
Regular Expression Searching over Ziv-LempelCompressed TextGonzalo Navarro?Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago,Chile. gnavarro@dcc.uchile.clAbstract. We present a solution to the problem of regular expressionsearching on compressed text. The format we choose is the Ziv-Lempelfamily, speci�cally the LZ78 and LZW variants. Given a text of length ucompressed into length n, and a pattern of length m, we report all the Roccurrences of the pattern in the text in O(2m +mn+Rm logm) worstcase time. On average this drops to O(m2 + (n + R) logm) or O(m2 +n+Ru=n) for most regular expressions. This is the �rst nontrivial resultfor this problem. The experimental results show that our compressedsearch algorithm needs half the time necessary for decompression plussearching, which is currently the only alternative.1 IntroductionThe need to search for regular expressions arises in many text-based applications,such as text retrieval, text editing and computational biology, to name a few.A regular expression is a generalized pattern composed of (i) basic strings, (ii)union, concatenation and Kleene closure of other regular expressions [1]. Theproblem of regular expression searching is quite old and has received continuousattention since the sixties until our days (see Section 2.1).A particularly interesting case of text searching arises when the text is com-pressed. Text compression [6] exploits the redundancies of the text to repre-sent it using less space. There are many di�erent compression schemes, amongwhich the Ziv-Lempel family [32,33] is one of the best in practice because ofits good compression ratios combined with e�cient compression and decompres-sion times. The compressed matching problem consists of searching a patternon a compressed text without uncompressing it. Its main goal is to search thecompressed text faster than the trivial approach of decompressing it and thensearching. This problem is important in practice. Today's textual databases arean excellent example of applications where both problems are crucial: the textsshould be kept compressed to save space and I/O time, and they should be e�-ciently searched. Surprisingly, these two combined requirements are not easy toachieve together, as the only solution before the 90's was to process queries byuncompressing the texts and then searching into them.? Partially supported by Fondecyt grant 1-990627.



Since then, a lot of research has been conducted on the problem. A wealth ofsolutions have been proposed (see Section 2.2) to deal with simple, multiple and,very recently, approximate compressed pattern matching. Regular expressionsearching on compressed text seems to be the last goal which still de�es theexistence of any nontrivial solution.This is the problem we solve in this paper: we present the �rst solutionfor compressed regular expression searching. The format we choose is the Ziv-Lempel family, focusing in the LZ78 and LZW variants [33, 29]. Given a textof length u compressed into length n, we are able to �nd the R occurrences ofa regular expression of length m in O(2m + mn + Rm logm) worst case time,needing O(2m + mn) space. We also propose two modi�cations which achieveO(m2+(n+R) logm) or O(m2+n+Ru=n) average case time and, respectively,O(m+n logm) or O(m+n) space, for \admissible" regular expressions, i.e. thosewhose automaton runs out of active states after reading O(1) text characters.These results are achieved using bit-parallelism and are valid for short enoughpatterns, otherwise the search times have to be multiplied by dm=we, where wis the number of bits in the computer word.We have implemented our algorithm on LZW and compared it against thebest existing algorithms on uncompressed text, showing that we can search thecompressed text twice as fast as the naive approach of uncompressing and thensearching.2 Related Work2.1 Regular Expression SearchingThe traditional technique [26] to search a regular expression of length m (whichmeans m letters, not counting the special operators such as "*", "|", etc.) ina text of length u is to convert the expression into a nondeterministic �niteautomaton (NFA) with O(m) nodes. Then, it is possible to search the text usingthe automaton at O(mu) worst case time. The cost comes from the fact thatmore than one state of the NFA may be active at each step, and therefore allmay need to be updated.On top of the basic algorithm for converting a regular expression into anNFA, we have to add a self-loop at the initial state which guarantees that itkeeps always active, so it is able to detect a match starting anywhere in thetext. At each text position where a �nal state gets active we signal the end pointof an occurrence.A more e�cient choice [1] is to convert the NFA into a deterministic �niteautomaton (DFA), which has only one active state at a time and therefore allowssearching the text at O(u) cost, which is worst-case optimal. The cost of thisapproach is that the DFA may have O(2m) states, which implies a preprocessingcost and extra space exponential in m.An easy way to obtain a DFA from an NFA is via bit-parallelism, which isa technique to code many elements in the bits of a single computer word and



