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Abstract. We present a solution to the problem of performing approx-
imate pattern matching on compressed text. The format we choose is
the Ziv-Lempel family, specifically the LZ78 and LZW variants. Given
a text of length u compressed into length n, and a pattern of length m,
we report all the R occurrences of the pattern in the text allowing up to
k insertions, deletions and substitutions, in O(mkn + R) time. The exis-
tence problem needs O(mkn) time. We also show that the algorithm can
be adapted to run in O(k?n 4 min(mkn, m?(mao)*) + R) average time,
where o is the alphabet size. The experimental results show a speedup
over the basic approach for moderate m and small k.

1 Introduction

The string matching problem is defined as follows: given a pattern P = py ...pnm
and a text T = ¢1...%,, find all the occurrences of P in T, i.e. return the set
{|z|, T = zPy}. The complexity of this problem is O(u) in the worst case
and O(ulog,(m)/m) on average (where o is the alphabet size), and there exist
algorithms achieving both time complexities using O(m) extra space [8, 3].

A generalization of the basic string matching problem is approzimate string
matching: an error threshold £ < m is also given as input, and we want to
report all the ending positions of text substrings which match the pattern after
performing up to %k character insertions, deletions and replacements on them.
Formally, we have to return the set {|zP’|, T = zP'y and ed(P, P') < k}, where
ed(P, P') is the “edit distance” between both strings, i.e. the minimum number of
character insertions, deletions and replacements needed to make them equal. The
complexity of this problem is O(u) in the worst case and O(u(k + log,(m))/m)
on average. Both complexities have been achieved, despite that the space and
preprocessing cost is exponential in m and % in the first case and polynomial in
m in the second case. The best known worst case time complexity is O(ku) if
the space has to be polynomial in m (see [14] for a survey).
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A particularly interesting case of string matching is related to text com-
pression. Text compression [5] tries to exploit the redundancies of the text to
represent it using less space. There are many different compression schemes,
among which the Ziv-Lempel family [23,24] is one of the best in practice be-
cause of their good compression ratios combined with efficient compression and
decompression time.

The compressed matching problem was first defined in the work of Amir
and Benson [1] as the task of performing string matching in a compressed text
without decompressing it. Given a text 7', a corresponding compressed string
Z = z1...2n, and a pattern P, the compressed matching problem consists in
finding all occurrences of P in T, using only P and Z. A naive algorithm, which
first decompresses the string Z and then performs standard string matching,
takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+ R),
where R is the number of matches (note that it could be that R = u > n).

The compressed matching problem is important in practice. Today’s textual
databases are an excellent example of applications where both problems are
crucial: the texts should be kept compressed to save space and I/O time, and they
should be efficiently searched. Surprisingly, these two combined requirements
are not easy to achieve together, as the only solution before the 90’s was to
process queries by uncompressing the texts and then searching into them. In
particular, approzimate searching on compressed text was advocated in [1] as an
open problem.

This is the problem we solve in this paper: we present the first solution
for compressed approximate string matching. The format we choose is the Ziv-
Lempel family, focusing in the LZ78 and LZW variants. By modifying the basic
dynamic programming algorithm, we achieve a time complexity of O(mkn + R)
and a space complexity of O(n(mk + logn)) bits (i.e. O(1 + mk/logn) times
the memory necessary to decompress). The existence problem needs O(mkn)
time and space. We show that the algorithm can be adapted to run in O(k%*n +
min(mkn, m?(ma)¥) + R) average time, where o is the alphabet size.

Some experiments have been conducted to assess the practical interest of our
approach. We have developed a variant of LZ78 which is faster to decompress in
exchange for somewhat worse compression ratios. Using this compression format
our technique can take less than 70% of the time needed by decompressing and
searching on the fly with basic dynamic programming for moderate m and small
k values. Dynamic programming is considered as the most flexible technique to
cope with diverse variants of the problem. However, decompression followed by
faster search algorithms specifically designed for the edit distance still outper-
forms our technique, albeit those algorithms are less flexible to cope with other
variants of the problem.

2 Related Work

We consider in this work Ziv-Lempel compression, which is based on finding
repetitions in the text and replacing them with references to similar strings



previously appeared. LZ77 [23] is able to reference any substring of the text
already processed, while LZ78 [24] and LZW [21] reference only a single previous
reference plus a new letter that is added. The first algorithm for exact searching
is from 1994 [2], which searches in LZ78 needing time and space O(m? + n).

