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pattern piees. Multidimensional searh problems an also be redued to stringmathing. Depending on the appliation, r may vary from a few to thousands ofpatterns. The naive approah is to perform r separate searhes, so the goal is todo better.The single-pattern problem has reeived a lot of attention sine the sixties [8℄.After the �rst dynami-programming-based O(mn) time solution to the problem[11℄, many faster tehniques have been proposed, both for the worst and theaverage ase. In 1994, Chang and Marr [3℄ showed that the average omplexityof the problem is O((k+log�m)n=m), and gave an algorithm that ahieved thataverage-optimal ost for � < 1=3�O(1=p�).The multipattern problem has reeived muh less attention, not beause oflak of interest but beause of its diÆulty. There exist algorithms that searhpermitting only k = 1 di�erene [6℄, and algorithms that handle either too fewpatterns or too low di�erene ratios [2℄.Hene multiple approximate string mathing is a rather undeveloped area.No algorithm exists when one searhes for more than a few of patterns withintermediate di�erene ratios. Moreover, as the number of patterns grows, thedi�erene ratios that an be handled get redued.The goal of this paper is to present an algorithm that is optimal on theaverage and that permits searhing even for thousands of patterns with lowand intermediate di�erene ratios, thus �lling an important gap in the area.We build over an average-optimal algorithm that searhes for single patterns[3℄ and inherit its optimality, obtaining O(n(k + log�(rm))=m) average searhtime. We show that the algorithm is not only theoretially appealing but alsogood in pratie thanks to several pratial improvements we introdue. Sinethe algorithm does not work for di�erene ratios beyond 1=3, we introdue aseond, O(n) average time variant that reahes ratios of 1=2. The algorithmsare shown to be the fastest for a wide range of values of m, r and k, for smallalphabets, see Se. 6.2 Related Work2.1 Multiple Approximate String MathingThe naive approah to multipattern approximate searhing is to perform r sepa-rate searhes, one per pattern. If we use the optimal single-pattern algorithm [3℄,the average searh time beomes O((k + log�m)rn=m) for the naive approah.On the other hand, if we use the lassial O(mn) algorithm [11℄ the time isO(rmn).Few algorithms exist for multipattern approximate searhing under the kdi�erenes model. The �rst one, based on hashing, was presented by Muth andManber [6℄. It permits searhing with k = 1 di�erenes only, but is rather tolerantto the number of patterns r, whih an reah the thousands without a�etingmuh the ost of the searh. The preproessing time is O(rm) and the averagesearh time is O(mn(1 + rm2=M)), where M is the size of the hash table. This



adds up O(rm+nm(1+ rm2=M)), whih is O(m(r+n)) of M = 
(m2r). Thisis basially independent of r if n is large enough.Baeza-Yates and Navarro [2℄ have presented several algorithms for this prob-lem. One of them, partitioning into exat searh, uses the fat that, if P is ut intok+1 piees, then at least one of the piees appears inside every ourrene with nodi�erenes. Hene the algorithm splits every pattern into k+1 piees and searhesfor the r(k+1) piees with an exat multipattern searh algorithm. The prepro-essing takes O(rm) time. If they used an optimal multipattern exat searh al-gorithm like MultiBDM [4℄, the searh time would have been O(k log�(rm)n=m)on average. For pratial reasons they used another algorithm, more suitable tosearhing for short piees (of length bm=(k + 1)), albeit with worse theoretialomplexity. This tehnique an be applied for � < 1= log�(rm), a limit that getsmore and more strit as m or r inrease.They also presented other algorithms that, although an handle higher dif-ferene ratios, are linear on r, whih means that they give a speedup only up toa onstant number  of patterns and then just divide the searh into r= groupsthat are searhed for separately. Superimposition uses a standard searh teh-nique on a set of \superimposed" patterns, whih means that the i-th haraterof the superimposition mathes the i-th harater of any of the superimposedpatterns. Implemented over a newer bit-parallel algorithm [7℄, superimpositionwould yield average time O(rn=(�(1 � �)2)) for � < 1 � epr=� on patternsshorter than the number of bits in the omputer word, w (typially w = 32 or64). Di�erent tehniques are used to ope with longer patterns, but the timesare worse. Counting extends a single-pattern algorithm that slides a window oflength m over the text heking in linear time whether it shares at least m� kharaters with the pattern (regardless of the order). The multipattern versionkeeps several ounters in a single omputer word, ahieving an average searhtime of O(rn log(m)=w) for � < e�m=�.2.2 The Algorithm of Chang and MarrChang and Marr [3℄ show that no approximate searh algorithm for a singlepattern an be faster than O((k+log�m)n=m) on the average. This is not hardto prove, and we give more details in Setion 4.In the same paper [3℄, Chang and Marr presented an algorithm ahieving thatoptimal average time omplexity. In the preproessing phase they build a tableD as follows. They hoose a number ` in the range 1 � ` � d(m� k)=2e, whoseexat value we will onsider shorty. For every string S of length ` (`-gram), theysearh for S in P and store in D[S℄ the smallest number of di�erenes needed tomath S inside P (this is a number between 0 and `). Hene D requires spaefor �` entries and is omputed in �``m time. A numerial representation of �`permits onstant time aess to D.The text sanning phase onsists of logially dividing the text in bloks oflength b = d(m � k)=2e, whih ensures that any approximate ourrene ofP (whih has length at least m � k) ontains at least one whole blok. Eahblok Tib+1:::ib+b is proessed as follows. They take the �rst `-gram of the blok,



