
Approximate Mathing of Run-LengthCompressed StringsVeli Mäkinen1?, Gonzalo Navarro2??, and Esko Ukkonen1?1 Department of Computer Siene, P.O Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finland.{vmakinen,ukkonen}�s.helsinki.fi2 Department of Computer Siene, University of Chile, Blano Enalada 2120,Santiago, Chile. gnavarro�d.uhile.lAbstrat. We fous on the problem of approximate mathing of stringsthat have been ompressed using run-length enoding. Previous studieshave onentrated on the problem of omputing the longest ommonsubsequene (LCS) between two strings of length m and n, ompressedto m0 and n0 runs. We extend an existing algorithm for the LCS to theLevenshtein distane ahieving O(m0n+n0m) omplexity. This approahgives also an algorithm for approximate searhing of a pattern ofm letters(m0 runs) in a text of n letters (n0 runs) in O(mm0n0) time, both for LCSand Levenshtein models. Then we propose improvements for a greedyalgorithm for the LCS, and onjeture that the improved algorithm hasO(m0n0) expeted ase omplexity. Experimental results are provided tosupport the onjeture.1 IntrodutionThe problem of ompressed pattern mathing is, given a ompressed text T anda (possibly ompressed) pattern P , �nd all ourrenes of P in T without de-ompressing T (and P). The goal is to searh faster than by using the basisheme: deompression followed by a searh.In the basi approah, we are interested in reporting only the exat our-renes, i.e. the loations of the substrings of T that math exatly pattern P .We an loosen the requirement of exat ourrenes to approximate ourrenesby introduing a distane funtion to measure the similarity between P and asubstring of T . Now, we want to �nd all the approximate ourrenes of P inT , where the distane between P and a substring of T is at most a given errorthreshold k. Often a suitable distane measure between two strings is the editdistane, where the minimum amount of harater insertions, deletions, and re-plaements, that are needed to make the two strings equal, is alulated. Forthis distane we are interested in k < jP j errors.Many studies have been made around the subjet of ompressed patternmathing over di�erent ompression formats, starting with the work of Amir and? Supported by the Aademy of Finland under grant 22584.?? Supported in part by Fondeyt grant 1-990627.

Benson [1℄, e.g. [2, 8, 10, 9℄. The only works addressing the approximate variantof the problem have been [11, 13, 15℄, on Ziv-Lempel [20℄.Our fous is approximate mathing over run-length enoded strings. In run-length enoding a string that onsists of repetitions of letters is ompressedby enoding eah repetition as a pair ("letter","length of the repetition"). Forexample, string aaabbbbaab is enoded as a sequene (a; 3)(b; 4)(; 2)(a; 2)(b; 1).This tehnique is widely used espeially in image ompression, where repetitionsof pixel values are ommon. This is partiularly interesting for fax transmissionsand bilevel images. Approximate mathing on images an be a useful tool todetet distortions. Even a one-dimensional ompressed approximate mathingalgorithm would be useful to speed up existing two-dimensional approximatemathing algorithms, e.g. [5℄.Exat pattern mathing over run-length enoded text an be done optimallyin O(m0+n0) time, where m0 and n0 are the ompressed sizes of the pattern andthe text [1℄. Approximate pattern mathing over run-length enoded text hasnot been onsidered before this study, but there has been work on the distanealulation, namely, given two strings of length m and n that are run-lengthompressed to lengths m0 and n0, alulate their distane using the ompressedrepresentations of the strings. This problem was �rst posed by Bunke and Csirik[6℄. They onsidered the version of edit distane without the replaement oper-ation, that is related to the problem of alulating the longest ommon subse-quene (LCS) of two strings. They gave an O(m0n0) time algorithm for a speialase of the problem, where all run-lengths are of equal size. Later, they gavean O(m0n + n0m) time algorithm for the general ase [7℄. A major improve-ment over the previous results was due to Apostolio, Landau, and Skiena [3℄;they �rst gave a basi O(m0n0(m0 + n0)) algorithm, and further improved it toO(m0n0 log(m0n0)). Mithell [14℄ gave an algorithm with the same time om-lexity in the worst ase, but faster with some inputs; its time omplexity isO((p+m0 + n0) log(p+m0 + n0)), where p is the amount of pairs of ompressedharaters that math (p equals to the amount of equal letter boxes, see thede�nition in Set. 2.2). All these algorithms were limited to the LCS distane,although, Mithell's method [14℄ ould be applied when di�erent osts are as-signed to the insertion and deletion operations. It still remain an open question(as posed by Bunke and Csirik) whether similar improvements ould be foundfor a more general set of edit operations and their osts.We give an algorithm for mathing run-length enoded strings under Leven-shtein distane [12℄. In the Levenshtein distane a unit ost is assigned to eahof the three edit operations. The algorithm is an extension of the O(m0n+n0m)algorithm of Bunke and Csirik [7℄; we keep the same ost but generalize thealgorithm to handle a more omplex distane model. Independently from ourwork, Arbell, Landau, and Mithell have found a similar algorithm [4℄.We modify our algorithm to work in a ontext of approximate pattern math-ing, and ahieve O(mm0n0) time for searhing a pattern of length m that is run-length ompressed to length m0, in a run-length ompressed text of length n0.This algorithm works for both Levenshtein and LCS distane models.