manage to update all them in a single operation. In this case, the vector ofactive and inactive states is stored as the bits of a computer word. Instead of(ala Thompson [26]) examining the active states one by one, the whole computerword is used to index a table which, given the current text character, providesthe new set of active states (another computer word). This can be consideredeither as a bit-parallel simulation of an NFA, or as an implementation of a DFA(where the identi�er of each deterministic state is the bit mask as a whole). Thisidea was �rst proposed by Wu and Manber [31, 30].Later, Navarro and Ra�not [23] used a similar procedure, this time usingGlushkov's [7] construction of the NFA. This construction has the advantage ofproducing an automaton of exactly m + 1 states, while Thompson's may reach2m states. A drawback is that the structure is not so regular and therefore atable D : 2m+1 � (�+1) ! 2m+1 is required, where � is the size of the patternalphabet �. Thompson's construction, on the other hand, is more regular andonly needs a table D : 22m ! 22m for the "-transitions. It has been shown [23]that Glushkov's construction normally yields faster search time. In any case, ifthe table is too big it can be split horizontally in two or more tables [31]. Forexample, a table of size 2m can be split into 2 subtables of size 2m=2. We needto access two tables for a transition but need only the square root of the space.Some techniques have been proposed to obtain a tradeo� between NFAs andDFAs. In 1992, Myers [19] presented a four-russians approach which obtainsO(mu= logu) worst-case time and extra space. The idea is to divide the syntaxtree of the regular expression into \modules", which are subtrees of a reasonablesize. These subtrees are implemented as DFAs and are thereafter considered asleaf nodes in the syntax tree. The process continues with this reduced tree untila single �nal module is obtained.The ideas presented up to now aim at a good implementation of the automa-ton, but they must inspect all the text characters. Other proposals try to skipsome text characters, as it is usual for simple pattern matching. For example,Watson [28, chapter 5] presented an algorithm that determines the minimumlength of a string matching the regular expression and forms a trie with all thepre�xes of that length of strings matching the regular expression. A multipat-tern search algorithm like Commentz-Walter [8] is run over those pre�xes as a�lter to detect text areas where a complete occurrence may start. Another tech-nique of this kind is used in Gnu Grep 2.0, which extracts a set of strings whichmust appear in any match. This string is searched for and the neighborhoodsof its occurrences are checked for complete matches using a lazy deterministicautomaton.The most recent development, also in this line, is from Navarro and Ra�not[23]. They invert the arrows of the DFA and make all states initial and the initialstate �nal. The result is an automaton that recognizes all the reverse pre�xes ofstrings matching the regular expression. The idea is in this sense similar to thatof Watson, but takes less space. The search method is also di�erent: instead ofa Boyer-Moore like algorithm, it is based on BNDM [23].



2.2 Compressed Pattern MatchingThe compressed matching problem was �rst de�ned in the work of Amir andBenson [2] as the task of performing string matching in a compressed textwithout decompressing it. Given a text T , a corresponding compressed stringZ = z1 : : : zn, and a pattern P , the compressed matching problem consists in�nding all occurrences of P in T , using only P and Z. A naive algorithm, which�rst decompresses the string Z and then performs standard string matching,takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+R),where R is the number of matches (note that it could be that R = u > n).Two di�erent approaches exist to search compressed text. The �rst one israther practical. E�cient solutions based on Hu�man coding [10] on words havebeen presented by Moura et al. [18], but they need that the text contains naturallanguage and is large (say, 10 Mb or more). Moreover, they allow only searchingfor whole words and phrases. There are also other practical ad-hoc methods [15],but the compression they obtain is poor. Moreover, in these compression formatsn = �(u), so the speedups can only be measured in practical terms.The second line of research considers Ziv-Lempel compression, which is basedon �nding repetitions in the text and replacing them with references to similarstrings previously appeared. LZ77 [32] is able to reference any substring of thetext already processed, while LZ78 [33] and LZW [29] reference only a singleprevious reference plus a new letter that is added.String matching in Ziv-Lempel compressed texts is much more complex, sincethe pattern can appear in di�erent forms across the compressed text. The �rstalgorithm for exact searching is from 1994, by Amir, Benson and Farach [3], whosearch in LZ78 needing time and space O(m2 + n).The only search technique for LZ77 is by Farach and Thorup [9], a random-ized algorithm to determine in time O(m + n log2(u=n)) whether a pattern ispresent or not in the text.An extension of the �rst work [3] to multipattern searching was presented byKida et al. [13], together with the �rst experimental results in this area. Theyachieve O(m2 + n) time and space, although this time m is the total length ofall the patterns.New practical results were presented by Navarro and Ra�not [24], who pro-posed a general scheme to search on Ziv-Lempel compressed texts (simple andextended patterns) and specialized it for the particular cases of LZ77, LZ78 and anew variant proposed which was competitive and convenient for search purposes.A similar result, restricted to the LZW format, was independently found and pre-sented by Kida et al. [14]. The same group generalized the existing algorithmsand nicely uni�ed the concepts in a general framework [12]. Recently, Navarroand Tarhio [25] presented a new, faster, algorithm based on Boyer-Moore.Approximate string matching on compressed text aims at �nding the patternwhere a limited number of di�erences between the pattern and its occurrencesare permitted. The problem, advocated in 1992 [2], had been solved for Hu�mancoding of words [18], but the solution is limited to search a whole word andretrieve whole words that are similar. The �rst true solutions appeared very



recently, by K�arkk�ainen et al. [11], Matsumoto et al. [16] and Navarro et al.[22].3 The Ziv-Lempel Compression Formats LZ78 and LZWThe general idea of Ziv-Lempel compression is to replace substrings in the textby a pointer to a previous occurrence of them. If the pointer takes less spacethan the string it is replacing, compression is obtained. Di�erent variants overthis type of compression exist, see for example [6]. We are particularly interestedin the LZ78/LZW format, which we describe in depth.The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [33])is based on a dictionary of blocks, in which we add every new block computed.At the beginning of the compression, the dictionary contains a single block b0of length 0. The current step of the compression is as follows: if we assumethat a pre�x T1:::j of T has been already compressed in a sequence of blocksZ = b1 : : : br, all them in the dictionary, then we look for the longest pre�x ofthe rest of the text Tj+1:::u which is a block of the dictionary. Once we found thisblock, say bs of length `s, we construct a new block br+1 = (s; Tj+`s+1), we writethe pair at the end of the compressed �le Z, i.e Z = b1 : : : brbr+1, and we addthe block to the dictionary. It is easy to see that this dictionary is pre�x-closed(i.e. any pre�x of an element is also an element of the dictionary) and a naturalway to represent it is a trie.We give as an example the compression of the word ananas in Figure 1. The�rst block is (0; a), and next (0; n). When we read the next a, a is already theblock 1 in the dictionary, but an is not in the dictionary. So we create a thirdblock (1; n). We then read the next a, a is already the block 1 in the dictionary,but as do not appear. So we create a new block (1; s).
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Fig. 1. Compression of the word ananas with the algorithm LZ78.The compression algorithm is O(u) time in the worst case and e�cient inpractice if the dictionary is stored as a trie, which allows rapid searching ofthe new text pre�x (for each character of T we move once in the trie). The



decompression needs to build the same dictionary (the pair that de�nes theblock r is read at the r-th step of the algorithm), although this time it is notconvenient to have a trie, and an array implementation is preferable. Comparedto LZ77, the compression is rather fast but decompression is slow.Many variations on LZ78 exist, which deal basically with the best way tocode the pairs in the compressed �le, or with the best way to cope with limitedmemory for compression. A particularly interesting variant is from Welch, calledLZW [29]. In this case, the extra letter (second element of the pair) is not coded,but it is taken as the �rst letter of the next block (the dictionary is started withone block per letter). LZW is used by Unix's Compress program.In