S1 = Tib+1:::ib+`, and obtain D[S1℄. Then they take the next `-gram, S2 =Tib+`+1:::ib+2`, and obtain D[S2℄, and so on. If, before reahing the end of theblok, they have obtainedP1�j�tD[Sj ℄ > k, then they an safely skip the blokbeause no ourrene of P an ontain the blok, as merely mathing those t`-grams anywhere inside P requires more than k di�erenes. If, on the otherhand, they reah the end of the blok without surpassing k total di�erenes, theblok must be heked. In order to hek for Tib+1:::ib+b they run the lassialdynami programming algorithm over Tib+1�m�k+b:::ib+m+k.In order to keep the spae requirement polynomial in m, it is required that` = O(log�m). On the other hand, in order to ahieve the laimed omplexity,it is neessary that ` � x log�m for some onstant x, so the spae is O(mx). Theoptimal omplexity holds as long as � < 1=3�O(1=p�).3 Our AlgorithmThe basi idea of our algorithm is as follows. Given r searh patterns P 1 : : : P r,we build the table D taking the minimum number of di�erenes to math eah`-gram inside any of the patterns. The sanning phase is the same as in Se-tion 2.2. If we surpass k di�erenes inside a blok we are sure that none of thepatterns math, sine there are t `-grams inside the blok that need more thank di�erenes in order to be found inside any pattern. Otherwise, we hek thepatterns one by one over the blok. Figure 1 gives the ode. We present nowseveral improvements over this basi idea.Searh (T1:::n; P 11:::m : : : P r1:::m; k)1. ` Preproess ( )2. b d(m� k)=2e3. For i 2 0 : : : bn=b � 1 Do4. VerifyBlok ( i; b)Fig. 1. High-level desription of the algorithm. The input parameters are taken asglobal variables in the rest of the paper, to simplify the desriptions.3.1 Optimal Choie of `-gramsThe basi single-pattern algorithm [3℄ uses the �rst onseutive `-grams of theblok in order to �nd more than k di�erenes. This is simple, but not neessarilythe best hoie. Note that any set of non-overlapping `-grams found inside theblok whose total number of di�erenes inside P exeeds k permits us disardingthe blok. Hene the question of using the best possible set is raised.



The optimization problem is as follows. Given the text blok Tib+1:::ib+b wehave b�`+1 possible `-grams, namely Tib+1:::ib+`, Tib+2:::ib+`+1, : : :, Tib+b�`+1:::ib+b.From this set we want a subset of non-overlapping `-grams S1 : : : St suh thatP1�j�tD[Sj ℄ > k. Moreover, we want to proess the set left to right and deteta good enough subset as soon as possible.This is solved by alling Mu the maximum sum that an be obtained using`-grams that start in the positions ib+1 : : : ib+u. Initially we start with Mu = 0for �` < u � 0. Then we traverse the blok omputing, for inreasing u values,Mu  max(D[Tib+u:::ib+u+`�1℄ +Mu�` ; Mu�1) (1)where the �rst term aounts for the fat that we hoose to use the `-gram thatstarts at u and add to it the best previous solution that does not overlap this`-gram, and the seond term aounts for the fat that we do not use the `-gramthat starts at u.We ompute Mu for inreasing u until either (i) Mu > k, in whih ase weabandon the blok, or (ii) u > b � ` + 1, in whih ase we have to verify theblok. Figure 2 gives the ode.CanDisard (i; b; D; `)1. For u 2 �` : : : 0 Do Mu  02. For u 2 1 : : : b� `+ 1 Do3. Mu  max(D[Tib+u:::ib+u+`�1℄ +Mu�` ; Mu�1)4. If Mu > k Then Return true5. Return falseFig. 2. Optimization tehnique to hoose the set of overlapping `-grams that maximizethe sum of di�erenes. It returns whether the blok an be disarded.Note that the ost of hoosing the best set of `-grams is that, if we abandonthe blok after onsidering position x, then we work O(x=`) with the simplemethod and O(x) with the urrent one. (This assumes we an read an `-gramin onstant time, whih is true in pratie given the ` values used.) However, xitself may be smaller with the optimization method.3.2 Hierarhial Veri�ationOn the bloks that have to be veri�ed, we ould simply run the veri�ation forevery pattern, one by one. A more sophistiated hoie is hierarhial veri�ation(already presented in previous work [2℄). We form a tree whose nodes have theform [i; j℄ and represent the group of patterns P i : : : P j . The root is [1; r℄. Theleaves have the form [i; i℄. Every internal node [i; j℄ has two hildren [i; b(i+j)=2℄and [b(i+ j)=2+ 1; j℄.