We also study the LCS alulation. First, we give a greedy algorithm forthe LCS that works in O(m0n0(m0 + n0)) time. Adapting the well known di-agonal method [17℄, we are able to improve the greedy method to work inO(d2min(n0;m0)) time, where d is the edit distane between the two strings(under insertions and deletions with the unit ost model).Then we present improvements for the greedy method for the LCS, that donot however a�et the worst ase, but do have e�et on the average ase. We endup onjeturing that our improved algorithm is O(m0n0) time on average. As weare unable to prove it, we provide instead experimental evidene to support theonjeture.2 Edit Distane on Run-Length Compressed Strings2.1 Edit DistaneLet � be a �nite set of symbols, alled an alphabet. A string A of length jAj = mis a sequene of symbols in�, denoted byA = A1:::m = a1a2 : : : am, where ai 2 �for every i. If jAj = 0, then A = � is an empty string. A subsequene of A is anysequene ai1ai2 : : : aik , where 1 � i1 < i2 � � � < ik � m.The edit distane an be used to measure the similarity between two stringsA = a1a2 : : : am and B = b1b2 : : : bn by alulating the minimum ost of editoperations that are needed to onvert A into B [12, 19, 16℄. The usual edit op-erations are substitution (onvert ai into bj , denoted by ai ! bj), insertion(� ! bj), and deletion (ai ! �). Di�erent osts for edit operations an begiven. For Levenshtein distane (denoted by DL(A;B)) [12℄, we assign ostsw(a! a) = 0, w(a! b) = 1, w(a! �) = 1, and w(�! a) = 1, for all a; b 2 �,a 6= b. If substitutions are forbidden, i.e. w(a ! b) = 1, we get the distaneDID(A;B).Distane DL(A;B) an be alulated by using dynami programming [16℄;evaluate an (m + 1) � (n + 1) matrix (dij), 0 � i � m, 0 � j � n, using thereurrene di;0 = i; 0 � i � m;d0;j = j; 0 � j � n; (1)di;j = min(if ai = bj then di�1;j�1 else di�1;j�1 + 1;di�1;j + 1; di;j�1 + 1); otherwise.The matrix (dij) an be evaluated row-by-row or olumn-by-olumn inO(mn) time, and the value dmn equals DL(A;B).A similar method an be used to alulate the distane DID(A;B). Now, thereurrene is di;0 = i; 0 � i � m;d0;j = j; 0 � j � n; (2)di;j = min(if ai = bj then di�1;j�1 else1;di�1;j + 1; di;j�1 + 1); otherwise.

The problem of alulating the longest ommon subsequene of strings A andB (denoted by LCS(A;B)), is related to the distane DID(A;B). It is easy tosee that 2 � jLCS(A;B)j = m+ n�DID(A;B).2.2 Dividing the Edit Distane Matrix into BoxesA run-length enoding of the string A = a1a2 : : : am isA0 = (a1; p1)(ap1+1; p2)(ap1+p2+1; p3) : : : (am�pm0+1; pm0) =(ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0), where (aik ; pk) denotes a sequene�k = aikaik : : : aik = apkik of length j�kj = pk. We also all (aik ; pk) a runof aik . String A is optimally run-length enoded if aik 6= aik+1 for all 1 � k < m0.In the next setions, we will show how to speed up the evaluation of valuesdmn for both distanes DL(A;B) and DID(A;B) when both the strings A andB are run-length enoded. In both methods, we use the following notation todivide the matrix (dij) into submatries (see Fig. 1).
d

d

d

...

...

...

...21

33

3222

11

12

13 23

31

kld

d

d

d

d

d

d dkldkl

dkl

dkldkldkl

dkl

dkl

rl
pk rl

pk

dkl

dkl

dkl

dkl

dkl

dkl

pk

pk

pk

rl

rl

a b b b b b b caaa b b

a
b
b
b
b
b

a
a
a
a
a
b
b

a

a
a

DP matrix

overlapping borders of boxes

c c c c

equal letter box

different letter boxcorners

one particular "box"

00 10 20

01

1 2

0

03

02

0

1

2

3

p

r

k

l

+1

+1

Fig. 1. A dynami programmig matrix split into run-length bloks.Let A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0) and B0 =(bj1 ; r1); (bj2 ; r2) : : : (bjn0 ; pn0) be the run-length enoded representations ofstrings A and B. The rows and olumns that orrespond to the ends of runsin A and B separate the edit distane matrix (dij) into submatries. To easethe notation later on, we de�ne the submatries so that they overlap on the

borders. Formally, eah pair of runs (aik ; pk); (bj` ; r`) de�nes a (pk+1)� (r`+1)submatrix (dk;`s;t) suh thatdk;`s;t = dik+s�1;j`+t�1; 0 � s � pk; 0 � t � r`: (3)We will all submatries (dk;`s;t) boxes. If a pair of runs orresponding to abox ontain equal letters (i.e. aik = bj`), then (dk;`s;t) is alled an equal letterbox. Otherwise we all (dk;`s;t) a di�erent letter box. Adjaent boxes an form runsof di�erent letter boxes along rows and olumns. We assume that both stringsare optimally run-length enoded, and hene runs of equal letter boxes an notour.3 An O(mn0 +m0n) Algorithm for the LevenshteinDistaneBunke and Csirik [7℄ gave an O(mn0 +m0n) time algorithm for omputing theLCS between two strings of lengths n and m run-length ompressed to n0 andm0. They pose as an open problem extending their algorithm to the Levenshteindistane. This is what we do in this setion, without inreasing the omplexityto ompute the new distane DL. Arbell, Landau, and Mithell [4℄ have inde-pendently found a similar algorithm. Their solution is also based on the sameidea of extending the O(mn0+m0n) LCS algorithm to the Levenshtein distane.Compared to the LCS-related distane DID, the Levenshtein distane DLpermits an additional harater substitution operation, at ost 1. We omputeDL(A;B) by �lling all the borders of all the boxes (dk;`s;t) (see Fig. 1). We manageto �ll eah ell in onstant time, whih adds up the promised O(mn0 + m0n)omplexity. The spae omplexity an be made O(n + m) by proessing thematrix row-wise or olumn-wise.3.1 The Basi AlgorithmWe start with two lemmas that haraterize the relationships between the bordervalues in the boxes (dk;`s;t). First, we onsider the equal letter boxes:Lemma 1 (Bunke and Csirik [7℄) The reurrenes (1) and (2) an be re-plaed by dk;`s;t = if s � t then dk;`0;t�s else dk;`s�t;0; (4)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in an equal letter box. utNote that Lemma 1 holds for both Levenshtein and LCS distane models,beause formulas (1) and (2) are equal when ai = bj . Sine we are omputingall the ells in the borders of the boxes, Lemma 1 permits omputing new boxborders in onstant time using those of previous boxes.The di�ult part lies in the di�erent letter boxes.

