
Faster Bit-parallel Approximate String MatchingHeikki Hyyr�o ? and Gonzalo Navarro ??Abstract. We present a new bit-parallel technique for approximatestring matching. We build on two previous techniques. The �rst one[Myers, J. of the ACM, 1999], searches for a pattern of length m in atext of length n permitting k di�erences in O(mn=w) time, where w isthe width of the computer word. The second one [Navarro and Ra�not,ACM JEA, 2000], extends a sublinear-time exact algorithm to approx-imate searching. The latter technique makes use of an O(kmn=w) timealgorithm [Wu and Manber, Comm. ACM, 1992] for its internal workings.This algorithm is slow but
exible enough to support all the required op-erations. In this paper we show that the faster algorithm of Myers canbe adapted to support all those operations. This involves extending itto compute edit distance, to search for any pattern su�x, and to detectin advance the impossibility of a later match. The result is an algorithmthat performs better than the original version of Navarro and Ra�notand that is the fastest for several combinations of m, k and alphabetsizes that are useful, for example, in natural language searching andcomputational biology.1 IntroductionApproximate string matching is one of the main problems in classical stringalgorithms, with applications to text searching, computational biology, patternrecognition, etc. Given a text of length n, a pattern of length m, and a maxi-mal number of di�erences permitted, k, we want to �nd all the text positionswhere the pattern matches the text up to k di�erences. The di�erences can besubstituting, deleting or inserting a character. We call � = k=m the di�erenceratio, and � the size of the alphabet �. All the average case �gures in this paperassume random text and uniformly distributed alphabet.In this paper we consider online searching, that is, the pattern can be pre-processed but the text cannot. The classical solution to the problem is based on�lling a dynamic programming matrix and needs O(mn) time [16]. Since then,many improvements have been proposed (see [11] for a complete survey). Thesecan be divided into four types.The �rst type is based on dynamic programming and has achieved O(kn)worst case time [7, 9]. These algorithms are not really practical, but there ex-ist also practical solutions that achieve, on the average, O(kn) [20] and evenO(kn=p�) time [4].? Dept. of Computer Science, University of Tampere, Finland.?? Dept. of Computer Science, University of Chile.

The second type reduces the problem to an automaton search, since approx-imate searching can be expressed in that way. A deterministic �nite automaton(DFA) is used in [20] so as to obtain O(n) search time, which is worst-case opti-mal. The problem is that the preprocessing time and the space is O(3m), whichmakes the approach practical only for very small patterns. In [22] they tradetime for space using a Four Russians approach, achieving O(kn= log s) time onaverage andO(mn= log s) in the worst case, assuming that O(s) space is availablefor the DFAs.The third approach �lters the text to quickly discard large text areas, usinga necessary condition for an approximate occurrence that is easier to check thanthe full condition. The areas that cannot be discarded are veri�ed with a clas-sical algorithm [18,17, 5, 12, 14]. These algorithms achieve \sublinear" expectedtime in many cases for low di�erence ratios, that is, not all text characters areinspected. However, the �ltration is not e�ective for higher ratios. The typicalaverage complexity is O(kn log�m=m) for � = O(1= log� m). The optimal aver-age complexity is O((k+log�m)n=m) for � < 1�O(1=p�) [5], which is achievedin the same paper. The algorithm, however, is not practical.Finally, the fourth approach is bit-parallelism [1, 21], which consists in pack-ing several values in the bits of the same computer word and managing to updateall them in a single operation. The idea is to simulate another algorithm usingbit-parallelism. The �rst bit-parallel algorithm for approximate searching [21]parallelized an automaton-based algorithm: a nondeterministic �nite automaton(NFA) was simulated in O(kdm=wen) time, where w is the number of bits in thecomputer word. We call this algorithm BPA (for Bit-Parallel Automaton) in thispaper. BPA was improved to O(dkm=wen) [3] and �nally to O(dm=wen) time[10]. The latter simulates the classical dynamic programming algorithm usingbit-parallelism, and we call it BPM (for Bit-Parallel Matrix) in this paper.Currently the most successful approaches are �ltering and bit-parallelism. Apromising approach combining both [14] will be called ABNDM in this paper(for Approximate BNDM). The original ABNDM was built on BPA because thelatter is the most
exible for the particular operations needed. The faster BPMwas not used at that time because of the di�culty in modifying it to be suitablefor ABNDM.In this paper we extend BPM in several ways so as to permit it to be usedin the framework of ABNDM. The result is a competitive approximate stringmatching algorithm. In particular, the algorithm turns out to be the fastest fora range of m and k that includes interesting cases of natural language searchingand computational biology applications.2 Basic Concepts2.1 NotationWe will use the following notation on strings: jxj will be the length of string x; "will be the only string of length zero; string positions will start at 1; substrings