The hierarhy is used as follows. For every internal node [i; j℄ we have atable D omputed using the minimum distanes between `-grams and patternsP i : : : P j . This is done by omputing �rst the leaves (that is, eah pattern sepa-rately) and then omputing every ell of D in the internal node as the minimumover the orresponding ell in its two hildren. In order to san the text, weuse the D table of the root node, whih orresponds to the full set of patterns.Every time a blok has to be veri�ed with respet to a node in the hierarhy(at �rst, the root node), we resan the blok onsidering the two hildren of theurrent node. It is possible that the blok an be disarded for both hildren, forone, or for none. We reursively repeat the proess for every hild that does notpermit disarding the blok, see Fig. 3. If we proess a leaf node and still haveto verify the blok, then we run dynami programming over the orrespondingsingle pattern.
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Fig. 3. Pattern hierarhy for 4 patterns.The idea of using the hierarhy instead of plainly heking the r patterns oneby one is that it is possible that the grouping of the pattern mathes a blok, butthat none of its halves math. In this ase we save veri�ation time. The plaintehnique needs O(�`) spae, while hierarhial veri�ation needs muh more,O(r�`).Note that veri�ation would bene�t if the patterns we group together are assimilar as possible, in terms of numbers of di�erenes. A simple heuristi is tolexiographially sort the patterns before grouping them by ranges.As a �nal note, we use Myers' algorithm [7℄ for the veri�ation of singlepatterns, whih makes the ost O(m2=w), where w is the number of bits in theomputer word.Figures 4 and 5 show the preproessing and veri�ation using hierarhialveri�ation.3.3 Reduing Preproessing TimeEither if we use plain or hierarhial veri�ation, preproessing time is an issue.We have to searh every pattern for every `-gram, resulting in O(r`m�`) prepro-



HierarhyPreproess (i; j; `)1. If i = j Then Di;j  PreproessD(P i; `)2. Else3. m b(i+ j)=24. HierarhyPreproess (i; m; `)5. HierarhyPreproess (m+ 1; j; `)6. For s 2 �` Do7. Di;j [s℄ min(Di;m[s℄; Dm+1;j [s℄)Preproess ( )8. ` d 3 log� m+log� r1�+2 log� +2(1�) log�(1�)e // see Eq. (3)9. HierarhyPreproess(1; r; `)Fig. 4. Preproessing to build the hierarhy. It is initially invoked with parameters(1; r) and produes global tables Di;j to be used by HierarhyVerify. The mainsearh table is D1;r .HierarhyVerify (i; j; b; s)1. If not CanDisard (s; b; Di;j ; `) Then2. If i = j Then Searh for P i in Tsb+1�m�k+b:::sb+m+k3. Else4. m b(i+ j)=25. HierarhyVerify (i; m)6. HierarhyVerify (m+ 1; j)Fig. 5. Hierarhial veri�ation. Proedure VerifyBlok(i; b) is then de�ned as Hier-arhyVerify (1; r; b; i).essing time. In the ase of hierarhial veri�ation we pay an additional O(r�`)time to reate the D tables of the internal nodes, but this is negligible omparedto the ost to ompute the individual patterns.In order to �nd the minimum number of di�erenes to math an `-gram Sinside a pattern P , we ompute the matrix Ci;j , for 0 � i � ` and 0 � j � m,as follows [11℄:Ci;0 = i ; C0;j = 0Ci+1;j+1 = if Si+1 = Pj+1 then Ci;j else 1 +min(Ci;j ; Ci;j+1; Ci+1;j)whih an be omputed, for example, row-wise left to right. We need only theprevious row in order to ompute the urrent row. The minimum distane is�nally min0�j�m C`;j .



We present now a method to redue the preproessing time to O(rm�`),whih has been used before in the ontext of indexed approximate string math-ing [10℄. Instead of running the `-grams one by one over a pattern P , we forma trie data struture of all the `-grams. For every trie node whose path fromthe root spells out the string S, we ompute the last row of the C matrix orre-sponding to searhing for S inside P . For this sake we use the previous matrixrow, whih was omputed for the parent node. Hene, if we traverse the trieusing a lassial depth �rst searh reursion and ompute a new matrix row ateah invoation, then the exeution stak ontains the matrix omputed up tonow, so we use the row omputed at the invoking proess to ompute the row ofthe invoked proess. Sine we work O(m) at every trie node and there are O(�`)nodes, the overall proess takes O(m�`) time. It needs just spae for the stak,O(m`). By repeating this over eah pattern we obtain O(rm�`) time.Note �nally that the trie of `-grams does not need to be expliitly built, as weknow that we have every possible `-gram and hene an use an impliit methodto traverse all them without atually storing them. Only the minima over the�nal rows are stored into the orresponding D entries. Figure 6 shows the ode.RePreproessD (P; i; `; S; Cold; D)1. If i = ` Then D[S℄ min0�j�m Coldj2. Else3. For s 2 � Do4. Cnew0  i5. For j 2 1 : : :m Do6. If s = Pj Then Cnewj  Coldj�17. Else Cnewj  1 +min(Coldj�1; Coldj ; Cnewj�1)8. ReProessD (P; i+ 1; `; Ss; Cnew;D)PreproessD (P; `)9. For j 2 0 : : :m Do Cj  010. RePreproessD (P; 0; `; "; C;D)11. Return DFig. 6. Preproessing for a single table.Again, we use Myers' algorithm [7℄ to ompute the matrix rows, whih makesthe preproessing time O(rm�`=w). For this sake we need to modify the algo-rithm so that it takes the `-gram as the text and P i as the pattern. This meansthat the matrix is transposed, so the urrent \olumn" starts with zeros and atthe i-th step its �rst ell has the value i. The neessary modi�ations are simpleand are desribed, for example, in [5℄.