Lemma 2 The reurrene (1) an be replaed bydk;`s;t = 1+min (t�1+minmax(0;s�t)�q�s dk;`q;0 ;s�1+minmax(0;t�s)�q�t dk;`0;q); (5)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.Proof. We use indution on s + t. If s + t = 2 the formula (5) beomes dk;`1;1 =1 +min(dk;`0;0; dk;`1;0; dk;`0;1), whih mathes reurrene (1). In the indutive ase wehave dk;`s;t = 1 +min(dk;`s�1;t�1; dk;`s�1;t; dk;`s;t�1)by reurrene (1), and using the indution hypothesis we getdk;`s;t = 2 +min(min(t�2+minmax(0;s�t)�q�s�1 dk;`q;0;s�2+minmax(0;t�s)�q�t�1 dk;`0;q);min(t�1+minmax(0;s�1�t)�q�s�1 dk;`q;0;s�2+minmax(0;t�s+1)�q�t dk;`0;q);min(t�2+minmax(0;s�t+1)�q�s dk;`q;0;s�1+minmax(0;t�1�s)�q�t�1 dk;`0;q))= 1 +min(t�1+ minmax(0;s�t)�q�s dk;`q;0;s�1+minmax(0;t�s)�q�t dk;`0;q);where we have used the property that onseutive ells in the (dij) matrix di�erat most by 1 [18℄. Note that we have assumed s > 1 and t > 1. The partiularases s = 1 or t = 1 are easily derived as well, for example for s = 1 and t > 1we havedk;`1;t = 1 +min(dk;`0;t�1; dk;`0;t ; dk;`1;t�1)= 1 +min(dk;`0;t�1; dk;`0;t ;1 +min(t�2+minmax(0;2�t)�q�1 dk;`q;0;minmax(0;t�2)�q�t�1 dk;`0;q))= 1 +min�dk;`0;t�1; dk;`0;t ; t�1 +min(dk;`0;0; dk;`1;0); 1 +min(dk;`0;t�2; dk;`0;t�1)�= 1 +min�t�1 +min(dk;`0;0; dk;`1;0);min(dk;`0;t�1; dk;`0;t)� ;whih is the partiularization of formula (5) for s = 1. utFormula (5) relates the values at the right and bottom borders of a box toits left and top borders. Yet it is not enough to ompute the ells in onstanttime. Although we annot ompute one ell in O(1) time, we an ompute allthe pk (or r`) ells in overall O(pk) (or O(r`)) time.

Fig. 2 shows the algorithm. We use a data struture (whih in the pseu-doode is represented just as a set M�) able to handle a multiset of elementsstarting with a single element, adding and deleting elements, and delivering itsminimum value at any time. It will be used to maintain and update the minimaminmax(0;s�t)�q�s dk;`q;0 and minmax(0;t�s)�q�t dk;`0;q , used in the formula (5). Wesee later that in our partiular appliation all those operations an be performedin onstant time.In the ode we use drk;`s = dk;`s;r` for the rightmost olumn and dbk;`t = dk;`pk ;tfor the bottom row. Their update formulas are derived from the formula (5):drk;`s = 1 +min(r` � 1 +minmax(0;s�r`)�q�s drk;`�1q ;s� 1 +minmax(0;r`�s)�q�r` dbk�1;`q);dbk;`t = 1 +min(t� 1 +minmax(0;pk�t)�q�pk drk;`�1q ;pk � 1 +minmax(0;t�pk)�q�t dbk�1;`q):The whole algorithm an be made O(n+m) spae by noting that in a olumn-wise traversal we need, when omputing ell (kl), to store only drk�1;` anddbk;`�1, so the spae is that for storing one omplete olumn (m) and a row whosewidth is one box (at most n). Our multiset data struture does not inrease thisspae omplexity. Hene we haveTheorem 3 Given strings A and B of lengths m and n that are run-lengthenoded to lengths m0 and n0, there is an algorithm to alulate DL(A;B) inO(m0n+ n0m) time and O(m + n) spae in the worst ase. ut3.2 The Multiset Data StrutureWhat is left is to desribe our data struture to handle a multiset of nat-ural numbers. We exploit the fat that onseutive ells in (dij) di�er byat most 1 [18℄. Our data struture represents the multiset S as a triple(min(S);max(S); Vmin(S):::max(S) ! N). That is, we store the minimum andmaximum value of the multiset and a vetor of ounters V , whih stores at Vithe number of elements equal to i in S. Given the property that onseutive ellsdi�er by at most 1, we have that no value Vi is equal to zero. This is proved inthe following lemma.Lemma 4 No value Vi for min(S) � i � max(S) is equal to zero when S is aset of onseutive values in (dij) (i.e., S ontains a ontiguous part of a row ora olumn of the matrix (dij)).Proof. The lemma is trivially true for the extremes i = min(S) and i = max(S).Let us now suppose that Vi = 0 for an intermediate value. Let us assume thatthe valuemin(S) is ahieved at ell di;j and that the valuemax(S) is ahieved atell di0;j0 . Sine all the intermediate ell values are also in S by hypothesis, andonseutive ells di�er by at most 1, it follows that any value between min(S)and max(S) exists in a path that goes from di;j to di0;j0 . ut