will be denoted as xi:::j, meaning taking from the i-th to the j-th character ofx, both inclusive; xi will denote the single character at position i in x. We saythat x is a pre�x of xy, a su�x of yx, and a substring or factor of yxz.Bit-parallel algorithms will be described using C-like notation for the opera-tions: bitwise \and" (&), bitwise \or" (j), bitwise \xor" (^), bit complementation(�), and shifts to the left (<<) and to the right (>>), which are assumed toenter zero bits both ways. We also perform normal arithmetic operations (+,�, etc.) on the bit masks, which are treated as numbers in this case. Constantbit masks are expressed as sequences of bits, the �rst to the right, using expo-nentiation to denote bit repetition, for example 103 = 1000 has a 1 at the 4-thposition.2.2 Problem DescriptionThe problem of approximate string matching can be stated as follows: givena (long) text T of length n, and a (short) pattern P of length m, both beingsequences of characters from an alphabet � of size �, and a maximum numberof di�erences permitted, k, �nd all the segments of T whose edit distance to P isat most k. Those segments are called \occurrences", and it is common to reportonly their start or end points.The edit distance between two strings x and y is the minimum number ofdi�erences that would transform x into y or vice versa. The allowed di�erencesare deletion, insertion and substitution of characters. The problem is non-trivialfor 0 < k < m. The di�erence ratio is de�ned as � = k=m.Formally, if ed() denotes the edit distance, we may want to report startpoints (i.e. fjxj; T = xP 0y; ed(P; P 0) � kg) or end points (i.e. fjxP 0j; T =xP 0y; ed(P; P 0) � kg) of occurrences.2.3 Dynamic ProgrammingThe oldest and still most
exible (albeit slowest) algorithm to solve the problemis based on dynamic programming [16]. We �rst show how to compute the editdistance between two strings x and y. To compute ed(x; y), a matrix M0::jxj;0::jyjis �lled, where Mi;j = ed(x1::i; y1::j), so at the end Mjxj;jyj = ed(x; y). Thismatrix is computed as followsMi;0 i; M0;j j;Mi;j if (xi = yj) then Mi�1;j�1 else 1 + min(Mi�1;j;Mi;j�1;Mi�1;j�1)where the formula accounts for the three allowed operations. This matrix isusually �lled columnwise left to right, and each column top to bottom. The timeto compute ed(x; y) is then O(jxjjyj).This is easily extended to approximate searching, where x = P and y = T ,by letting an occurrence start anywhere in T . The only change is on the initialcondition M0;j 0. The time is still O(jxjjyj) = O(mn). The space can bereduced to O(m) by storing only one column of the matrix at the time, namely,

the one corresponding to the current text position (going left to right meansexamining the text sequentially).In this case it is more appropriate to think of a column vector C0:::m, whichis initialized at Ci i and updated to C 0 after reading text character Tj usingC0i if (Pi = Tj) then Ci�1 else 1 + min(C 0i�1; Ci; Ci�1)for all i > 0, and hence we report every end position j where Ci � k.Several properties of the matrix M are discussed in [19]. The most importantfor us is that adjacent cells in M di�er at most by 1, that is, both Mi;j �Mi�1;jand Mi;j �Mi;j�1 are in the range f�1; 0;+1g. Also, Mi+1;j+1 �Mi;j is in therange f0; 1g.Fig. 1 shows examples of edit distance computation and approximate stringmatching. s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2 s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Fig. 1. The dynamic programming algorithm. On the left, to compute the edit distancebetween "survey" and "surgery". On the right, to search for "survey" in the text"surgery". The bold entries show the cell with the edit distance (left) and the endpositions of occurrences for k = 2 (right).2.4 The Cuto� ImprovementIn [20] they consider the dynamic programming algorithm and observe thatcolumn values larger than k can be assumed to be k + 1 without a�ecting theoutput of the computation. Cells of C with value not exceeding k are calledactive. In the algorithm, the index ` of the last active cell (i.e., largest i suchthat Ci � k) is maintained. All the values C`+1:::m are assumed to be k + 1, soC needs to be updated only in the range C1:::`. Later [4] it was shown that, onaverage, ` = O(k) and therefore the algorithm is O(kn).The value ` has to be updated throughout the computation. Initially, ` = kbecause Ci = i. It is shown that, at each new column, the last active cell can beincremented at most by one, so we check whether C`+1 � k and in such a casewe increment `. However, it is also possible that which was the last active cellbecomes inactive now, that is, C` > k. In this case we have to search upwards for

the new last active cell. Despite that this search can take O(m) time at a givencolumn, we cannot work more than O(n) overall, because there are at most nincrements of ` in the whole process, and hence there are no more than n + kdecrements. Hence, the last active cell is maintained at O(1) amortized cost percolumn.2.5 An Automaton ViewAn alternative approach is to model the search with a non-deterministic automa-ton (NFA) [2]. Consider the NFA for k = 2 di�erences shown in Fig. 2. Every rowdenotes the number of di�erences seen (the �rst row zero, the second row one,etc.). Every column represents matching a pattern pre�x. Horizontal arrows rep-resent matching a character. All the others increment the number of di�erences(i.e., move to the next row): vertical arrows insert a character in the pattern,solid diagonal arrows substitute a character, and dashed diagonal arrows deletea character of the pattern. The initial self-loop allows an occurrence to startanywhere in the text. The automaton signals (the end of) a match whenever arightmost state is active.It is not hard to see that once a state in the automaton is active, all thestates of the same column and higher-numbered rows are active too. Moreover,at a given text position, if we collect the smallest active rows at each column, weobtain the vector C of the dynamic programming (in this case [0; 1; 2; 3;3;3; 2],compare to Fig. 1).
Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Fig. 2. An NFA for approximate string matching of the pattern "survey" with twodi�erences. The shaded states are those active after reading the text "surgery".Note that the NFA can be used to compute edit distance by simply removingthe self-loop, although it cannot distinguish among di�erent values larger thank.