this paper we do not consider LZW separately but just as a coding variantof LZ78. This is because the �nal letter of LZ78 can be readily obtained bykeeping count of the �rst letter of each block (this is copied directly from thereferenced block) and then looking at the �rst letter of the next block.4 A Search AlgorithmWe present now our approach for regular expression searching over a text Z =b1 : : : bn, that is expressed as a sequence of n blocks. Each block br represents asubstring Br of T , such that B1 : : :Bn = T . Moreover, each block Br is formed bya concatenation of a previously seen block and an explicit letter. This comprisesthe LZ78 and LZW formats. Our goal is to �nd the positions in T where thepattern occurrences end, using Z.Our approach is to modify the DFA algorithm based on bit-parallelism, whichis designed to process T character by character, so that it processes T block byblock using the fact that blocks are built from previous blocks and explicit letters.We assume that Glushkov's construction [7] is used, so the NFA has m+1 states.So we start by building the DFA in O(2m) time and space.Our bit masks will denote sets of NFA states, so they will be of width m+1.For clarity we will write the sets of states, keeping in mind that we can computeA[B, A\B, Ac, A = B, A B, a 2 A in constant time (or, for long patterns, inO(dm=we) time, where w is the number of bits in the computer word). Anotheroperation we will need to perform in constant time is to select any element ofa set. This can be achieved with \bit magic", which means precomputing thetable storing the position of, say, the highest bit for each possible bit mask oflength m + 1, which is not much given that we already store � such tables.About our automaton, we assume that the states are numbered 0 : : :m, being0 the initial state. We call F the bit mask of �nal states and the transitionfunction is D : bitmasks � � ! bitmasks.The general mechanism of the search is as follows: we read the blocks brone by one. For each new block b read, representing a string B, and where wehave already processed T1:::j , we update the state of the search so that afterworking on the block we have processed T1:::j+jBj = T1:::jB. To process eachblock, three steps are carried out: (1) its description is computed and stored, (2)



the occurrences ending inside the block B are reported, and (3) the state of thesearch is updated.Say that block b represents the text substring B. Then the description of bis formed by{ a number len(b) = jBj, its length;{ a block number ref(b), the referenced block;{ a vector tr0:::m of bit masks, where tri gives the states of the NFA thatremain active after reading B if only the i-th state of the NFA is active atthe beginning;{ a bit mask act = [ fi; tri 6= ;g, which indicates which states of the NFAmay yield any surviving state after processing B;{ a bit mask fin, which indicates which states, if active before processing B,produce an occurrence inside B (after processing at least one character ofB); and{ a vector mat0:::m of block numbers, where mati gives the most recent (i.e.longest) block b0 in the referencing chain b; ref(b); ref(ref(b)); : : : such thati 2 fin(b0), or a null value if there is no such block.The state of the search consists of two elements{ the last text position considered, j (initially 0);{ a bit mask S of m + 1 bits, which indicates which states are active afterprocessing T1:::j. Initially, S has active only its initial state, S = f0g.As we show next, the total cost to search for all the occurrences with thisscheme is O(2m+mn+Rm logm) in the worst case. The �rst term corresponds tobuilding the DFA from the NFA, the second to computing block descriptions andupdating the search state, and the last to report the occurrences. The existenceproblem is solved in time O(2m +mn). The space requirement is O(2m +mn).We recall that patterns longer than the computer word w get their search costmultiplied by dm=we.4.1 Computing Block DescriptionsWe show how to compute the description of a new block b0 that representsB0 = Ba, where B is the string represented by a previous block b and a is anexplicit letter. An initial block b0 represents the string ", and its description is:len(b0) = 0; tri(b0) = fig; act(b0) = f0 : : :mg; fin(b0) = ;; mati(b0) = a nullvalue. We give now the update formulas for B0 = Ba.{ len(b0)  len(b) + 1.{ ref(b0)  b.{ tri(b0)  D(tri(b); a) (we only need to do this for i 2 act(b)).{ act(b0)  fi 2 act(b); tri(b0) 6= ;g.{ fin(b0)  fin(b) [ fi 2 act(b0); tri(b0) \F 6= ;g.{ mati(b0)  mati(b) if tri(b0) \ F = ;, and b0 otherwise.In the worst case we have to update all the cells of tr and mat, so we payO(mn) time (recall that bit parallelism permits performing set operations inconstant time). The space required for the block descriptions is O(mn) as well.