Levenshtein (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We fill the topmost row and leftmost olumn first */2. dr0;00 0, db0;00 03. For k 2 1 : : :m0 Do4. For s 2 0 : : : pk Do drk;0s drk�1;0pk�1 + s5. dbk;00 drk;0pk6. For ` 2 0 : : : n0 Do7. For t 2 0 : : : r` Do db0;`t db0;`�1r`�1 + t8. dr0;`0 db0;`r`9. /* Now we fill the rest of the matrix */10. For ` 2 1 : : :m0 Do /* olumn-wise traversal */11. For k 2 1 : : : n0 Do12. If ak = b` Then /* equal letter box */13. For s 2 1 : : : pk Do14. If s � r` Then drk;`s dbk�1;`r`�s Else drk;`s drk;`�1s�r`15. For t 2 1 : : : r` Do16. If pk � t Then dbk;`t dbk�1;`t�pk Else dbk;`t drk;`�1pk�t17. Else /* different letter box */18. Mr fdrk;`�10 g, Mb fdbk�1;`r` g19. drk;`0 drk�1;`pk�120. For s 2 1 : : : pk Do21. Mr Mr [fdrk;`�1s g22. If s > r` Then Mr Mr � fdrk;`�1s�r`�1g23. If r` � s Then Mb Mb [fdbk�1;`r`�s g24. drk;`s 1 +min(r` � 1 +min(Mr); s� 1 +min(Mb))25. Mr fdrk;`�1pk g, Mb fdbk�1;`0 g26. dbk;`0 dbk;`�1r`�127. For t 2 1 : : : r` Do28. If pk � t Then Mr Mr [fdrk;`�1pk�t g29. Mb Mb [fdbk�1;`t g30. If t > pk Then Mb Mb � fdbk�1;`t�pk�1g31. dbk;`t 1 +min(t� 1 +min(Mr); pk � 1 +min(Mb))32. Return drm0n0pm0 /* or dbm0n0rn0 */Fig. 2. The O(m0n+n0m) time algorithm to ompute the Levenshtein distane betweenA and B, oded as a run-length sequene of pairs (letter; run_length).

Fig. 3 shows the detailed algorithms. When we initialize the data struturewith the single element S = fxg we represent the situation as (x; x; Vx = 1).When we have to add an element y to S, we hek whether y is outside therange min(S) : : :max(S), and in that ase we extend the range. In any asewe inrement Vy . Note that the domain extension is never by more than oneell, as there annot appear empty ells in between by Lemma 4. When we haveto remove an element z from S we simply derement Vz . If Vz beomes zero,Lemma 4 implies that this is beause z is either the minimum or the maximumof the set. So we redue the domain of V by one. Finally, the operation min(S)is trivial as we have it already preomputed.Create (x)1. Return (x; x; Vx = 1)Add ((minS;maxS; V); y)2. If y < minS Then3. minS y4. add new �rst ell Vy = 05. Else If y > maxS Then6. maxS y7. add new last ell Vy = 08. Vy Vy + 19. Return (minS;maxS; V)Remove ((minS;maxS; V); z)10. Vz Vz � 111. If Vz = 0 Then12. If z = minS Then13. remove �rst ell from V14. minS minS + 115. Else /* z = maxS */16. remove last ell from V17. maxS maxS � 118. Return (minS;maxS; V)Min ((minS;maxS; V))19. Return minSFig. 3. The multiset data struture implementation.It is easily seen that all the operations take onstant time. As a pratialmatter, we note that it is a good idea to keep V in a irular array so that itan grow and shrink by any extreme. Its maximum size orresponds to pk (forMr) or r` (for Mb), whih are known at the time of Create.

4 Approximate SearhingLet us now onsider a problem related to omputing the LCS or the Levenshteindistane. Assume that string A is a short pattern and string B is a long text(so m is muh smaller than n), and that we are given a threshold parameterk. We are interested in reporting all the �approximate ourrenes� of A in B,that is, all the positions of text substrings whih are at distane k or less fromthe pattern A. In order to ensure a linear size output, we ontent ourselves withreporting the ending positions of the ourrenes (whih we all �mathes�).The lassial algorithm to �nd all the mathes [16℄ omputes a matrix exatlylike those of reurrenes (2) and (1), with the only di�erene that d0;j = 0. Thispermits the ourrenes to start at any text position. The last row of the matrixdmj is examined and every text position j suh that dm;j � k is reported as amath.Our goal now is to devise a more e�ient algorithm when pattern and text arerun-length ompressed. A trivial O(m2n0 +R) algorithm (where R is the size ofthe output) is obtained as follows. We start �lling the matrix only at beginningsof text runs, and omplete the �rst 2m olumns only (at O(m2) ost). The restof the olumns of the run are equal to the 2m-th beause no optimal path anbe longer than 2m� 1 under the LCS or Levenshtein models. We later examinethe last row of the matrix and report every text position with value � k. If therun is longer than 2m, then we have not produed the whole last row but onlythe �rst 2m ells of it. In this ase we report the positions 2m + 1 : : : r` of the`-th run if and only if the position 2m was reported.We improve now the trivial algorithm. A �rst attempt is to apply our algo-rithms diretly using the new base value d0;j = 0. This hange does not presentompliations.Let us �rst onentrate on the Levenshtein distane. Our algorithm obtainsO(m0n+n0m) time, whih may or may not be better than the trivial approah.The problem is that O(m0n) may be too muh in omparison to O(m2n0), es-peially if n is muh larger than m. We seek for an algorithm proportional tothe ompressed text size. We divide the text runs in short (of length at most2m) and long (longer than 2m) runs. We apply our Levenshtein algorithm onthe text runs, �lling the matrix olumn-wise. If we have a short run (ai` ; r`),r` � 2m, we ompute all the m0+1 horizontal borders plus its �nal vertial bor-der (whih beomes the initial border of the next olumn). The time to ahievethis is O(m0r` +m). For an additional O(r`) ost we examine all the ells of thelast row and report all the text positions i` + t suh that dm0;`pm0 ;t � k.If we have a long run (ai` ; r`), r` > 2m, we limit its length to 2m and applythe same algorithm, at O(m0m + m + m) ost. The olumns 2m + 1 : : : r` ofthat run are equal to the 2m-th, so we just need to examine the last row ofthe 2m-th olumn, and report all the text positions up to the end of the run,i` + 2m+ 1 : : : i` + pk, if dm0;`pm0 ;2m � k.This algorithm is O(n0m0m + R) time in the worst ase, where R is thenumber of ourrenes reported. For the LCS model we have the same upper