2.6 A Bit-Parallel Automaton Simulation (BPA)The idea of BPA [21] is to simulate the NFA of Fig. 2 using bit-parallelism,so that each row i of the automaton �ts in a computer word Ri (each state isrepresented by a bit). For each new text character, all the transitions of theautomaton are simulated using bit operations among the k+1 computer words.The update formula to obtain the new R0i values at text position j from thecurrent Ri values is as follows:R00 ((R0 << 1) j 0m�11) & B[Tj]R0i+1 ((Ri+1 << 1) & B[Tj]) j Ri j (Ri << 1) j (R0i << 1)where B[c] is a precomputed table of � entries such that the r-th bit of B[c]is set whenever Pr = c. We start the search with Ri = 0m�i1i. In the formulafor R0i+1 are expressed, in that order, horizontal, vertical, diagonal and dasheddiagonal arrows.If m > w we need dm=we computer words to simulate every Ri mask, andhave to update them one by one. The cost of this simulation is thus O(kdm=wen).The algorithm is
exible, for example in order to remove the initial self-loop onehas to change the update formula for R0 to R00 (R0 << 1) & B[Tj].2.7 Myers' Bit-Parallel Matrix Simulation (BPM)A better way to parallelize the computation [10] is to represent the di�erencesbetween consecutive rows or columns of the dynamic programming matrix in-stead of the NFA states. Let us call�hi;j = Mi;j �Mi;j�1 2 f�1; 0;+1g�vi;j = Mi;j �Mi�1;j 2 f�1; 0;+1g�di;j = Mi;j �Mi�1;j�1 2 f0; 1gthe horizontal, vertical, and diagonal di�erences among consecutive cells. Theirrange of values come from the properties of the dynamic programming matrix[19].We present a version [8] that di�ers slightly from that of [10]: Although bothperform the same number of operations per text character, the one we presentis easier to understand and more convenient for our purposes.Let us introduce the following boolean variables. The �rst four refer to hori-zontal/vertical positive/negative di�erences and the last to the diagonal di�er-ence being zero:V Pi;j � �vi;j = +1 V Ni;j � �vi;j = �1HPi;j � �hi;j = +1 HNi;j � �hi;j = �1D0i;j � �di;j = 0Note that�vi;j = V Pi;j�V Ni;j,�hi;j = HPi;j�HNi;j, and�di;j = 1�D0i;j.It is clear that these values completely de�ne Mi;j =Pr=1:::i�vr;j .

The boolean matrices HN , V N , HP , V P , and D0 can be seen as vectorsindexed by i, which change their value for each new text position j, as we traversethe text. These vectors are kept in bit masks with the same name. Hence, forexample, the i-th bit of the bit mask HN will correspond to the value HNi;j.The index j � 1 refers to the previous value of the bit mask (before processingTj), whereas j refers to the new value, after processing Tj. By noticing somedependencies among the �ve variables [8, 15], one can arrive to identities thatpermit computing their new values (at j) from their old values (at j � 1) fast.Fig. 3 gives the pseudo-code. The value diff stores Cm = Mm;j explicitlyand is updated using HPm;j and HNm;j .BPM (P1:::m; T1:::n; k)1. Preprocessing2. For c 2 � Do B[c] 0m3. For i 2 1 : : :m Do B[Pi] B[Pi] j 0m�i10i�14. V P 1m, V N 0m5. diff m6. Searching7. For j 2 1 : : : n Do8. X B[Tj] j V N9. D0 ((V P + (X & V P)) ^ V P) j X10. HN V P & D011. HP V N j � (V P j D0)12. X HP << 113. V N X & D014. V P (HN << 1) j � (X j D0)15. If HP & 10m�1 6= 0m Then diff diff + 116. If HN & 10m�1 6= 0m Then diff diff � 117. If diff � k Then report an occurrence at jFig. 3. BPM bit-parallel simulation of the dynamic programming matrix.This algorithm uses the bits of the computer word better than previousbit-parallel algorithms, with a worst case of O(dm=wen) time. However, thealgorithm is more di�cult to adapt to other related problems, and this hasprevented it from being used as an internal tool of other algorithms.2.8 The ABNDM AlgorithmGiven a pattern P , a su�x automaton is an automaton that recognizes everysu�x of P . This is used in [6] to design a simple exact pattern matching algorithmcalled BDM, which is optimal on average (O(n log� m=m) time). To search fora pattern P in a text T , the su�x automaton of P r = PmPm�1 : : :P1 (i.e thepattern read backwards) is built. A window of length m is slid along the text,

from left to right. The algorithm scans the window backwards, using the su�xautomaton to recognize a factor of P . During this scan, if a �nal state is reachedthat does not correspond to the entire pattern P , the window position is recordedin a variable last. This corresponds to �nding a pre�x of the pattern starting atposition last inside the window and ending at the end of the window, becausethe su�xes of P r are the reverse pre�xes of P . This backward search ends intwo possible forms:1. We fail to recognize a factor, that is, we reach a letter a that does notcorrespond to a transition in the su�x automaton (Fig. 4). In this case weshift the window to the right so as to align its starting position to the positionlast.
�������
�������
�������
�������

�������
�������
�������
�������

��������������

Text

Pattern

Safe shift

a

Factor search

lastFig. 4. BDM search scheme.2. We reach the beginning of the window, and hence recognize P and report theoccurrence. Then, we shift the window exactly as in case 1 (to the previouslast value).In BNDM [14] this scheme is combined with bit-parallelism so as to replacethe construction of the deterministic su�x automaton by the bit-parallel simula-tion of a nondeterministic one. The scheme turns out to be
exible and powerful,and permits other types of search, in particular approximate search. The result-ing algorithm is ABNDM.We modify the NFA of Fig. 2 so that it recognizes not only the whole patternbut also any su�x thereof, allowing up to k di�erences. Fig. 5 illustrates themodi�ed NFA. Note that we have removed the initial self-loop, so it does notsearch for the pattern but recognizes strings at edit distance k or less from thepattern. Moreover, we have built it on the reverse pattern. We have also addedan initial state \I", with �-transitions leaving it. These allow the automaton torecognize, with up to k di�erences, any su�x of the pattern.In the case of approximate searching, the length of a pattern occurrenceranges from m � k to m + k. To avoid missing any occurrence, we move awindow of length m� k on the text, and scan backwards the window using theNFA described above.Each time we move the window to a new position we start the automatonwith all its states active, which represents setting the initial state to active and