The only search technique for LZ77 [9] is a randomized algorithm to deter-
mine in time O(m + nlog®(u/n)) whether a pattern is present or not in the text
(it seems that with O(R) extra time they could find all the pattern occurrences).

An extension of [2] to multipattern searching was presented in [11], together
with the first experimental results in this area. They achieve O(m? + n) time
and space, although this time m is the total length of all the patterns.

New practical results appeared in [16], who presented a general scheme to
search on Ziv-Lempel compressed texts (simple and extended patterns) and spe-
cialized it for the particular cases of LZ77, LZ78 and a new variant proposed
which was competitive and convenient for search purposes. A similar result, re-
stricted to the LZW format, was independently found and presented in [12]. In
[17] a new, faster, algorithm was presented based on Boyer-Moore.

The aim of this paper is to present a general solution to the approximate
string matching problem on compressed text in the LZ78 and LZW formats.

3 Approximate String Matching by Dynamic
Programming

We introduce some notation for the rest of the paper. A string S is a sequence
of characters over an alphabet X. If the alphabet is finite we call ¢ its size. The
length of S is denoted as |S|, therefore S = s;...5/5| where s; € X. A substring
of S'is denoted as S; . ; = s;8;41...5;, and if 2 > 7, S; ; = ¢, the empty string
of length zero. In particular, S; = s;. The pattern and the text, P and 7', are
strings of length m and wu, respectively.

We recall that ed(4, B), the edit distance between A and B, is the minimum
number of characters insertions, deletions and replacements needed to convert A
into B or vice versa. The basic algorithm to compute the edit distance between
two strings A and B was discovered many times in the past, e.g. [18]. This was
converted into a search algorithm much later [19]. We first show how to compute
the edit distance between two strings A and B. Later, we extend that algorithm
to search a pattern in a text allowing errors.

To compute ed(A, B), a matrix Co_|4)0..|B| is filled, where C; ; represents
the minimum number of operations needed to convert A; ; to By ;. This is
computed as C; o = ¢, Co ; = j, and

Ciyj =if (Ai = Bj) then Ci—l,j—l else 1+ min(C’i_lyj, Ci,j—la Ci—l,j—l)

where at the end C|4|, 3| = ed(A4, B).

We consider the text searching problem now. The algorithm is basically the
same, with A = P and B = T (computing C column-wise so that O(m) space
is required). The only difference is that we must allow that any text position



is the potential start of a match. This is achieved by setting Co; = 0 for all
j € 0...u. That is, the empty pattern matches with zero errors at any text
position (because it matches with a text substring of length zero).

The algorithm then initializes its column Cy, ,, with the values C; = 7, and
processes the text character by character. At each new text character 7}, its
column vector is updated to C§ ,,. The update formula is

C; = if (P, =1T;) then C;_1 else 1+ min(C;_4,C;,Ci_1)

k3

With this formula the invariant that holds after processing text position j is
C; = led(Py. 4, Th. ), where

led(A,B) = ieIE.i.IllBl ed(A, B;. )

that is, C; is the minimum edit distance between P; _; and a suffix of the text
already seen. Hence, all the text positions where C,, < k are reported as ending
points of occurrences.

The search time of this algorithm is O(mu) and it needs O(m) space.

The dynamic programming matrix has a number of properties that have been
used to derive better algorithms. We are interested in two of them.

Property 1 Let A and B be two strings such that A = A1A;. Then there exist
strings By and By such that B = B1 B3 and ed(A4, B) = ed(A1, B1)+ed(42, B).

That is, there must be some point inside B where its optimal comparison
against A can be divided at any arbitrary point in A. This is easily seen by
considering an optimal path on the C matrix that converts A into B. The path
must have at least one node in each row (and column), and therefore it can
be split in a path leading to the cell (|41],7), for some r, and a path leading
from that cell to (|A4|, |B|). Thus, r = |By|, which determines B;. For example
ed(”survey”, "surgery”) = ed(”surv”,”surg”) + ed("ey”, "ery”).

The second property refers to the so-called active cells of the C vector when
searching P allowing k errors. All the cells before and including the last one with
value < k are called “active”. As noted in [20]:

Property 2 The output of the search depends only on the active cells, and the
rest can be assumed to be k+ 1.

Between consecutive iterations of the dynamic programming algorithm, the
last active cell can be incremented at most in 1 (because neighboring cells of
the C matrix differ at most in 1). Hence the last active cell can be maintained
at O(1) amortized time per iteration. The search algorithm needs to work only
on the active cells. As conjectured in [20] and proved in [6,4], there are O(k)
active cells per column on average and therefore the dynamic programming takes
O(ku) time on average.