The only ompliation is how to obtain the value min0�j�m C`;j from Myers'ompressed representation of C as a bit vetor of inrements and derements.A solution is to use bit magi, so as to store preproessed answers that give thetotal inrement and minimum value for every bit mask of a given length. SineC is represented using two bit vetors of m bits (one for inrements and theother for derements), we need O(22x) spae in order to proess the bit vetor inO(m=x) time. A reasonable hoie not a�eting the time omplexity is x = w=4for 32-bit mahines or x = w=8 for 64-bit mahines (for a table of 216 entries).3.4 Paking CountersOur �nal optimization resorts to bit-parallelism, that is, to storing several val-ues inside the same omputer word (this has been also used, for example, in theounting algorithm [2℄). For this sake we will denote the bitwise and operationas \&", the or as \j", and the bit omplementation as \�". Shifting i positionsto the left (right) is represented as \<< i" (\>> i"), where the bits that fallare disarded and the new bits that enter are zero. We an also perform arith-meti operations over the omputer words. We use exponentiation to denote bitrepetition, e.g. 031 = 0001, and write the most signi�ant bit as the leftmost bit.In our proess of adding up di�erenes, we start with zero di�erenes andgrow at most up to k + ` di�erenes before abandoning the blok. This meansthat it suÆes to use B = dlog2(k + ` + 1)e bits to store a ounter. Instead oftaking minima over several patterns, we ould separately store their ountersin a single omputer word C of w bits (w = 32 or 64 in urrent arhitetures).This means that we ould store A = bw=B = O(w= log k) ounters in a singlemahine word C.Consequently, we should keep several di�erene ounts in the same mahineword of a D ell. We an still add up our ounter and the orresponding D elland all the ounters will be added simultaneously, so the ost is exatly the sameas for one single ounter or pattern.Every text blok must be traversed until all the ounters exeed k, so weneed a mehanism to hek for this ondition over all the ounters in a singleoperation. A solution is to initialize the ounters not at zero but at 2B�1�k�1,whih ensures that the highest bit in eah ounter will be ativated as soon asthe ounter reahes the value k +1. However, this means that the values storedinside the ounters may now reah 2B�1+ `� 1. This will not ause overow aslong as 2B�1 + `� 1 < 2B, that is, 2` � 2B . So in fat B should be hosen suhthat 2B > max(k + `; 2`� 1), that is, B = dlog2max(k + `+ 1; 2`)e.With this arrangement, in order to hek whether all the ounters have ex-eeded k, we simply hek whether all the highest bits of all the ounters are set.This is ahieved using the bitwise and operation: Let H = (10B�1)A be the bitmask where all the highest bits of the ounters are set. Then, all the ountershave exeeded k if and only if H & C = H . In this ase we an abandon theblok.Note that it is still possible that our ounters overow, beause we an havethat some of them have exeeded k + ` while others have not. We avoid using