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

I

ε ε ε ε ε εε

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Fig. 5. An NFA to recognize su�xes of the pattern "survey" reversed.letting the �-transitions
ush this activation to all the automaton (the statesin the lower-left triangle are also activated to allow initial insertions). Then westart reading the window characters backward.We recognize a pre�x and update last whenever the �nal NFA state is acti-vated. We stop the backward scan when the NFA is out of active states.If the automaton recognizes a pattern pre�x at the initial window position,then it is possible (but not necessary) that the window starts an occurrence. Thereason is that strings of di�erent length match the pattern with k di�erences,and all we know is that we have matched a pre�x of the pattern of length m�k.Therefore, in this case we need to verifywhether there is a pattern occurrencestarting exactly at the beginning of the window. For this sake, we run the tradi-tional automaton that computes edit distance (i.e., that of Fig. 2 without initialself-loop) from the initial window position in the text. After reading at mostm+ k characters we have either found a match starting at the window position(that is, the �nal state becomes active) or determined that no match starts atthe window beginning (that is, the automaton runs out of active states).So we need two di�erent automata in this algorithm. A �rst one makes thebackward scanning, recognizing su�xes of P r. A second one makes the forwardscanning, recognizing P .The automata can be simulated in a number of ways. In [14] they chooseBPA [21] because it is easy to adapt to the new scenario. To recognize all thesu�xes we just need to initialize Ri 1m. To make it compute edit distance,we remove the self-loop as explained in Sec. 2.6. The �nal state is active whenRk & 10m�1 6= 0m. The NFA is out of active states whenever Rk = 0m. Otherapproaches were discarded: an alternative NFA simulation [3] is not practical tocompute edit distance, and BPM [10] cannot easily tell when the correspondingautomaton is out of active states, or which is the same, when all the cells of thecurrent dynamic programming column are larger than k.

Fig. 6 shows the algorithm.ABNDM (P1:::m; T1:::n; k)1. Preprocessing2. Build forward and backward NFA simulations (fNFA and bNFA)3. Searching4. j 05. While pos � n� (m� k) Do6. j m� k, last m� k7. Initialize bNFA8. While j 6= 0 and bNFA has active states Do9. Feed bNFA with Tpos+j10. j j � 111. If bNFA's �nal state is active Then /* pre�x recognized */12. If j > 0 Then last j13. Else check with fNFA a possible occurrence starting at pos+ 114. pos pos+ lastFig. 6. The generic ABNDM algorithm.The algorithm is shown to be good for moderate m, low k and small �, whichis an interesting case, for example, in DNA searching. However, the use of BPAfor the NFA simulation limits its usefulness to very small k values. Our purposein this paper is to show that BPM can be extended for this task, so as to obtaina faster version of ABNDM that works with larger k.Average Case Analysis of ABNDM. We show that ABNDM inspects on averageO(kn log�(m)=m) text positions. This is better than what was previously ob-tained [11]. Using previous results [11], we have that the total number of stringsthat match a su�x of a pattern of length m with k errors is at least �mk �(��1)k(assuming only replacements and matching only the whole pattern) and at mostm�mk�2�k (counting every su�x as if it had length m and assuming all the stringsdi�erent). If we inserted those strings in a trie, the resulting height would belogarithmic (base �) in the number of strings inserted. This means a height of�(k + m log�m � k log� k � (m � k) log�(m � k)), which can be factorized as��k +m log� mm�k + k log� m�km �. We havem log� mm�k = m log� �1 + km�k� �mm�kk � 2k. The latter is because we are interested in the case k < m=2, as oth-erwise the algorithm cannot be sublinear time: the window is of length m � kand we read at least k+1 characters before the NFA can run out of active states.Hence we have that the height is �(k + k log�(m=k)). This is �(k log�m), forexample consider the case k = m�.Traversing the window backwards until the NFA runs out of active statesis equivalent to entering the above trie with the reverse window. On average,we reach the end of the trie in �(k log�m) steps. Then we shift the window

forward in m��(k log�m) positions. Overall, we inspect O(kn log�(m)=m) textpositions, for � < 1=2. If we use BPA, the complexity is O(k2n log�(m)=w). Ifwe manage to use BPM, this goes down to O(kn log�(m)=w).3 Forward Scanning with the BPM SimulationWe �rst focus on how to adapt the BPM algorithm to perform the forwardscanning required by the ABNDM algorithm. Two modi�cations are necessary.The �rst is to make the algorithm compute edit distance instead of performingtext searching. The second is making it able to determine when it is not possibleto obtain edit distance � k by reading more characters.3.1 Computing Edit DistanceWe recall that BPM implements the dynamic programming algorithm of Sec. 2.3in such a way that di�erential values, rather than absolute ones, are stored.Therefore, we must consider which is the change required in the dynamic pro-gramming matrix in order to compute edit distance. As explained in Sec. 2.3,the only change is that M0;j = j. In di�erential terms (Sec. 2.7), this means�h0;j = 1 instead of zero, or which is the same, that the lowest bit of HP shouldalways be 1.However, since this bit is always zero in the original BPM algorithm, it is notrepresented. The only place where the assumption �h0;j = 0 makes a di�erenceis on line 12 of the algorithm (Fig. 3). On this line, HP is shifted to the left,and the assumed bit zero enters automatically from the right. Hence we changeline 12 of the algorithm to X (HP << 1) j 0m�11.Since we will use this technique several times from now on, we give in Fig. 7the code for a single step of edit distance computation.BPMStep (Bc)1. X Bc j V N2. D0 ((V P + (X & V P)) ^ V P) j X3. HN V P & D04. HP V N j � (V P j D0)5. X (HP << 1) j 0m�116. V N X & D07. V P (HN << 1) j � (X j D0)Fig. 7. Single step of the adaptation of BPM to compute edit distance. It receives thebit mask B of the current text character and shares all the other variables with thecalling process.