Considering Property 2, we use a modified version of ed in this paper. When
we use ed(4, B) we mean the exact edit distance between 4 and B if it is < &,
otherwise any number larger than & can be returned. It is clear that the output
of an algorithm using this definition is the same as with the original one.

4 A General Search Approach

We present now a general approach for approximate pattern matching over a
text Z = by...b,, that is expressed as a sequence of n blocks. Each block b,
represents a substring B, of T, such that B;...B, = T. Moreover, each block
B, is formed by a concatenation of a previously seen blocks and an explicit letter.
This comprises the LZ78 and LZW formats. Our goal is to find the positions in
T where occurrences of P end with at most £ errors, using Z.

Our approach is to adapt an algorithm designed to process T' character by
character so that it processes T block by block, using the fact that blocks are
built from previous blocks and explicit letters. In this section we show how have
we adapted the classical dynamic programming algorithm of Section 3. We show
later that the O(ku) algorithm based on active cells can be adapted as well.

We need a little more notation before explaining the algorithm. Each match
is defined as either overlapping or internal. A match j is internal if there is an
occurrence of P ending at j totally contained in some block B, (i.e. if the block
repeats the occurrence surely repeats). Otherwise it is an overlapping match. We
also define 5("), for a block b and a natural number r, as follows: 5(°) = b and
b(r+1) = (8')("), where b’ is the block referenced by b. That is, b(") is the block
obtained by going r steps in the backward referencing chain of b.

The general mechanism of the search is as follows: we read the blocks b, one
by one. For each new block b read, representing a string B, and where we have
already processed 77, ;, we update the state of the search so that after working
on the block we have processed T ;g = T1..;B. To process each block, three
steps are carried out: (1) its description (to be specified shortly) is computed,
(2) the occurrences ending inside the block B are reported, and (3) the state of
the search is updated. The state of the search consists of two elements

— The last text position considered, j (initially 0).
— A vector C;, for i € 0...m, where C; = led(Py..;,T1.. ;). Initially, C; = 4.
This vector is the same as for plain dynamic programming.

The description of all the blocks already seen is maintained. Say that block
b represents the text substring B. Then the description of b is formed by the
length len(b) = |B|, the referenced block ref(b) = () and some vectors indexed
by i € 1...m (their values are assumed to be &k + 1 if accessed outside bounds).

— Z;,i/(b) = ed(P;..ir, B),fort € 1...m, ¢ € max(i+|B|—k—1,i—1)...min(i+
|B| + k — 1,m), which at each point gives the edit distance between B and
P; ;. Note that Z has O(mk) entries per block. In particular, the set of
possible ¢’ values is empty if ¢ > m+k+1—|B|, in which case Z; ;:(b) = k+1.



— Pi(b) = led(Ps..i,B), for i € 1...m, gives the edit distance between the
prefix of length ¢ of P and a suffix of B. P has O(m) entries per block.

— M(b) = b, where 7 = min{r’ > 0, Pp,(b")) < k}. That is, M(b) is the
last block in the referencing chain for 4 that finishes with an internal match
of P. Its value is —1 if no such block exists.

Figure 1 illustrates the Z matrix and how is it filled under different situations.

=] 2k+1 |B|+k+1
> P
1 1
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1 i m 1 P m
[B] >=k 1B < k

Fig. 1. The Z matrix for a block b representing a string B.

5 Computing Block Descriptions

We show how to compute the description of a new block & that represents
B’ = Ba, where B is the string represented by a previous block b and a is
an explicit letter. The procedure is almost the same as for LZW so we omit
it here and concentrate on LZ78 only. An initial block by represents the string
g, and its description is: len(bg) = 0; Z;ir(bo) = ' —i+ 1,7 € 1...m,7 €
t—1...min(¢+k — 1,m); Pi(bo) =4, i€ 1...m; and M(bo) = —1.

We give now the update formulas for the case when a new letter a is added
to B in order to form B’. These can be seen as special cases of dynamic pro-
gramming matrices between B and parts of P.

— len(b') = len(b) + 1.

— ref(d') =b.