bound, so we ahieve the same omplexity. Our O(m0n0(m0+n0)) algorithm doesnot yield a good omplexity here. The spae is that to ompute one text runlimited to length 2m, i.e. O(m0m).Note that if we are allowed to represent the ourrenes as a sequene of runsof onseutive text positions (all of whih math), then the R extra term of thesearh ost disappears.Theorem 5 Given a pattern A and a text B of lengths m and n that are run-length enoded to lengths m0 and n0, there is an algorithm to �nd all the endingpoints of the approximate ourrenes of A in B, either under the LCS or Lev-enshtein model, in O(m0mn0) time and O(m0m) spae in the worst ase. ut5 Improving a Greedy Algorithm for the LCSThe idea in our algorithm for the Levenshtein distane DL in Set. 3 was to �llall the borders of all the boxes (dk;`s;t). The natural way to redue the omplexitywould be to �ll only the orners of the boxes (see Fig. 1). For the DL distanethis seems di�ult to obtain, but for the DID distane there is an obvious greedyalgorithm that ahieves this goal; in di�erent letter boxes, we an alulate theorner values in onstant time, and in equal letter boxes we an trae an optimalpath to a orner in O(m0+n0) time. Thus, we an alulate all the orner valuesin O(m0n0(m0 + n0)) time1.It turns out that we an improve the greedy algorithm signi�antly by fairlysimple means. We notie that the diagonal method of [17℄ an be applied, andahieve an O(d2min(n0m0)) algorithm. We give also other improvements that donot a�et the worst ase, but are signi�ant in the average ase and in pratie.We end the setion onjeturing that our improved algorithm runs in O(m0n0)time in the average. As we are unable to prove this onjeture, we provide ex-perimental evidene to support it.5.1 Greedy Algorithm for the LCSCalulating the orner value dk;`pk ;r` in a di�erent letter box is easy, beause itan be retrieved from the values dk;`0;r` = dk�1;`pk�1;r` and dk;`pk ;0 = dk;`�1pk;r`�1 , whihare alulated earlier during the dynami programming. This follows from thelemma:1 Apostolio et. al. [3℄ also gave a basi O(m0n0(m0 + n0)) algorithm for the LCS,whih they then improved to O(m0n0 log(m0n0)). Their basi algorithm di�ers fromour greedy algorithm in that they were using the reurrene for alulating the LCSdiretly, and we are alulating the distane DID. Also, they traed a spei� optimalpath (whih was the property that they ould use to ahieve the O(m0n0 log(m0n0))algorithm).

Lemma 6 (Bunke and Csirik [7℄) The reurrene (2) an be replaed by thereurrene dk;`s;t = min(dk;`s;0 + t; dk;`0;t + s); (6)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box. utIn ontrast to the DL distane, the di�ult part in DID distane lies in equalletter boxes. As noted earlier, Lemma 1 applies also for theDID distane. >FromLemma 1 we an see that the orner values are retrieved along the diagonal, andthose values may not have been alulated earlier. However, if pk = r` in allequal letter boxes, then eah orner dk;`pk;r` an be alulated in onstant time.This gives an O(m0n0) algorithm for a speial ase, as previously noted in [6℄.What follows is an algorithm to retrieve the value dk;`pk;r` in an equal letter boxin O(m0 + n0) time. The idea is to trae an optimal path to the ell dk;`pk;r` . Thisan be done by using lemmas 1 and 6 reursively. Assume that dk;`pk;r` = dk;`0;r`�pkby Lemma 1 (ase dk;`pk ;r` = dk;`pk�r`;0 is symmetri). If k = 1, then the valued1;`0;r`�pk orresponds to a value in the �rst row (0) of the matrix (dij) whihis known. Otherwise, the box (dk�1;`s;t) is a di�erent letter box, and using thede�nition of overlapping boxes and Lemma 6 it holdsdk;`0;r`�pk = dk�1;`pk�1;r`�pk = min(dk�1;`pk�1;0 + r` � pk; dk�1;`0;r`�pk + pk�1):Now, the value dk�1;`pk�1;0 is alulated during the dynami programming, so wean ontinue on traing value dk�1;`0;r`�pk using lemmas 1 and 6 reursively untilwe meet a value that has already been alulated during dynami programming(inluding the �rst row and the �rst olumn of the matrix (dij). The reursionnever branhes, beause Lemma 1 de�nes expliitly the next value to trae, andone of the two values (from whih the minimum is taken over in Lemma 6) isalways known (that is beause we enter the di�erent letter boxes at the borders,and therefore the other value is from a orner that is alulated during thedynami programming). We all the path desribed by the reursion a traingpath.Traing the value dk;`pk ;r` in an equal letter box may take O(m0 + n0) time,beause we are skipping one box at a time, and there are at most m0 +n0 boxesin the traing path. Therefore, we get an O(m0n0(m0+n0)) algorithm to alulateDID(A;B). A worst ase example that atually ahieves the bound is A = anand B = (ab)n=2.The spae requirement of the algorithm is O(m0n0), beause we need to storeonly the orner value in eah box, and the O(m0 + n0) spae for the stak is notneeded, beause the reursion does not branh.We also ahieve the O(m0n + n0m) bound, beause the orner values dk;`pk;r`of equal letter boxes de�ne distint traing paths, and therefore eah ell in theborders of the boxes an be visited only one. To see this observe that eah borderell reahed by a traing path uniquely determines the border ell it omes from