3.2 Preempting the ComputationAlbeit in the forward scan we could always run the automaton through m + ktext characters, stopping only if diff � k to signal a match, it is also possibleto determine that diff will always be larger than k in the characters to come.This happens when all the cells of the vector Ci are larger than k, because thereis no way in the recurrence to introduce a value smaller than the current ones.In the automaton view, this is the same as the NFA running out of active states(since an active state at column i and row r would mean Ci = r � k).This is more di�cult in the dynamic programming matrix simulation of BPM.The only column value that is explicitly stored is diff = Cm. The others areimplicitly represented as Ci = Pr=1:::i V Pr � V Nr . It is not easy to checkwhether 8i; Ci > k using this incremental representation.Our solution is inspired in the cuto� algorithm of Sec. 2.4. This algorithmpermits knowing all the time the largest ` such that C` � k, at constant amor-tized time per text position. Although designed for text searching, the techniquecan be applied without any change to the edit distance computation algorithm.Clearly 9i; Ci � k , ` � 0.So we have to �gure out how to compute ` using BPM. Initially, since Ci = i,we set ` k. Later, we have to update ` for each new text character read.Recall that, given that neighboring cells in M di�er by at most one, and thatby de�nition M`+1;j�1 > k, we have that M`;j�1 = k.Since ` can increase at most by one at the new text position, we start bye�ectively increasing it. This increment is correct when M`+1;j � k before doingthe increment. Since M`+1;j �M`;j�1 = �d`+1;j 2 f0; 1g, we have that it wascorrect to increase ` if and only if D0`;j after the increment. If it was not correctto increase `, we later decrease it as much as necessary to obtain M`;j � k. Sincewe know that now M`;j = k+ 1, we obtain M`�1;j = M`;j � V P`;j + V N`;j , andso on with ` � 2, ` � 3, etc. If we reach ` = 0 and still M`;j > k, then all therows are larger than k and we stop the scanning process.The above arguments assume ` < m. Note that, as soon as ` = m, we havethat Cm � k and therefore the forward scan will then terminate because we havefound an occurrence.Fig. 8 shows the forward scanning algorithm. It scans from text positionj and determines whether there is an occurrence starting at j. Instead of P ,the routine receives the mask B already computed (see Fig. 3). Note that fore�ciency ` is maintained in unary.4 Backward Scanning with the BPM SimulationThe backward scan has the particularity that all the NFA states start active.This is equivalent to initializing C as Ci = 0 for all i. The place where thisinitialization is expressed in BPM is on line 4 of Fig. 3. Since V P = 1m, we haveCi = i. We change it to V P 0m and obtain the desired e�ect. Also, like inforward scanning, M0;j = j, so we apply the same change to line 12 that setsthe 0-th bit in HP .

BPMFwd (B; Tj:::n; k)1. V P 1m, V N 0m2. ` 0m�k10k�13. While j � n Do4. BPMStep (B[Tj])5. ` ` << 16. If D0 & ` = 0m Then7. val k + 18. While val > k Do9. If ` = 0m�11 Then Return false10. If V P & ` 6= 0m Then val val � 111. If V N & ` 6= 0m Then val val + 112. ` ` >> 113. Else If ` = 10m�1 Then Return true14. j j + 115. Return falseFig. 8. Adaptation of BPM to perform a forward scan from text position j and returnwhether there is an occurrence starting at j.With these tools at hand, we could simply apply the forward scan algorithmwith B built on P r and reading the window backwards. We could use ` todetermine when the NFA is out of active states. Every time ` = m we know thatwe have recognized a pre�x and hence update last. There are a few changes,though: (i) we start with ` = m because Mi;0 = 0; and (ii) we have to deal withthe case ` = m when updating `, because now we do not stop the backwardscanning in that case but just update last.The latter problem is solved as follows. As soon as ` = m we stop tracking` and initialize diff k as the known value for Cm. We keep updating diffusing HP and HN just as in Fig. 3, until diff > k. At this moment we switchto updating ` again, moving it upwards as necessary.The above scheme works correctly but it is terribly slow. The reason is that `starts atm and it has to reach zero before we can leave the window. This requiresm shifting operations ` ` >> 1, which is a lot considering that on averageone traverses O(k log�m) characters in the window. The O(k + n) complexitygiven in Sec. 2.4 becomes here O(m + k log�m). So, the problem is that all thecolumn values reach a value larger than k quite soon, but we take too much timetraversing all them to determine that this has happened.We present two solutions to determine fast that all the Ci values have sur-passed k.4.1 Bit-Parallel CountersIn the original BPM algorithm the integer value diff = Cm is explicitly main-tained in order to determine which text positions match. The way is to use the