more bits for the ounters and at the same time ensure that, one a ounter hasits highest bit set, it will stay with this bit set. Before adding C  C+D[S℄, weremove all the highest bits from C, that is, we assign O  H & C, and replaethe simple sum by the assignment C  ((C & � H) +D[S℄) j O. Sine we haveseleted B suh that ` � 2B�1, adding D[S℄ to a ounter with its highest bit setannot ause an overow. Note also that highest bits that are already set arealways preserved.This tehnique permits us searhing for A = bw=B patterns at the sametime. If we have more patterns we resort to grouping. In a plain veri�ationsenario, we an group r=A patterns in a single ounter and searh for the Apatterns simultaneously, with the advantage of having to verify only r=A pat-terns instead of all the r patterns whenever a blok requires veri�ation. In ahierarhial veri�ation senario, the result is that our hierarhy tree has ar-ity A instead of two, and has no root. That is, the tree has A roots that aresearhed for together, and eah root paks r=A patterns. If one suh node hasto be veri�ed, then we onsider its A hildren nodes (that pak r=A2 patternseah), all together, and so on. This redues not only veri�ation osts but alsothe preproessing spae, sine we need less tables.We have also to onsider how this is ombined with the optimization algo-rithm of Setion 3.1, sine the best hoie to maximize one ounter may not bethe best hoie to maximize another. The solution is to pak also the di�erentvalues of Mu in a single omputer word. The operation of Eq. (1) an be per-fetly done in parallel for several ounters, as long as we replae the sum by theabove tehnique to avoid overows. The only obstale is the maximum, whih asfar as we know has never been used in a bit-parallel senario. We do that now.If we have to ompute max(X;Y ), where X and Y ontain several ountersproperly aligned, in order to obtain the ounter-wise maxima, we need an extrahighest bit per ounter, whih is always zero. Say that ounters have now B +1bits, ounting this new highest bit. We preompute the bit mask J = (10B)A(where now A = bw=(B+1)) and perform the operation F  ((X j J)�Y ) & J .The result is that, in F , eah highest bit is set if and only if the ounter of X islarger than that of Y . We now ompute F  F�(F >> B), so that the ounterswhere X is larger than Y have all their bits set in F , and the others have all thebits in zero. Finally, we hoose the maxima as max(X;Y ) (X & F ) j (Y & �F ).Fig. 7 shows the bit-parallel version of the ounter aummulation, and Fig. 8shows an example of pattern hierarhy.4 AnalysisWe analyze our algorithm by following the analysis of the orresponding singlepattern algorithm [3℄. Two useful lemmas shown there follow (we have writtenthem in a way more onvenient for us).Lemma 1 [3℄ The probability that two random `-grams have a ommon subse-quene of length (1�)` is at most a��d`=`, for onstants a = (1+o(1))=(2�(1�



CanDisard (i; b; D; `)1. B  dlog2max(k + `+ 1; 2`)e2. A bw=(B + 1)3. H  (010B�1)A4. J  (10B)A5. For u 2 �` : : : 0 Do6. Mu  (2B�1 � k � 1)� (0B1)A7. For u 2 1 : : : b� `+ 1 Do8. X  Mu�`9. O  X & H10. X  ((X & � H) +D[Tib+u:::ib+u+`�1℄) j O11. Y  Mu�112. F  ((X j J)� Y ) & J13. F  F � (F >> B)14. Mu  (X & F ) j (Y & � F )15. If H & Mu = H Then Return true16. Return falseFig. 7. The bit-parallel version of CanDisard. It requires that D is preproessed bypaking the values of A di�erent patterns in the same way. Lines 1{6 an in fat bedone one at preproessing time.

Fig. 8. Top: basi pattern hierarhy for 27 patterns. Bottom: pattern hierarhy withbit-parallel ounters (27 patterns).)) and d = 1 �  + 2 log�  + 2(1 � ) log�(1 � ). The probability dereasesexponentially for d > 0, whih surely holds if  < 1� e=p�.Lemma 2 [3℄ If S is an `-gram that mathes inside a given string P (larger than`) with less than ` di�erenes, then S has a ommon subsequene of length`� ` with some `-gram of P .



We measure the amount of work in terms of inspeted haraters. For agiven text blok, if there is a single `-gram inside the blok that mathes insideany pattern P i with less than ` di�erenes, we pessimistially assume that weverify the whole blok. Otherwise, after onsidering 1+dk=(`)e non-overlapping`-grams, we abandon the blok without verifying it. For the latter to be orret,it must hold k=m = � < =(+2)(1+O(1=m)), sine otherwise we reah the endof the blok (of length (m� k)=2) before onsidering those 1+ dk=(`)e `-grams.Given Lemmas 1 and 2, the probability that a given `-gram mathes withless than ` di�erenes inside some P i is at most that of having a ommonsubsequene of length ` � ` with some `-gram of some P i. The probability ofthis is mra��d`=`. Consequently, the probability that any `-gram in the urrenttext blok mathes is m2ra��d`=`2, sine there are m=` `-grams. (We assume forthe analysis that we do not use the optimization of Setion 3.1; this is pessimistifor every possible text blok.)Hene, with probability m2ra��d`=`2 we verify the blok, and otherwise wedo not. In the �rst ase we pay O(m2r) time if we use plain veri�ation (Se-tion 3.2, we see the ase of hierarhial veri�ation later) and dynami program-ming. In the seond ase we pay the number of haraters inspeted in order toproess 1 + dk=(`)e `-grams, that is, ` + k=. Hene the average ost is upperbounded by O� nm �am4r2`2 ��d` + `+ k��The �rst part is the ost of veri�ations, and we have to make it negligibleompared to the seond part, that is, we have to ensure that veri�ations arerare enough. A suÆient ondition on ` is` � 4 log�m+ 2 log� rd = 4 log�m+ 2 log� r1� + 2 log� + 2(1� ) log�(1� )(in fat a slightly better, but more ompliated, bound an be derived).Note that we are free to hoose any onstant 2�=(1 � �) <  < 1 � e=p�.If we let  approah 1 � e=p�, the value of ` goes to in�nity and so does ourpreproessing ost. If we let  approah 2�=(1��), ` gets as small as possible butour searh ost beomes O(n). Having properly hosen  and `, our algorithm ison average O�n(k + log�(rm))m � (2)harater inspetions. We remark that this is true as long as 2�=(1 � �) <1�e=p�, that is, � < 1=3�O(1=p�), as otherwise the whole algorithm reduesto dynami programming.Reall that our preproessing ost is O(mr�`=w). Given the value of `, this isO(m5r3�O(1)=w). The spae with plain veri�ation is �` = m4r2�O(1) integers.As a pratial onsideration, we have that sine �` must �t in memory, wemust be able to hold ` log2 � bits in a single omputer word, so we an reada whole `-gram in a single omputer instrution. The number of instrutions