along the traing path, and therefore no two di�erent paths an meet in a borderell. The only exeption is a orner ell, but in this ase all the traing pathsend there immediately.Theorem 7 Given strings A and B of lengths m and n that are run-lengthenoded to lengths m0 and n0, there is an algorithm to alulate DID(A;B) inO(min(m0n0(m0 + n0);m0n+ n0m)) time and O(m0n0) spae. ut5.2 Diagonal AlgorithmThe diagonal method [17℄ provides an O(dmin(m;n)) algorithm for alulatingthe distane d = DID(A;B) (or DL as well) between strings A and B of lengthm and n, respetivily. The idea is the following: The value dmn = DID(A;B)in the (dij) matrix of (2) de�nes a diagonal band, where the optimal path mustlie. Thus, if we want to hek whether DID < k, we an limit the alulationto the diagonal band de�ned by value k (onsisting of O(k) diagonals). Startingwith k = jn�mj+1, we an double the value k and run in eah step the reur-rene (2) on the inreasing diagonal band. As soon as dmn < k, we have foundDID(A;B) = dmn, and we an stop the doubling. The total number of diagonalsevaluated is at most 2DID(A;B), and there are at most min(m;n) ells in eahdiagonal. Therefore, the total ost of the algorithm is O(dmin(m;n)), whered = DID(A;B).We an use the diagonal method with our greedy algorithm as follows: Wealulate only the orner values that are inside the diagonal band de�ned byvalue k in the above doubling algorithm. The orner values in equal letter boxesinside the diagonal band an be retrieved in O(k) time. That is beause wean limit the length of the traing paths with the value 2k + 1 (between twoequal letter boxes there is a di�erent letter box that ontributes at least 1 tothe value that we are traing, and we are not interested in orner values thatare greater than k). Therefore, we get the total ost O(d2min(m0; n0)), whered = DID(A;B).5.3 Faster on AverageThere are some pratial re�nements for the greedy algorithm that do not im-prove its worst ase behavior, but do have an impat on its average ase.First of all, the runs of di�erent letter boxes an be skipped in the traingpaths.Consider two onseutive di�erent letter boxes (dk;`s;t) and (dk+1;`s;t). By Lemma6 it holds for the values 1 � t � r`,dk+1;`pk+1;t = min �dk+1;`0t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`pk ;t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk;`pk;0 + pk+1 + t; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk+1;`pk+1;0 + t� :

The above result an be extended to the following lemma by using indution:Lemma 8 Let ((dk0 ;`s;t); (dk0+1;`s;t); : : : ; (dk;`s;t)) and ((dk;`0s;t); (dk;`0+1s;t); : : : ; (dk;`s;t)) bevertial and horizontal runs of di�erent letter boxes. When 1 � t � r` and1 � s � pk, the reurrene (4) an be replaed by the reurrenesdk;`pk;t = min dk;`pk;0 + t; dk0;`0;t + kXs=k0 ps! 1 � t � r`;dk;`s;r` = min dk;`0;r` + s; dk;`0s;0 + X̀t=`0 rt! 1 � s � pk: utNow it is obvious how to speed up the retrieval of values dk;`pk;r` in the equalletter boxes. During dynami programming, we an maintain pointers in eahdi�erent letter box to the last equal letter box enountered in the diretion of therow and the olumn. When we enter a di�erent letter box while traing the valueof dk;`pk ;r` in an equal letter box, we an use Lemma 8 to alulate the minimumover the run of di�erent letter boxes at one, and ontinue on traing from theequal letter box preeding the run of di�erent letter boxes. (Note that in orderto use the summations of Lemma 8 we should better store the umulative ik andj` values instead of pk and r`.) Therefore we get the following result:Theorem 9 Given strings A and B of lengths m and n that are run-lengthenoded to lengths m0 and n0, suh that all the runs of di�erent letters over analphabet of size j�j are equally likely and in random order, there is an algorithmto alulate DID(A;B) in O(m0n0(1 + (m0 + n0)=j�j2)) time in the average.Proof. (Sketh) The �rst part of the ost, O(m0n0) omes from the onstant timeomputation of all the di�erent letter boxes. On the other hand, there are onthe average O(m0n0=j�j) equal letter boxes. Between two runs of a letter � 2 �,there are on the average j�j�1 runs of other letters. This holds both for stringsA and B. In other words, the expeted length of a run of di�erent letter boxesis j�j � 1. Therefore the retrieval of the value dk;`pk ;r` in an equal letter box takestime at most O((m0 + n0)=j�j) in the average. utThe seond improvement to the greedy algorithm is to limit the length ofthe traing paths. In the greedy algorithm the traing is ontinued until a valueis reahed that has been alulated during the dynami programming. However,there are more known values than those that have been expliitly alulated.Consider value dk;`pk ;t, 1 � t � r` (or symmetrially dk;`s;r` , 1 � s � pk) in the borderof a di�erent letter box. If dk;`pk;r` = dk;`pk ;0+ r` then it must hold dk;`pk;t = dk;`pk ;0+ t,otherwise we get a ontradition: dk;`pk;r` < dk;`pk;0 + r`.We all the above situation a horizontal (vertial) bridge. Note that fromLemma 6 it follows that there is either a vertial or a horizontal bridge in eah