m-th bit of HP and HN to keep track of Cm. This part of the algorithm is notbit-parallel, so in principle one cannot do the same with all the Ci values andstill hope to update all of them in a single operation.However, it is possible to store several such counters in the same computerword MC and use them as upper bound to the others. Since the Ci values startat zero and the window is of length m � k, we need in principle dlog2(m � k)ebits to store any Ci value (their value after reading the last window character isnot important). Hence we have space for O(m= logm) counters in MC.To determine the minimum number Q of bits needed for each counter wemust look a bit ahead in our algorithm. We will need to determine that all thecounters have exceeded k0 = k+bQ=2c. For this sake, we initialize the counters ata value b that makes sure that their last bit will be activated when they surpassthis threshold. So we need that (i) b+k0+1 = 2Q�1. On the other hand, we haveto ensure that the Q-th bit is always set for any counter value up to the (m�k)-th step in the backward scan, and that Q bits are still enough to represent thecounter. So we need that (ii) b + m � k < 2Q. Finally, we need (iii) b � 0. Byreplacing (i) in (ii) we get (i') b = 2Q�1� k0� 1 and (ii') m� k� k0 � 2Q�1. By(iii) and (i') we get (iii') k0 + 1 � 2Q�1. Hence the solution to the new systemof inequalities is Q = 1+ dlog2(max(m� k� k0; k0+ 1))e,and b = 2Q�1� k0� 1.The problem with the above solution is that k0 = k+ bQ=2c, so the solutionis indeed a recurrence for Q. Fortunately, it is easy to solve. Since (X + Y)=2 �max(X;Y) � X + Y for any nonnegative X and Y , if we call X = m � k � k0and Y = k0+1, we have that X +Y = m� k+1. So Q � 1+ dlog2(m� k+1)e,and Q � 1 + dlog2((m � k + 1)=2)e = dlog2(m � k + 1)e. This gives a 2-integerrange for the actual Q value. If Q = dlog2(m� k+ 1)e does not satisfy (ii') and(iii'), we use Q + 1. This scheme works correctly as long as X;Y � 0, that is,bQ=2c � m � 2k, or m � k � k0. As it becomes clear later, we cannot use thismethod if this does not hold, because the algorithm will have to verify everytext window.We decide to store t = dm=Qe counters, forCm; Cm�Q; Cm�2Q; : : : ; Cm�(t�1)Q.The counter for Cm�rQ uses the bits of the region m � rQ : : :m � rQ+ Q� 1,both inclusive. This means that we need m + Q� 1 bits for MC1.The counters can be used as follows. Since every cell is at distance at mostbQ=2c to some represented counter and the di�erence between consecutive cellsis at most 1, it is enough that all the counters are � k0 + 1 = k + bQ=2c+ 1, tobe sure that all the cells of C exceed k.So the idea is to traverse the window until all the counters exceed k0 and thenshift the window. We will examine a few more cells than if we had controlledexactly all the C values: The backward scan will behave as if we permittedk0 = k + bQ=2c di�erences, so the number of characters inspected is �(n(k +logm) log�m=m). Note that we have only m=Q su�xes to test but this doesnot a�ect the complexity. Note also that the amount of shifting is not a�ectedbecause we have Cm correctly represented.1 If sticking to m bits is necessary we can store Cm separately in the diff variable, atthe same complexity but more cost in practice.

We have to face two problems. The �rst one is how to update all the countersin a single operation. This is not hard because counter Cm�rQ can be updatedfrom its old to its new value by considering the (m � rQ)-th bits of HP andHN . That is, we de�ne a mask sMask = (0Q�11)t0m+Q�1�tQ and update MCusing MC MC + (HP & sMask) � (HN & sMask).The second problem is how to determine that all the counters have exceededk0. For this sake we have de�ned b and Q so that the Q-th bits of the countersget activated when they exceed k0. If we de�ne eMask = (10Q�1)t0m+Q�1�tQ,then we can stop the scanning whenever MC & eMask = eMask.Finally, note that our assumption that every cell in C is at distance at mostbQ=2c to a represented cell may not be true for the �rst bQ=2c cells. However, weknow that, at the j-th iteration, C0 = j, so we may assume there is an implicitcounter at row zero. Moreover, since this counter is always incremented, it islarger than any other counter, so it will surely surpass k0 when other countersdo. The initial bQ=2c cells are close enough to this implicit counter.Fig. 9 shows the pseudocode of the algorithm. All the bit masks are of lengthm, except sMask, eMask and MC, which are of length m+ Q� 1.In case our upper bound turns out to be too loose, we can use several inter-leaved sets of counters, each set in its own bit-parallel counter. For example wecould use two interleaved MC counters and hence the limit would be Q=4. Ingeneral we could use c counters and have a limit of the formQ=2c. The cost wouldbe O(nc(k+ log(m)=2c) log�m=m), which is optimized for c = log2(log�(m)=k),where the complexity is O(nk log�m log log�m=m) for k = o(log� m) and thenormal O(nk log�m=m) otherwise.4.2 Bit-Parallel Cuto�The previous technique, although simple, has the problem that it changes thecomplexity of the search and inspects more cells than necessary. We can insteadproduce, using a similar approach, an algorithm with the same complexity asthe basic version. This time the idea is to mix the bit-parallel counters with abit-parallel version of the cuto� algorithm (Sec. 2.4).Consider regions m�rQ�Q+1 : : :m�rQ of length Q. Instead of having thecounters �xed at the end of each region (as in the previous section), we let thecounters \
oat" inside their region. The distance between consecutive countersis still Q, so they all
oat together and all are at the same distance � to the endof their regions. We use sMask and eMask with the same meanigs as before,but they are displaced so as to be all the time aligned to the counters.The invariant is that the counters will be as close as possible to the end oftheir regions, as long as all the cells past the counters exceed k. That is,� = minfd 2 0 : : :Q; 8r 2 f0 : : : t� 1g;
 2 f0 : : :d� 1g; Cm�rQ�
 > kgwhere we assume that C yields values larger than k when accessed at negativeindexes. When � reaches Q, this means that all the cell values are larger thank and we can suspend the scanning. Pre�x reporting is easy since no pre�x can