exeuted then beomesO(n(1+k= logM)=m), whereM is the amount of memorywe spend on a D table. Note that this is not true if we use the optimizationmethod of Setion 3.1, although we are not able to analyze the bene�t that thismethod produes, on the other hand.The fat that we perform the veri�ation using Myers' algorithm [7℄ hangesits ost to O(rm2=w), and this permits reduing ` a bit in pratie, but theoverall omplexity does not hange.Let us now analyze the e�et of hierarhial veri�ation. This time we startwith r patterns, and if the blok requires veri�ation, we run two new sansfor r=2 patterns, and ontinue the proess until a single pattern asks for ver-i�ation. Only then we perform the dynami programming veri�ation. Letp = a��d`m2=`2. Then the probability of verifying the root node is pr. For anon-root node, the probability that it requires veri�ation given that the parentrequires veri�ation is Pr(hild=parent) = Pr(hild ^ parent)=P (parent) =Pr(hild)=Pr(parent) = 1=2, sine if the hild requires veri�ation then theparent requires veri�ation. Then the number of times we san the whole blokis on average pr(1 + 2(1=2(1 + 2(1=2 : : : = pr log2 rHene the total harater inspetions for the sans that require veri�ations isO(pmr log r). Finally, eah individual pattern is veri�ed provided an `-gram ofthe text blok mathes inside it. This aounts for O(prm2) veri�ation ost.Hene the overall ost under hierarhial veri�ation isO� nm �am3r(m + log r)`2 ��d` + `+ k��whih is learly better than the ost with plain veri�ation. The ondition on `to obtain the same searh time of Eq. (2) is now` � log�(m3r(m + log2 r))d = 3 log�m+ log� r + log�(m+ log2 r)1� + 2 log� + 2(1� ) log�(1� ) (3)whih is smaller and hene requires less preproessing e�ort. This time the pre-proessing ost is O(m4r2(m + log r)�O(1)=w), smaller than with plain veri�-ation. The spae requirement of hierarhial veri�ation, however, is 2r�` =2m3r2(m+ log2 r)�O(1), whih is larger than with plain veri�ation.Finally, let us onsider the use of bit-parallel ounters (Setion 3.4). This timethe arity of the tree is A = bw=(1 + dlog2(k +1)e) and it has no root. We haver=A tables in the leaves of the hierarhial tree. The total spae requirementis less than r=(A � 1) tables. The veri�ation e�ort is now O(pmr logA r) forsanning and re-sanning, and O(prm2) for dynami programming. This puts aless stringent ondition on `:` � log�(m3r(m+ logA r))d = 3 log�m+ log� r + log�(m+ logA r)1� + 2 log� + 2(1� ) log�(1� )



and redues the preproessing e�ort to O(m4r2(m+logA r)�O(1)=w). The spaerequirement is dr=(A� 1)e�` = m3r2(m+logA r)�O(1)=(A� 1). With plain ver-i�ation the spae requirement is still smaller, but the di�erene is now smaller.To summarize, we have shown that we are able to perform, on average,O(n(k + log�(rm))=m) harater inspetions whenever � < 1 � e=p�. Thisrequires a preproessing time of roughly O(m4r2(m+ logw= log k r)�O(1)=w) andan extra spae of O(m3r2(m + logw= log k r)�O(1) log(k)=w) by using the besttehniques. The number of mahine instrutions for the searh an be madeO(n(1 + k= logM)=m) provided we use M memory for a single D table.It has been shown that, for a single pattern, O(n(k + log�m)=m) is optimal[3℄. This uses two fats. The �rst is that it is neessary to inspet at least k + 1haraters in order to skip a given text window of length m, so we need at least
(kn=m) harater inspetions. The seond is that the 
(n log�(m)=m) lowerbound of Yao [14℄ for exat string mathing applies to approximate searhingtoo, as exat searhing is inluded in the approximate searh problem. Whensearhing for r patterns, this lower bound beomes 
(n log�(rm)=m), as weshow in the Appendix A. Hene our algorithm is optimal.5 A Slower Algorithm for Higher Di�erene RatiosA weakness of the algorithm is that it annot ope with di�erene ratios beyond1=3. This is due in part to the use of text bloks of length (m�k)=2. A di�erentalternative to �xed-position bloks is the use of a sliding window of t `-grams,where t = b(m�k+1)=`�1. If we onsider text bloks for the form Ti`+1:::i`+t`,we are sure that every ourrene (whose minimum length is m � k) ontainsa omplete blok. Then, if the `-grams inside the window add up more than kdi�erenes, we an move to the next blok.The main di�erene is that bloks overlap with eah other by t� 1 `-grams,so we should be able to update our di�erene ounter from one text blok to thenext in onstant time. This is rather easy, although it does not permit anymorethe use of the optimization tehnique of Setion 3.1. The result is an algorithmthat takes O(n) time for � < 1=2�O(1=p�). Figure 9 shows this algorithm.6 Experimental ResultsWe have implemented the algorithms in , ompiled using g 3.2.1 with fulloptimizations. The experiments were run in 2GHz Pentium 4, with 512mb ram,with Linux 2.4.We ran experiments for alphabet sizes � = 4 (dna), � = 20 (protein) and� = 256 (asii text). The test data for dna and protein alphabets was randomlygenerated. The texts were 64mb haraters for dna, and 16mb haraters forprotein, and the patterns were 64 haraters. The texts were stored used only 2(dna) and 5 bits (protein) per harater, whih allowed O(1) time aess to the`-grams.