4.2 Reporting Matches and Updating the Search StateThe fin(b0) mask tells us whether there are any occurrences to report dependingon the active states at the beginning of the block. Therefore, our �rst action isto compute S \ fin(b0), which tells us which of the currently active states willproduce occurrences inside B0. If this mask turns out to be null, we can skip theprocess of reporting matches.If there are states in the intersection then we will have matches to reportinside B0. Now, each state i in the intersection produces a list of positions whichcan be retrieved in decreasing order using mati(b0); mati(ref(mati(b0))); : : :.If B0 starts at text position j, then we have to report the text positions j +len(mati(b0))� 1; j + len(mati(ref(mati(b0))))� 1; : : :. These positions appearin decreasing order, but we have to merge the decreasing lists of all the statesin S \ fin(b0). A priority queue can be used to obtain each position in O(logm)time. If there are R occurrences overall, then in the worst case each occurrencecan be reported m times (reached from each state), which gives a total cost ofO(Rm logm).Finally, we update S in O(m) time per block with S  [i2S\act(b0)tri(b0).5 A Faster Algorithm on AverageAn average case analysis of our algorithm reveals that, except for mat, all theother operations can be carried out in linear time. This leads to a variation ofthe algorithm that is linear time on average.The main point is that, on average, jact(b)j = jtri(b)j = O(1), that is, thenumber of states of the automaton which can survive after processing a block isconstant. We prove in the Appendix that this holds under very general assump-tions and for \admissible" regular expressions (i.e. those whose automata runout of active states after processing O(1) text characters). Note that, thanks tothe self loop in the initial state 0, this state is always in act(b) and in tr0(b).Constant time operations. Except for mat, all the computation of the blockdescription is proportional to the size of act and hence it takes O(n) time (seeSection 4.1): tri(b0) needs to be computed only for those i 2 act(b); and act(b0)and fin(b0) can also be computed in time proportional to jact(b)j or jact(b0)j.The update to S (see Section 4.2) needs only to consider the states in act(b0).Each active bit in act is obtained in constant time by bit magic.Updating the mat vector. What we need is a mechanism to update mat fast.Note that, despite that mati(b0) is null if i 62 fin(b0), it may not be true thatjfin(b0)j = O(1) on average, because as soon as a state belongs to fin(b), itbelongs to all its descendants in the LZ78 trie.However, it is still true that just O(1) values of mat(b) change in mat(b0),where ref(b0) = b, since mat changes only on those fi; tri(b0)\F 6= ;g � act(b0),and jact(b0)j = O(1).



Hence, we do not represent a new mat vector for each block, but only itsdi�erences with respect to the referenced block. This must be done such that (i)the mat vector of the referenced block is not altered, as it may have to be usedfor other descendants; and (ii) we are able to quickly �nd mati for any i.A solution is to represent mat as a complete tree (i.e. perfectly balanced),which will always have m + 1 nodes and associates the keys f0 : : :mg to theirvalue mati. This permits obtaining in O(logm) time the value mati. We startwith a complete tree, and later need only to modify the values associated totree keys, but never add or remove keys (otherwise an AVL would have been agood choice). When a new value has to be associated to a key in the tree of thereferenced block in order to obtain the tree of the referencing block, we �nd thekey in the old tree and create of copy of the path from the root to the key. Thenwe change the value associated to the new node holding the key. Except whenthe new nodes are involved, the created path points to the same nodes where theold paths points, hence sharing part of the tree. The new root corresponds to themodi�ed tree of the new block. The cost of each such modi�cation is O(logm).We have to perform this operation O(1) times on average per block, yieldingO(n logm) time.Figure 2 illustrates the idea. This kind of technique is usual when implement-ing the logical structure of WORM (write once read many) devices, in order toreect the modi�cations of the user on a medium that does not permit alter-ations.