ABNDMCounters (P1:::m; T1:::n; k)1. Preprocessing2. For c 2 � Do Bf [c] 0m ; Bb[c] 03. For i 2 1 : : :m Do4. Bf [Pi] Bf [Pi] j 0m�i10i�15. Bb[Pi] Bb[Pi] j 0i�110m�i6. Q dlog2(m� k+ 1)e7. If 2Q�1 < max(m� 2k � bQ=2c; k + 1 + bQ=2c) Then Q Q+ 18. b 2Q�1 � k� bQ=2c � 19. t dm=Qe10. sMask (0Q�11)t0m+Q�1�tQ11. eMask (10Q�1)t0m+Q�1�tQ12. Searching13. j 014. While pos � n� (m� k) Do15. j m� k, last m� k16. V P 0m, V N 0m17. MC [b]tQ0m+Q�1�tQ18. While j 6= 0 and MC & eMask 6= eMask Do19. BPMStep (Bb[Tpos+j])20. MC MC + (HP & sMask)� (HN & sMask)21. j j � 122. If MC & 10m+Q�2 6= 0m+Q�1 Then /* pre�x recognized */23. If j > 0 Then last j24. Else If BPMFwd (Bf; Tpos+1:::n) Then25. Report an occurrence at pos+ 126. pos pos+ lastFig. 9. The ABNDM algorithm using bit-parallel counters. The expression [b]Q de-notes the number b seen as a bit mask of length Q. Note that BPMFwd can share itsvariables with the calling code because these are not needed any more at that point.match unless � = 0, as otherwise Cm = Cm�0�Q > k, and if � = 0 then the last
oating counter has exactly the value Cm.The
oating counters are a bit-parallel version of the cuto� technique, whereeach counter cares of its region. Consequently the way of moving the countersup and down resembles the cuto� technique. We �rst move down and use D0to determine if we should have moved down. If not, we move up as necessaryusing V P and V N . To determine if we should have moved down, we need toknow whether there is a counter that exceeds k. We compute Q as in Section 4.1,except that k = k0 and hence no recurrence arises. We use eMask and, in orderto increment and decrement the counters, sMask. We have to deal with the casewhere the counters are at the end of their region and hence cannot move downfurther. In this case we update them using HP and HN .It is possible that the upmost counter goes out of bounds while shiftingthe counters, which in e�ect results in that counter being removed. For this to

happen, however, all the area in C covered by the upmost counter must havevalues larger than k, and it is not possible that a cell in this area gets a value� k later. So this counter can be safely removed from the set, and hence weremove it from eMask as soon as it gets out of bounds for the �rst time. Notethat ignoring this fact leads to inspecting slightly more characters (an almostnegligible amount) but one instruction is saved, which in practice is convenient.As for the case of a single counter, we work O(1) amortized time per textposition. More speci�cally, if we read u window characters then we workO(u+Q)because we have to move from � = 0 to � = Q. But O(u + Q) = O(k log�m)on average because Q = O(logm), and therefore the classical complexity is notaltered.We also tried a practical version of using cuto�, in which the counters are notshifted. Instead they are updated in a similar fashion to the algorithm of Fig. 9,and when all counters have a value > k, we try to shift a copy of them up untileither a cell with value � k is found or Q� 1 consecutive shifts are made. In thelatter case we can stop the search, since then we have covered checking the wholecolumn C. This version has a worse complexity, O(Qk logm) = O(k log2m), asat each processed character it is possible to make O(Q) shifts. But in practice itturned out to be very similar to the present cuto� algorithm.Fig. 10 shows the algorithm. The counters are not physically shifted, we use� instead.5 Experimental ResultsWe compared our BPM-based ABNDM against the original BPA-based AB-NDM, as well as those other algorithms that, according to a recent survey [11],are the best for moderate pattern lengths. We tested with random patterns andtext over uniformly distributed alphabets. Each individual test run consisted ofsearching for 100 patterns a text of size 10 Mb. We measured total elapsed times.The computer used in the tests was a 64-bit Alphaserver ES45 with four 1Ghz Alpha EV68 processors, 4 GB of RAM and Tru64 UNIX 5.1A operatingsystem. All test programs were compiled with the DEC CC C-compiler and fulloptimization. There were no other active signi�cant processes running on thecomputer during the tests. All algorithms were set to use a 64 KB text bu�er.The tested algorithms were:ABNDM/BPA(regular): ABNDM implemented on BPA [21], using a genericimplementation for any k.ABNDM/BPA(special code): Same as before but especially coded for eachvalue of k to avoid using an array of bit masks.ABNDM/BPM(count): ABDNM implemented using BPM and counters (Sec. 4.1).The implementation di�ered slightly from Fig. 9 due to optimizations.ABNDM/BPM(cuto�): ABDNM implemented using BPM and cuto� (Sec 4.2).The implementation di�ered slightly from Fig. 10 due to optimizations.ABNDM/BPM(static): The version of ABNDM/cuto� that does not ac-tively shift the counters.

BPM: The sequential BPM algorithm [10]. The implementation was from usand used the slightly di�erent (but practically equivalent in terms of perfor-mance) formulation from [8].BPP: A combined heuristic using pattern partitioning, superimposition andhierarchical veri�cation, together with a diagonally bit-parallelized NFA [3,13]. The implementation was from the original authors.EXP: Partitioning the pattern into k + 1 pieces and using hierachical veri�ca-tion with a diagonally bit-parallelized NFA in the checking phase [12]. Theimplementation was from the original authors.Fig. 11 shows the test results for � = 4, 13 and 52 and m = 30 and 55. Thisis only a small part of our complete tests, which included � = 4; 13; 20; 26 and52, and m = 10; 15; 20; : : :; 55. We chose � = 4 because it behaves like DNA,� = 13 because it behaves like English, and � = 52 to show that our algorithmsare useful even on large alphabets.First of all it can be seen that ABNDM/BPM(cuto�) is always faster thanABNDM/BPM(counters) by a nonnegligible margin.It can be seen that our ABNDM/BPM versions are often faster than AB-NDM/BPA(special code) when k = 4, and always when k > 4. Compared toABNDM/BPA(regular), our version is always faster for k > 1. We note thatwriting down a di�erent procedure for every possible k value, as done for AB-NDM/BPA(special code), is hardly a real alternative in practice.With moderate pattern length m = 30, our ABNDM/BPM versions arecompetitive for low error levels. However, BPP is better for small alphabetsand EXP is better for large alphabets. In the intermediate area � = 13, we arethe best for k = 4 : : :6. This area is rather interesting when searching naturallanguage text.When m = 55, our ABNDM/BPM versions become much more competitive,being the fastest in many cases: For k = 5 : : :9 with � = 4, and for k = 4 : : :11both with � = 13 and � = 52, with the single exception of the case � = 52 andk = 9, where EXP is faster (this seems to be a variance problem, however).6 ConclusionsThe most successful approaches to approximate string matching are bit-parallelismand �ltering. A promising algorithm combining both is ABNDM [14]. However,ABNDM uses a slow O(kmn=w) time bit-parallel algorithm (BPA [21]) for itsinternal working because no other alternative exists with the necessary
exibil-ity. In this paper we have shown how to extend BPM [10] to replace BPA. SinceBPM is O(mn=w) time, we obtain a much faster version of ABNDM.For this sake, BPM was extended to permit backward scanning of the win-dow and forward veri�cation. The extensions involved making it compute editdistance, making it able to recognize any su�x of the pattern with k di�er-ences, and, the most complicated, being able to tell in advance that a matchcannot occur ahead, both for backward and forward scanning. We presented two