di�erent letter box. When we enter a di�erent letter box in the reursion, wean hek whether the bridge property holds at the border we entered, using theorner values that are alulated during the dynami programming. Thus, we anstop the reursion at the �rst bridge enountered. To ombine this improvementwith the algorithm that skips runs of di�erent letter boxes, we need Lemma 10below that states that the bridges propagate along runs of di�erent letter boxes.Therefore we only need to hek whether the last di�erent letter box has a bridgeto deide whether we have to skip to the next equal letter box. The resultingalgorithm is given in pseudo-ode in Fig. 4.Lemma 10 Let ((dk0 ;`s;t); (dk0+1;`s;t); : : : ; (dk;`s;t)) be a vertial run of di�erent letterboxes. If there is a horizontal bridge dk0;`pk0 ;r` = dk0 ;`pk0 ;0+r` then there is a horizontalbridge dk00;`pk00 ;r` = dk00;`pk00 ;0 + r` for all k0 < k00 � k. The symmetri result holds forhorizontal runs of di�erent letter boxes.Proof. We use the ounter-argument that dk00;`pk00 ;r` = dk00;`pk00 ;0+ r` does not hold forsome k0 < k00 � k. Then by Lemma 8 and by the bridge assumption it holdsdk00;`pk00 ;r` = dk0+1;`0;r` + k00Xs=k0+1 ps = dk0+1;l0;0 + r` + k00Xs=k0+1 ps:On the other hand, using the ounter-argument and the fat that onseutiveells in the (dij) matrix di�er at most by 1 [18℄, we getdk00;`pk00 ;r` < dk00;`pk00 ;0 + r` � dk0+1;`0;0 +0� k00Xs=k0+1 ps1A+ r`;whih is a ontradition and so the the original proposition holds. utLemma 10 has a orollary: if the last di�erent letter box in a run does nothave a horizontal (vertial) bridge, then none of the boxes in the same run havea horizontal (vertial) bridge and, on the other hand, all the boxes in the samerun must have a vertial (horizontal) bridge.Now, if two traing paths ross inside a box (or run thereof), then one ofthem neessarily meets a bridge. In the average ase, there are a lot of rossingsof the traing paths and the total ost for traing the values in equal letter boxesdereases.Another way to onsider the average length of a traing path is to think thatevery time a traing path enters a di�erent letter box, it has some probabilityto hit a bridge. If the bridges were plaed randomly in the di�erent letter boxes,then the probability to hit a bridge would be 12 . This would give immediately aonstant expeted length for a traing path. However, the plaing of the bridgesdepends on the omputation of reurrene (2), and this makes the reasoningwith probabilities muh more omplex. We are still on�dent that the followingonjeture holds, although we are not (yet) able to prove it.

LCS (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We use struture dk;` to denote a box (dk;`s;t) as follows: */2. dk;`:orner := dk;`pk;r`3. dk;`:jumptop := "loation of the next equal letter box above"4. dk;`:jumpleft := "loation of the next equal letter box in the left"5. dk;`:sumtop := If aik 6= bjell Then Pkt=dk;`:jumptop+1 pt6. dk;`:sumleft := If aik 6= bj` Then Pt̀=dk;`:jumpleft+1 rt7. /* Initialize �rst row and olumn (let ai0 = bj0 = �; p0 = r0 = 1) */8. d00:orner 09. For k 2 1 : : : n0 Do dk;0:orner dk�1;0:orner + rk�110. For ` 2 1 : : :m0 Do d0;`:orner d0;`�1:orner + p`�111. Calulate values dk;`:(jumptop; jumpleft; sumtop; sumleft)12. /* Now we �ll the rest of the orner values */13. For k 2 1 : : :m0 Do14. For ` 2 1 : : : n0 Do15. (bridge; k0; `0; p; r; sum; dk;`:orner) (false; k; `; pk; r`; 0;1)16. If aik 6= bj` Then /* Different letter box */17. dk;`:orner min(dk�1;`:orner + aik ; dk;`�1:orner + bj`)18. Else While bridge = false Do19. /* Equal letter box, trae dk;`:orner */20. If p = r Then /* Straight from the diagonal */21. dk;`:orner min(dk;`:orner; sum+ dk0�1;`0�1:orner)22. bridge true23. Else If p < r Then /* Diagonal up */24. (r; k0) (r � p; k0 � 1)25. dk;`:orner min(dk;`:orner; sum+ dk0;`0�1:orner + r)26. If dk0;`0 :orner = dk0;`0�1:orner + r`0 Then bridge true27. Else /* Jump to the next equal letter box */28. (sum; k0) (sum+ dk0;`0 :sumtop; dk0;`0 :jumptop)29. p pk030. If k0 = 0 Then /* First row */31. dk;`:orner min(dk;`:orner;sum+ dk0;`0�1:orner + r)32. bridge true33. Else /* Diagonal left similarly*/34. Return (m+ n� dm0;n0 :orner)=2 /* return the length of the LCS */Fig. 4. The improved greedy algorithm to ompute the LCS between A and B, odedas a run-length sequene of pairs (letter; run_length).