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Fig. 2. Changing node 5 to 5' in a read-only tree.Reporting matches. We have to add now the cost to report the R matches.Since jtri(b)j = O(1) on average, there are only O(1) states able to trigger anoccurrence at the end of a block, and hence each occurrence is triggered by O(1)



states on average. The priority queue gives us those positions in O(logm) timeper position, so the total cost to trigger occurrences is on average O(R logm).Lowering space and preprocessing costs. The fact that jtri(b)j = O(1) on averageshows another possible improvement. We have chosen a DFA representation ofour automaton which needs O(2m) space and preprocessing time. Instead, anNFA representation would require O(m2). The problem with the NFA is that,in order to build tri(b0) for b0 = (b; a), we need to make the union of the NFAstates reachable via the letter a from each state in tr(b). This has a worst caseof O(m), yielding O(m2) worst case search time to update a block. However,on average this drops to O(1) since only O(1) states i have tri(b) 6= ; (becausejact(b)j = O(1)) and each such tri(b) has constant size.Therefore, we have obtained average complexity O(m2+(n+R) logm). Thespace requirements are lowered as well. The NFA requires only O(m) space.The block descriptions take O(n) space because there are only O(1) nonemptytri masks. With respect to the mat trees, we have that there are on averageO(1) modi�cations per block and each creates O(logm) new nodes, so the spacerequired for mat is on average O(n logm). Hence the total space is O(m +n logm).If R is really small we may prefer an alternative implementation. Instead ofrepresenting mat, we store for each block a bit mask ffin, which tells whetherthere is a match exactly at the end of the block. While fin is active we gobackward in the referencing chain of the block reporting all those blocks whoseffin mask is active in a state of S. This yields O(m2+n+Ru=n) time on averageinstead of O(m2 + (n+ R) logm). The space becomes O(m + n).6 Experimental ResultsWe have implemented our algorithm in order to determine its practical value.We chose to use the LZW format by modifying the code of Unix's uncompress,so our code is able to search �les compressed with compress (.Z). This impliessome small changes in the design, but the algorithm is essentially the same.We have used bit parallelism, with a single table (no horizontal partitioning)and map (at search time) the character set to an integer range representing thedi�erent pattern characters, to reduce space. Finally, we have chosen to use theffin masks instead of representing mat.We ran our experiments on an Intel Pentium III machine of 550 MHz and 64Mb of RAM. We have compressed 10 Mb of Wall Street Journal articles, whichgets compressed to 42% of its original size with compress. We measure user time,as system times are negligible. Each data point has been obtained by repeatingthe experiment 10 times.In the absence of other algorithms for compressed regular expression search-ing, we have compared our algorithm against the naive approach of decompress-ing and searching. The WSJ �le needed 3.58 seconds to be decompressed withuncompress. After decompression, we run two di�erent search algorithms. A �rst



one, DFA, uses a bit-parallel DFA to process the text. This is interesting becauseit is the algorithm we are modifying to work on compressed text. A second one,the software nrgrep [20], uses a character skipping technique for searching [23],which is much faster. In any case, the time to uncompress is an order of magni-tude higher than that to search the uncompressed text, so the search algorithmused does not signi�cantly a�ect the results.A major problem when presenting experiments on regular expressions is thatthere is not a concept of \random" regular expression, so it is not possible tosearch, say, 1,000 random patterns. Lacking such good choice, we �xed a setof 7 patterns which were selected to illustrate di�erent interesting cases. Thepatterns are given in Table 1, together with some parameters and the obtainedsearch times. We use the normal operators to denote regular expressions plussome extensions, such as "[a-z]" = (ajbjcj:::jz) and "." = all the characters.Note that the 7th pattern is not \admissible" and the search time gets a�ected.No. Pattern m R Ours Uncompress Uncompress+ Nrgrep + DFA1 American|Canadian 17 1801 1.81 3.75 3.852 Amer[a-z]*can 9 1500 1.79 3.67 3.743 Amer[a-z]*can|Can[a-z]*ian 16 1801 2.23 3.73 3.874 Ame(i|(r|i)*)can 10 1500 1.62 3.70 3.725 Am[a-z]*ri[a-z]*an 9 1504 1.88 3.68 3.726 (Am|Ca)(er|na)(ic|di)an 15 1801 1.70 3.70 3.757 Am.*er.*ic.*an 12 92945 2.74 3.68 3.74Table 1. The patterns used on Wall Street Journal articles and the search times inseconds.As the table shows, we can actually improve over the decompression of thetext followed by the application of any search algorithm (indeed, just the decom-pression takes much more time). In practical terms, we can search the original�le at about 4{5 Mb/sec. This is about half the time necessary for decompressionplus searching with the best algorithm.We have used compress because it is the format we are dealing with. In somescenarios, LZW is the preferred format because it maximizes compression (e.g. itcompressed DNA better than LZ77). However, we may prefer a decompress plussearch approach under the LZ77 format, which decompresses faster. For example,Gnu gzip needs 2.07 seconds for decompression in our machine. If we compareour search algorithm on LZW against decompressing on LZ77 plus searching, weare still 20% faster.