alternatives for the backward scanning: a simple one that may read more char-acters than necessary, and a more complicated (and more costly per processedcharacter) that reads exactly the required characters.The experimental results show that our new algorithm beats the old AB-NDM, even when BPA is especially coded with a di�erent procedure for everypossible k value, often for k = 4 and always for k > 4, and that it beats ageneral BPA implementation for k � 2. Moreover it was seen that our versionof ABNDM becomes the fastest algorithm for many cases with moderately longpattern and fairly low error level, provided the counters �t in a single computerword. This includes several interesting cases in searching DNA, natural languagetext, protein sequences, etc.References1. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World ComputerCongress, volume I, pages 465{476. Elsevier Science, 1992.2. R. Baeza-Yates. A uni�ed view of string matching algorithms. In Proc. Theoryand Practice of Informatics (SOFSEM'96), LNCS 1175, pages 1{15, 1996.3. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,23(2):127{158, 1999.4. W. Chang and J. Lampe. Theoretical and empirical comparisons of approxi-mate string matching algorithms. In Proc. 3rd Combinatorial Pattern Matching(CPM'92), LNCS 644, pages 172{181, 1992.5. W. Chang and T. Marr. Approximate string matching and local similarity. InProc. 5th Combinatorial Pattern Matching (CPM'94), LNCS 807, pages 259{273,1994.6. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,UK, 1994.7. Z. Galil and K. Park. An improved algorithm for approximate string matching.SIAM Journal on Computing, 19(6):989{999, 1990.8. H. Hyyr�o. Explaining and extending the bit-parallel algorithm of Myers. TechnicalReport A-2001-10, University of Tampere, Finland, 2001.9. G. Landau and U. Vishkin. Fast parallel and serial approximate string matching.Journal of Algorithms, 10:157{169, 1989.10. G. Myers. A fast bit-vector algorithm for approximate string matching based ondynamic progamming. Journal of the ACM, 46(3):395{415, 1999.11. G. Navarro. A guided tour to approximate string matching. ACM ComputingSurveys, 33(1):31{88, 2001.12. G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching.Information Processing Letters, 72:65{70, 1999.13. G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate stringmatching. Algorithmica, 30(4):473{502, 2001.14. G. Navarro and M. Ra�not. Fast and
exible string matching by combiningbit-parallelism and su�x automata. ACM Journal of Experimental Algorithmics(JEA), 5(4), 2000.15. G. Navarro and M. Ra�not. Flexible Pattern Matching in Strings { Practicalon-line search algorithms for texts and biological sequences. Cambridge UniversityPress, 2002. To appear.

16. P. Sellers. The theory and computation of evolutionary distances: pattern recog-nition. Journal of Algorithms, 1:359{373, 1980.17. E. Sutinen and J. Tarhio. On using q-gram locations in approximate string match-ing. In Proc. European Symposium on Algorithms (ESA'95), LNCS 979, pages327{340, 1995.18. J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAMJournal on Computing, 22(2):243{260, 1993.19. E. Ukkonen. Algorithms for approximate string matching. Information and Con-trol, 64:100{118, 1985.20. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,6:132{137, 1985.21. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, 1992.22. S. Wu, U. Manber, and G. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.

ABNDMCuto� (P1:::m; T1:::n; k)1. Preprocessing2. For c 2 � Do Bf [c] 0m ; Bb[c] 03. For i 2 1 : : :m Do4. Bf [Pi] Bf [Pi] j 0m�i10i�15. Bb[Pi] Bb[Pi] j 0i�110m�i6. Q 1 + dlog2(max(m� 2k; k+ 1))e7. b 2Q�1 � k � 18. t dm=Qe9. sMask (0Q�11)t0m+Q�1�tQ10. eMask (10Q�1)t0m+Q�1�tQ11. Searching12. j 013. While pos � n� (m� k) Do14. j m� k, last m� k15. V P 0m, V N 0m16. MC [b]tQ0m+Q�1�tQ17. � 018. While j 6= 0 and � < Q Do19. BPMStep (Bb[Tpos+j])20. If � = 0 Then MC MC + ((HP & sMask)� (HN & sMask)21. Else22. � � � 123. MC MC + (� (D0 << �) & sMask)24. While � < Q and MC & eMask = eMask Do25. MC MC � ((V P << �) & sMask) + ((V N << �) & sMask)26. � � + 127. If � =m� (t� 1)Q Then eMask eMask & 1(t�1)Q0m+2Q�1�tQ28. j j � 129. If � = 0 and MC & 10m+Q�2 6= 0m+Q�1 Then /* pre�x recognized */30. If j > 0 Then last j31. Else If BPMFwd (Bf; Tpos+1:::n) Then32. Report an occurrence at pos+ 133. pos pos+ lastFig. 10. The ABNDM algorithm using bit-parallel cuto�. The same comments ofFig. 9 apply.

5

10

15

20

25

30

1 2 3 4 5 6

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

2 4 6 8 10 12

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

2 4 6 8 10 12 14 16

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)Fig. 11. Comparison between algorithms, showing total elapsed time as a function ofthe number of di�erences permitted, k. From top to bottom row we show � = 4, 13and 52. On the left we show m = 30 and on the right m = 55.

