of Theorem 3n0 � jrle(bwt(T ))j � j�jk + 2Hkn; (6)where n0 is the length of the optimal CCSA (or CSA) for text T�1.5 Implementation and ExperimentsWe implemented our CCSA struture almost exatly as desribed. The maindi�erene is that we hanged the onstant time selet implementation de-sribed in [13, 3℄, as it has a huge onstant fator (an asymptoti onstantthat is usually > 300). Instead, we implemented a tailored algorithm to om-pute i � selet(L; rank(L; i)), whih is the way we use selet. In this asewe know position i and simply want the last bit set before position i in ar-ray L. We implemented a word-wise followed bit-wise upward san from po-sition i until the �rst bit set appears. Currently we have only implementedthe ounting of ourrenes and reporting of text positions, but not yet dis-playing the ontext around the ourrenes. The implementation is available athttp://www.s.helsinki.fi/u/vmakinen/software/.We tried out several alternative implementations for reporting the our-renes. The main idea in these alternative implementations is to exploit theommon searh paths for onseutive su�xes. This property is used in the origi-nal reursive reporting algorithm for ompat su�x arrays [14℄. We implemented



an analogous reursive reporting algorithm for CCSA, but it was only slightlyfaster than the diret method desribed in Set. 3.4. However, an algorithm thatonly exploits the ommon searh paths for minimizing the (ostly) omputationof i�selet(L; rank(L; i)) turned out to be pratial; it is about 25% faster thanthe diret omputation.Our experiments were run over 83.37 Mb of text obtained from the �ZIFF-2�disk of the TREC-3 olletion [9℄. The tests ran on a Pentium IV proessor at 2GHz, 512 Mb of RAM and 512 Kb ahe, running Linux SuSE 7.3. We ompiledthe ode with g 2.95.3 using optimization option -O3. Times were averagedover 10,000 searh patterns. As we work only in main memory, we only onsiderCPU times. The searh patterns were obtained by pruning text lines to their�rst m haraters. We avoided lines ontaining tags and non-visible haraterssuh as '&'.The CCSA index takes 1.6 times the text size. Some quik tests showed thatthe CCSA is about 50 times slower than the CSA (2.7 times the text size) and50 to 75 times faster than the standard implementations of the FM-index [5, 6℄and the CSArray [18℄ using default parameters (around 0.7 times the text size).This shows that the CCSA is a valid trade o� alternative.A muh more interesting experiment is to determine how well does the CCSAuse the spae it takes. Both the FM-index and the CSArray an be tuned to usemore spae, so the natural question is how would the CCSA ompare againstthem if we let them use 1:6n bytes. Similarly, the LZ-index takes 1:5n bytes overour text, so a diret omparison is fair.The original FM-index implementation (http://butirro.di.unipi.it/~ferrax/fmindex/) does not permit using as muh as 1:6nbytes. Instead, we used the implementation from G. Navarro(http://www.d.uhile.l/~gnavarro/software), whih takesmore spae than the text and makes good use of it (see detailsin [17℄), and tuned it to use 1:5n bytes. On the other hand, theCSArray original implementation by K. Sadakane (also available athttp://www.d.uhile.l/~gnavarro/software), let us tuning it touse near 1:6n bytes.Figure 2 shows the result for ounting queries (just telling the number ofourrenes) and for reporting queries (telling also all the text positions wherethey appear). For ounting, the CCSA is muh faster than the LZ-index, albeitslower than the FM-index and the CSArray. It is interesting that the searh ostof the CCSA seems to grow slower withm: Form = 5 it is 5�15 times slower, butfor m = 60 it is only 1.5�4 times slower. The reason is evidently in the expetedrunning time; for largerm, only small portion of the pattern is ompared againsteah su�x in the binary searh.For reporting, the CCSA is about 3.5 faster than the FM-index to proesseah ourrene. This is lear for m = 5, where the number of ourrenes ishigh and reporting them dominates overall time. For m > 20 their numberis low enough to make the ounting superiority of the FM-index to show upand dominate the CCSA. The situation is reversed with the LZ-index, whih is



10 times faster than the CCSA at reporting ourrenes, but its inferiority to�nd them shows up for m > 10, where it loses against the CCSA. Finally, theCSArray is onsistently nearly twie as fast as the CCSA.
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Fig. 2. Query times for our CCSA versus alternative suint indexes tuned to useabout the same spae.6 ConlusionsCompat su�x array represents an analogous improvement to su�x arrays asompat DAWG [4℄ for su�x trees; both are examples of onrete optimization(using the terminology of Jaobson [10℄). The researh on ompressed indexstrutures has reently onentrated on ompressing su�x arrays and trees. Suhompression is alled abstrat optimization ([10℄), as an analogy to the goal to



represent a data struture in as small spae as possible while supporting thefuntionality of the abstrat de�nition of the struture.In this paper, we have presented the �rst data struture, ompressed ompatsu�x array, that simultaneously exploits both onrete optimization and abstratoptimization. The resulting struture is ompetitive against the ounterpartsthat only use abstrat optimization.Our experiments, however, reveal that the struture does not in pratiedominate the best urrent implementations on any domain. Namely, the om-pressed su�x array implementation of Sadakane [18℄ is always slightly better.We note that the situation might easily hange: Our struture uses heavily theselet-funtion. A more e�ient implementation of this funtion would make ourstruture a good alternative. Also, if the link struture ould be ompressed toO(Hkn) bits instead of the O(Hkn logn) bits, our struture would beome veryappealing.The entropy bound on the size of ompat su�x array is itself interesting. Itould be possible to obtain similar bound also for the size of ompat DAWGs,to explain the well-known fat that ompat DAWGs have usually muh lessnodes than su�x trees.In our subsequent work [15℄, we have developed an index that is a rossbetween CCSA and FM-index [5, 6℄. From the same entropy analysis as usedhere follows that this index oupies O(n + Hkn log j�j) bits. It supportsounting queries in time O(m log j�j), and reports o ourrenes in timeO(o log j�j logn).Referenes1. A. Brodnik and I. Munro. Membership in onstant time and almost-minimumspae. SIAM J. on Comp. 5:1627�1640, 1999.2. M. Burrows and D. J. Wheeler. A blok-sorting lossless data ompression algo-rithm. DEC SRC Researh Report 124, 1994.3. D. Clark. Compat Pat Trees. PhD thesis, University of Waterloo, 1996.4. M. Crohemore and Renaud Vérin. Diret Constrution of Compat DiretedAyli Word Graphs. In Pro. CPM'97, Springer-Verlag LNCS 1264, pp. 116-129,1997.5. P. Ferragina and G. Manzini. Opportunisti Data Strutures with Appliations. InPro. IEEE Symp. on Foundations of Computer Siene (FOCS'00), pp. 390�398,2000.6. P. Ferragina and G. Manzini. An Experimental Study of an Opportunisti Index.In Pro. 12th Symposium on Disrete Algorithms (SODA'01), pp. 269�278, 2001.7. R. Giegerih, S. Kurtz, and J. Stoye. E�ient Implementation of Lazy Su�xTrees. In Pro. 3rd Workshop on Algorithmi Engineering (WAE'99), LNCS 1668,pp. 30�42, 1999.8. R. Grossi and J. Vitter. Compressed su�x arrays and su�x trees with appliationsto text indexing and string mathing. In Pro. 32nd Symposium on Theory ofComputing (STOC'00), pp. 397�406, 2000.9. D. Harman. Overview of the Third Text REtrieval Conferene. In Pro. TREC-3,pages 1�19, 1995. NIST Speial Publiation 500-207.
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