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Appendix: Average Number of Active BitsThe goal of this Appendix is to show that, on average, jact(b)j = jtri(b)j = O(1).In this section � denotes the size of the text alphabet.Let us consider the process of generating the LZ78/LZW trie. A string fromthe text is read and the current trie is followed, until the new string read \fallsout" of the trie. At that point we add a new node to the trie and restart readingthe text. It is clear that, at least for Bernoulli sources, the resulting trie is thesame as the result of inserting n random strings of in�nite length.Let us now consider initializing our NFA with just state i active. Now, webacktrack on the LZ78 trie, entering into all possible branches and feeding theautomaton with the corresponding letter. We stop when the automaton runs outof active states.The total amount of trie nodes touched in this process is exactly the amountof text blocks b whose i-th bit in act(b) is active, i.e. the blocks such that if westart with state i active, we �nish the block with some active state. Hence thetotal amount of states in act over all the blocks of the text corresponds to thesum of trie nodes touched when starting the NFA initialized with each possiblestate i.As shown by Baeza-Yates and Gonnet [4, 5], the cost of backtracking on atrie of n nodes with a regular expression is O(polylog(n)n�), where 0 � � < 1depends on the structure of the regular expression. This result applies only torandom tries over a uniformly distributed alphabet and for an arbitrary regularexpression which has no outgoing edges from �nal states. We remark that theletter probabilities on the LZ78 trie are more uniform than on the text, so evenon biased text the uniform model is not so bad approximation. In any case theresult can probably be extended to biased cases.Despite being suggestive, the previous result cannot be immediately appliedto our case. First, it is not meaningful to consider such a random text in acompression scenario, since in this case compression would be impossible. Evena scenario where the text follows a biased Bernoulli or Markov model can berestrictive. Second, our DFAs can perfectly have outgoing transitions from the�nal states (the previous result is relevant because as soon as a �nal state isreached they report the whole subtrie). On the other hand, we cannot a�ordan arbitrary text and pattern simultaneously because it will always be possibleto design a text tailored to the pattern that yields a low e�ciency. Hence, weconsider the most general scenario which is reasonable to face:De�nition 1. Our arbitrariness assumption states that text and pattern arearbitrary but independent, in the sense that there is zero correlation between textsubstrings and strings generated by the regular expression.The arbitrariness assumption permits us extending our analysis to any textand pattern, under the condition that the text cannot be especially designed forthe pattern. Our second step is to set a reasonable condition over the pattern.



The number of strings of length ` that are accepted by an automaton is [27]N (`) = Xj �j!j̀ = O(c`)where the sum is �nitary and �j and !j are constants. The result is simpleto obtain with generating functions: for each state i the function fi(z) countsthe number of strings of each length that can be generated from state i of theDFA, so if edges labeled a1 : : : ak reach states i1 : : : ik from i we have fi(z) =z(fi1(z)+ : : :+ fik(z)+ 1 � [i �nal]), which leads to a system of equations formedby polynomials and possibly fractions of the form 1=(1� z). The solution to thesystem is a rational function, i.e. a quotient between polynomials P (z)=Q(z),which corresponds to a sequence of the form Pj �j!j̀. We are ready now toestablish our condition over the admissible regular expressions.De�nition 2. A regular expression is admissible if the number of strings oflength ` that it generates is at most c`, where c < �, for any ` = !(1).Unadmissible regular expressions are those which basically match all thestrings of every length, e.g. a(ajb)�a over the alphabet fa; bg, which matches2`=4 = �(2`) strings of length `. However, there are other cases. For example,pattern matching allowing k errors can be modeled as a regular expression whichmatches every string for ` = O(k) [21]. As we see shortly, we can handle someunadmissible regular expressions anyway.If a regular expression is admissible and the arbitrariness assumption holds,then if we feed it with characters from a random text position the automatonruns out of active states after O(1) iterations. The reason is that the automatonrecognizes c` strings of length `, out of the �` possibilities. Since text and patternare uncorrelated, the probability that the automaton recognizes the selectedtext substring after ` iterations is O((c=�)`) = O(�`), where we have de�ned� = c=� < 1. Hence the expected amount of steps until the automaton runs outof active states is P`>=0 �` = 1=(1� �) = O(1).Let us consider a perfectly balanced trie of n nodes obtained from the text,of height h = log� n. If we start an automaton at the root of the trie, it willtouch O(c`) nodes at the trie level `. This means that the total number of nodestraversed is O �ch� = O �clog� n� = O �nlog� c� = O �n��for � < 1. So in this particular case we repeat the result that exists for randomtries, which is not surprising. Let us now consdier the LZ78 trie of an arbitrarytext, which has f(`) nodes at depth `, wherehX̀=0 f(`) = n and f(0) = 1; f(` � 1) � f(`) � �`By the arbitrariness assumption, those f(`) strings cannot have correlation withthe pattern, so the traversal of the trie touches �`f(`) of those nodes at level `.