Searh (T1:::n; P 11:::m : : : P r1:::m; k)1. ` Preproess ( )2. t b(m� k + 1)=` � 13. b t`4. M  05. For i 2 0 : : : t� 2 Do M  M +D[Ti`+1:::i`+`℄6. For i 2 t� 1 : : : bn=`-1 Do7. M  M +D[Ti`+1:::i`+`℄8. If M � k Then Verify text blok9. M  M �D[T(i�t+1)`+1:::(i�t+1)`+`℄Fig. 9. High-level desription of the slower algorithm. The veri�ation of a text blokan also be done hierarhially.Table 1. Preproessing times in seonds for various number of patterns, and for various`-gram lenghts. The pattern lenghts are m = 64 for dna and protein, and m = 16 forasii.dna 1 8 32 64 protein 1 64 256 1024 asii 1 64 256 10244 0.00 0.00 0.00 0.00 1 0.00 0.01 0.01 0.02 1 0.00 0.01 0.01 0.066 0.01 0.01 0.04 0.08 2 0.00 0.01 0.03 0.07 2 0.01 0.59 2.60 10.658 0.02 0.15 0.58 1.17 3 0.01 0.09 0.40 1.55 3 4.2610 0.38 3.02 12.00 24.19 4 0.04 6.09Table 1 gives the preproessing times for various alphabets, number of pat-terns and `-grams. The preproessing timings are for the basi algorithms, with-out the bit-parallel ounters tehnique, whih requires slightly more time. Themaximum values in pratie are ` � 8 for dna, ` � 3 for protein, and ` � 2 forasii. The searh times were measured for these maximum values.Figs. 10, 11, and 12 give the searh times for the dna, protein, and asiialphabets. The abreaviations in the �gures are as follows. sl: the basi sublineartime algorithm, slo: sl with the optimal hoie of `-grams, l: the basi lineartime �ltering algorithm, sl: sl with bit-parallel ounters, slo: sl with theoptimal hoie of `-grams, l: l with bit-parallel ounters. All �lters use thehierarhial veri�ation. For omparison, Fig. 13 gives timings for the exat pat-tern partitioning algorithm given in [1℄. This algorithm beats the new algorithmsfor large rm, �, k. Fig. 14 illustrates.Optimal hoie of `-grams helps only sometimes, but is usually slower due toits omplexity. The linear time �ltering algorithms quikly beome faster thanthe sublinear algorithms for large rm, k. The bit-parallel ounters speed-up thesearh for large rm. The performane of the algorithms ollapse when the errorratio grows past a ertain limit, and this ollapse is very sharp. Before that limit,the new algorithms are very eÆient.
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Fig. 10. Searh times in seonds. Parameters are: � = 4, m = 64, and ` = 8. The�gures are for, from left to right, top to bottom: r = 1, r = 8, r = 32, and r = 64.
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

tim
e 

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

tim
e 

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9

tim
e 

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

tim
e 

(s
)