Conjeture 11 Let A and B be strings that are run-length enoded to lengthsm0 and n0, suh that the runs are equally distributed with the same mean in bothstrings. Under these assumptions the expeted running time of the algorithm inFig. 4 for alulating DID(A;B) is O(m0n0).5.4 Experimental ResultsTo test the Conjeture 11, we ran the algorithm in Fig. 4 with the followingsettings:1. m0 = n0 = 2000; j�j = 2, runs in [1; x℄x 2 f1; 10; 100; 1000; 10000; 100000; 1000000g.2. m0 = 2000; n0 2 f1; 50; 100; 500; 1000; 1500; 2000g; j�j= 2, runs in [1; 1000℄.3. m0 = n0 = 2000; j�j 2 f2; 4; 8; 16; 32; 64; 128; 256g, runs in [1; 1000℄.4. String A was as in item 1 with runs in [1; 1000℄. String B was gen-erated by applying k random insertions/deletions on A, where k 2f0; 1; 10; 100; 1000; 10000; 100000g.5. Real data: three di�erent blak/white images (printed lines from a book draft(187� 591), tehnial drawing (160� 555), and a signature (141� 362)). Weran the LCS algorithm on all pairs of lines in eah image.Table 1 shows the results. Di�erent parameter hoies are listed in the orderthey appear in the above listing (e.g. setting 1 in test 1 orresponds to x = 1,setting 2 orresponds to x = 10, et.).Table 1. The average length and the maximum length of a traing path was measuredin di�erent test settings. The values of tests 1-4 are averages over 10-10000 trials (e.g.on small values of n0 in test 2, more trials were needed beause of high variane, whereasotherwise the variane was small). Test 5 was deterministi (i.e. the values are fromone trial).Average length of a traing path (maximum length)test X setting 1, setting 2, ...test 1 1 (1), 1.71 (18), 1.96 (28), 1.98 (27), 1.98 (32), 1.99 (29), 1.98 (25)test 2 1.73 (5), 1.77 (10), 1.74 (13), 1.80 (21), 1.90 (30), 1.97 (35), 1.98 (38)test 3 1.99 (30), 1.77 (20), 1.60 (14), 1.45 (14), 1.33 (9), 1.24 (7), 1.17 (6), 1.13 (6)test 4 1.71 (9), 1.71 (8), 1.71 (7), 1.71 (10), 1.72 (9), 1.72 (10), 1.72 (12)test 5 2.00 (35), 2.34 (146), 2.32 (31)The average length L of a traing path (i.e. the amount of equal letter boxesvisited by a traing path) was smaller than 2 in tests 1-4 (slightly greater in test5). That is, the running time was in pratie O(m0n0) with a very small onstantfator. Test 1 showed that when the mean length of the runs inreases, then alsoL inreases, but not exeeding 2 (L 2 [1; 1:99℄). In test 2, the worst situation waswith n0 = m0 (L = 1:98℄). We tested the e�et of the alphabet in test 3, and the

worst was j�j = 2 (L = 1:99) and the best was j�j = 256 (L = 1:13). Test 4 wasused to simulate a typial situation, in whih the distane between the stringsis small. The amount of errors did not have muh in�uene (L 2 [1:71; 1:72℄). Inreal data (test 5), there were also pairs that were lose to the worst ase (loseto A = an; B = (ab)n=2), and therefore the results were slightly worse than withrandomly generated data: L 2 f2:00; 2:34; 2:31g with the three images.6 ConlusionsWe have presented new algorithms to ompute approximate mathes betweenrun-length ompressed strings. The previous algorithms [7, 3℄ permit omputingtheir LCS. We have extended an LCS algorithm [7℄ to the Levenshtein distanewithout inreasing the ost, and presented an algorithm with nontrivial omplex-ity for approximate searhing a run-length ompressed pattern on a run-lengthompressed text under either model.Future work involves adapting our algorithm to more omplex versions of theLevenshtein distane, inluding at least di�erent osts for the edit operations.This would be interesting for appliations related to image ompression, wherethe hange from a pixel value to the next is smooth.With respet to the original models, an interesting question is whether analgorithm an be obtained whose ost is just the produt of the ompressedlengths. Indeed, this seems possible in the average ase, as demonstrated by theexperiments with our improved algorithm for the LCS.Finally, a ombination of two-dimensional approximate pattern mathing al-gorithm with two-dimensional run-length ompression [5, 1℄ seems extremely in-teresting.Referenes1. A. Amir and G. Benson. E�ient two-dimensional ompressed mathing. In Pro.DCC'92, pages 279�288, 1992.2. A. Amir, G. Benson, and M. Farah. Let sleeping �les lie: Pattern mathing inZ-ompressed �les. J. of Comp. and Sys. Sienes, 52(2):299�307, 1996.3. A. Apostolio, G. Landau, and S. Skiena. Mathing for run-length enoded strings.J. of Complexity, 15:4�16, 1999. (Also at Sequenes '97, Positano Italy, June 11-13,1997).4. O. Arbell, G. Landau, and J. Mithell. Edit distane of run-length enoded strings.Submitted for publiation, August 2000.5. R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern math-ing. In Pro. LATIN'98, LNCS 1380, pages 341�351, 1998.6. H. Bunke and J. Csirik. An algorithm for mathing run-length oded strings.Computing, 50:297�314, 1993.7. H. Bunke and J. Csirik. An improved algorithm for omputing the edit distaneof run-length oded strings. Information Proessing Letters, 54(2):93�96, 1995.8. M. Farah and M. Thorup. String mathing in Lempel-Ziv ompressed texts.Algorithmia, 20:388-404, 1998.

9. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-work for ompressed pattern mathing. In Pro. SPIRE'99, pages 89-96. IEEE CSPress, 1999.10. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple patternmathing in LZW ompressed text. In Pro. DCC'98, 1998.11. J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string mathing overZiv-Lempel ompressed text. In Pro. CPM'2000, LNCS 1848, pages 195-209, 2000.12. V. Levenshtein. Binary odes apable of orreting deletions, insertions and rever-sals. Soviet Physis Doklady 6:707�710, 1966.13. T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallelapproah to approximate string mathing. In Pro. SPIRE'2000, IEEE CS Press,pages 221�228, 2000.14. J. Mithell. A geometri shortest path problem, with appliation to omputing alongest ommon subsequene in run-length enoded strings. In Tehnial Report,Dept. of Applied Mathematis, SUNY Stony Brook, 1997.15. G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster Approxi-mate String Mathing over Compressed Text. In Pro. 11th IEEE Data Compres-sion Conferene (DCC'01), 2001, To appear.16. P. Sellers. The theory and omputation of evolutionary distanes: Pattern reog-nition. J. of Algorithms, 1(4):359�373, 1980.17. E. Ukkonen. Algorithms for approximate string mathing. Information and Control64(1�3):100�118, 1985.18. E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms 6(1�3):132�137, 1985.19. R. Wagner and M. Fisher. The string-to-string orretion problem. J. of the ACM21(1):168�173, 1974.20. J. Ziv and A. Lempel. A universal algorithm for sequential data ompression.IEEE Trans. Inf. Theory, 23:337-343, 1977.