Therefore the total number of nodes traversed isC = hX̀=0 �`f(`)Let us now start with an arbitrary trie and try to modify it in order to increasethe number of traversed nodes while keeping the same total number of nodes n.Let us move a node from level i to level j. The new cost is C 0 = C � �i + �j.Clearly we increase the cost by moving nodes upward. This means that the worstpossible trie is the perfectly balanced one, where all nodes are as close to the rootas possible. On the other hand, LZ78 tries obtained from texts tend to be quitebalanced, so the worst and average case are quite close anyway. As an exampleof the other extreme, consider a LZ78 trie with maximum unbalancing (e.g. forthe text au). In this case the total number of nodes traversed is O(1).So we have that, under the arbitrariness assumption, the total number of trienodes traversed by an admissible regular expression is O(n�) for some � < 1.We use now this result for our analysis.It is clear that if we take our NFA and make state i the initial state, theresult corresponds to a regular expression because any NFA can be convertedinto a regular expression. So the total amount of states in act isO �n�0 + n�1 + : : : + n�m�where �i corresponds to taking i as the initial state. We say that a state is admis-sible if, when that state is considered as the initial state, the regular expressionbecomes admissible.Note that, given the self-loop we added at state 0, we have �0 = 1, i.e. state0 is unadmissible. However, all the other states must be admissible becauseotherwise the original regular expression would not be admissible. That is, thereis a �xed probability p of reaching the unadmissible state and from there theautomaton recognizes all the �` strings, which gives at least p�` = �(�`) stringsrecognized.Hence, calling � = max(�1; : : : ; �m) < 1we have that the total number of active states in all the act bit masks isO �n + mn�� = O(n)where we made the last simpli�cation considering that m = O(polylog(n)),which is weaker than usual assumptions and true in practice. Therefore, wehave proved that, under mild restrictions (much more general than the usualrandomness assumption), the amortized number of active states in the actmasksis O(1).Note that we can a�ord even that the unadmissible states are reachable onlyfrom O(1) other states, and the result still holds. For example, if our regularexpression is a(ajb)�am we have only O(1) initial states that yield unadmissible



expressions, and our result holds. On the other hand, if we have am(ajb)�a thenthe unadmissible state can be reached from �(m) other states and our resultdoes not hold.We focus now on the size of the tri(b) sets for admissible regular expressions.Let us consider the text substring B corresponding to a block b.We �rst consider the initial state, which is always active. How many statescan get activated from the initial state? At each step, the initial state may ac-tivate O(�) admissible states, but given the arbitrariness assumption, the prob-ability of each such state being active ` steps later is O(�`). While processingB1::k, the initial state is always active, so at the end of the processing we havePk̀=0 ��` = O(1) active states (the term �` corresponds to the point where wewere processing Bk�`).We consider now the other m admissible states, whose activation vanishesafter examining O(1) text positions. In their case the probability of yieldingan active state after processing B is O(�k). Hence they totalize O(m�k) activestates. As before, the worst trie is the most balanced one, in which case there are�k blocks of lengths 0 to h = log� n. The total number of active states totalizeshX̀=0 �`m�` = O(mch) = O �mn��Hence, we have in total O(n+mn�) = O(n) active bits in the tri sets, wherethe n comes from the O(1) states activated from the initial state and the mn�from the other states.