k

running times for varying k

SL
SLO

L
SLC

SLCO
LC

Fig. 11. Searh times in seonds. Parameters are: � = 20, m = 64, and ` = 3. The�gures are for, from left to right, top to bottom: r = 1, r = 64, r = 256, and r = 1024.
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Fig. 13. Searh times in seonds for exat pattern partitioning algorithm, for � = 4(dna), � = 20 (protein), and � = 64 (asii) alphabets.7 ConlusionsMultiple approximate string mathing is an important problem that arises inseveral appliations, and for whih the urrent state of the art is in a very
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primitive stage. Nontrivial solutions exist only for the ase of very low di�ereneratios or very few patterns.We have presented a new algorithm to improve this situation. Our algorithmis not only optimal on average, but also pratial. A seond algorithm we presentis slower but handles higher di�erene ratios. We have shown that they performwell in handling large numbers of patterns and intermediate di�erene ratios.They are indeed the best alternatives for reasonably small alphabets.The algorithms do not indue any order on the `-grams, but they an appearin any order, as long as their total distane is at most k. The �ltering an bestill improved by requiring that the `-grams from the pattern must appear inapproximately same order in the text. This approah was used in [12℄. The samemethod an be applied for multiple patterns as well.There are several ways we plan to try in order to redue preproessing timeand memory usage. A �rst one is lazy evaluations of the table ells. Instead offully omputing the D tables of size �` for eah pattern, we ompute the ellsonly for the text `-grams as they appear. If a given table ell is not yet omputed,we ompute it on the y for all the patterns. This gives a preproessing ost thatis O(rm�`(1� e�n=�`)) on the average (using Myers' algorithm for the `-gramsinside the patterns, as d`=we = 1). This, however, is advantageous only for verylong `-grams, namely `+�(log log `) > log� n.Another possibility is to ompute D only for those `-grams that appear in apattern with at most `0 di�erenes, and assume that all the others appear with`0 + 1 di�erenes. This redues the e�etivity at searh time but, by storing therelevant `-grams in a hash table, requires O(rm(�`)`0 ) spae and preproessingtime (either for plain or hierarhial veri�ation), sine the number of stringsat distane `0 to an `-gram is O((�`)`0 ) [13℄. With respet to plain veri�ation,the spae is redued for `0 < (` � log�(rm))=(1 + log� `), and with respet tohierarhial veri�ation, for `0 < (` � log�m)=(1 + log� `). These values arereasonable.It is also possible to improve the veri�ation performane. A simple strat-egy is to sort the patterns before grouping by ranges in order to ahieve somelustering in the groups. This ould be handled with an algorithm designed forhierarhial lustering. This lustering ould be done taking a distane de�nedas the number of di�erenes neessary to onvert one pattern into the other, orany other reasonable measure of similarity (Hamming distane, longest ommonsubsequene, et.).Indexing onsists of preproessing the text to build a data struture (index)on it that an be used later for faster querying [9℄. In general, we �nd thatmethods designed for indexed approximate string mathing an be adapted to(non-indexed) multiple approximate string mathing. The idea is to index thepattern set and use the text somehow as the pattern, in order to \searh forthe text" inside the struture of the patterns. Our present ideas are lose toapproximate q-gram methods, and several other tehiques an be adapted too.We are urrently pursuing this line.
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(n log�(rm)=m),where � = j�j. The bound refers to the number of harater inspetions made.We use the same trik of dividing the text in bloks of length 2m � 1, andassume that we just have to searh for the presene of the patterns inside eah



blok (whih is an optimisti assumption). Sine no information gathered insideone blok an be used to searh the other, we an regard eah blok in isolation.So the ost is at least n=(2m� 1) times the ost to searh a single blok. Henewhat we have to prove is that we have to work 
(log�(rm)) inside a given blok.Inside a given blok B1:::2m�1, eah of the r patterns an math inm di�erentpositions (starting at position 1 to m). Eah possible math position of eahpattern will be alled a andidate and identi�ed by the pair (t; i), where t 2 1 : : : ris the pattern number and i 2 1 : : :m is the starting position inside the blok.Hene there are rm andidates.We have to examine enough haraters to ensure that we have found everymath inside the blok. We will perform a sequene of aesses (blok haraterreads) inside the blok, at positions i1; i2 : : : ik until the information we havegathered is enough to know that we found every pattern ourrene. Whih isthe same, we have to \rule out" all the rm andidates, or report those andidatesthat have not been ruled out after onsidering their m positions.Note that eah andidate has to be ruled out independently of the rest.Moreover, the only way to rule out a andidate (t; i) is to perform an aess ijsuh that Bij 6= P tij�i+1.Given an aess ij to blok B, the probability to rule out a andidate (t; i)with the aess is at most 1 � 1=�: even assuming that the area overed bythe andidate inludes ij (that is, i � ij < i + m) and that the andidatehas not been already outruled by a previous aess, there is a probability of1=� that Bij = P tij�i+1 and hene we annot rule out (t; i). This means thatthe probability that a given aess does not rule out a given andidate is � 1=�.Note that the way we have bounded the probability permits us onsidering everyaess independently of the others. Consequently, the probability of not rulingout a given andidate after k aesses is at least 1=�k.Sine every andidate has to be ruled out independently of the others, asequene of k aesses leaves at least rm=�k andidates not ruled out, on aver-age. Eah individual andidate an be diretly veri�ed by examining �=(� � 1)haraters on average. Hene, our average ost is at leastk + rm�k�1(� � 1)The optimum is to keep examining haraters until the average ost to di-retly verify the andidates equals the ost we would pay if we kept examiningharaters, and then swith to diret veri�ation. This orresponds to minimizingthe above formula. The optimum isk� = log� �rm� ln�� � 1 �and hene the lower bound on the average ost per blok is1 + ln�rm� ln���1 �ln� = �(log�(rm))whih proves our laim.