- Iiyi/(bl) = Ii,i’—l(b) if a = Pi/, and 1 + min(IiYi/(b),Iiyi/_l(bl),l-iyi/_l(b))
otherwise. We start with! Ti max(i—1,i+|B'|-k—2)(0') = min(|B’|, k + 1), and
compute the values for increasing ¢'. This corresponds to filling a dynamic
programming matrix where the characters of P;  are the columns and the
characters of B are the rows. Adding a to B is equivalent to adding a new

! Note that it may be that this initial value cannot be placed in the matrix because
its position would be outside bounds.



row to the matrix, and we store at each block only the row of the matrix
corresponding to its last letter (the rest could be retrieved by going back
in the references). For each 4, there are 2k + 1 such columns stored at each
block B, corresponding to the interesting ¢ values. Figure 2 illustrates. To
relate this to the matrix of Z in Figure 1 one needs to consider that there
is a three dimensional matrix indexed by 7, ¢’ and |B|. Figure 1 shows the
plane stored at each block B, corresponding to its last letter. Figure 2 shows
a plane obtained by fixing .

" P . ) P

B’ B’
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-
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Fig. 2. The virtual dynamic programming matrices. On the left, between B and P;. .,
to compute Z. On the right, between B and P, to compute P.

— Pi(b') = Pi—1(b) if a = P; and 1 + min(P;(b), Pi—1(b'), Pi—1(b)) otherwise.
We assume that Pg(b') = 0 and compute the values for increasing :. This
corresponds again to filling a dynamic programming matrix where the char-
acters of P are the columns, while the characters of B are the rows. The
(virtual) matrix has ¢ at the i-th column of the first row and zeros in the
first column. Figure 2 illustrates.

— M) = M(b) if Ppo(b') > k, and b’ otherwise. That is, if there is a new
internal match ending at |B’| then ¥’ is added to the list. This takes constant
time.

6 Updating the Search State

We specify now how to report the matches and update the state of the search
once the description of a new block & has been computed. Three actions are
carried out, in this order.

Reporting the overlapping matches. An overlapping match ending inside the new
block B corresponds to an occurrence that spans a suffix of the text already seen
T1..; and a prefix of B. From Property 1, we know that if such an occurrence
matches P with %k errors (or less) then it must be possible to split P in P; _;
and P;y1...m, such that the text suffix matches the first half and the prefix of B
matches the second half. Figure 3 illustrates.



G + |i+l,m(b*)

Fig. 3. Splitting of an overlapping match (grayed), where b* = p(IBI=)

Therefore, all the possible overlapping matches are found by considering all
the possible positions ¢ in the pattern. The check for a match ending at text
position j + i’ is then split into two parts. A first condition states that P _;
matches a suffix of T7._ ; with %k, errors, which can be checked using the C vector.
A second condition states that P;;1. ., matches By, ; with ky errors, which can
be checked using the Z matrix of previous referenced blocks. Finally, k; + k2
must be < k.

Summarizing, the text position j + ¢’ (for ¢ € 1...min(m + k — 1,|B])) is
reported if

max(m—1,m—i'+k) y
min (Gt Topm®P) <k 1)
i=min(1l,m—3'—k)
where we need ref(-) to compute p(IBI=i), Additionally, we have to report the
positions j + ¢’ such that C,, + ¢ < k (for ' € 1...k). This corresponds to
Im+1ym(b(|B|_il)) = 7', which is not stored in that matrix.

Note that if we check the i’ positions in decreasing order then the backward
reference chain has to be traversed only once. So the total cost for this check is
O(mk). The occurrences are not immediately reported but stored in decreasing
order of ¢’ in an auxiliary array (of size at most m + k), because they can mix
and collide with internal matches.

Reporting the internal matches. These are matches totally contained inside B.
Their offsets can be retrieved by following the M (b) list until reaching the value
—1. That is, we start with ¥’ < M(b) and while & # —1 report the positions
j+len(b') and update b’ < M(b'). This retrieves all the internal matches in time
proportional to their amount, in reverse order. These matches may collide and
intermingle with the overlapping matches. We merge both chains of matches and
report them in increasing order and without repetitions. All this can be done
in time proportional to the number of matches reported (which adds up O(R)
across all the search).

Updating the C vector and j. To update C we need to determine the best edit
distance between P; ; and a suffix of the new text Ty ;4 = T1..;B. Two
choices exist for such a suffix: either it is totally inside B or it spans a suffix of
T3..; and the whole B. Figure 4 illustrates the two alternatives. The first case
corresponds to a match of P;  ; against a suffix of B, which is computed in P.
For the second case we can use Property 1 again to see that such an occurrence



is formed by matching P; ;' against some suffix of 71 ; and P;:y;. ; against the
whole B. This can be solved by combining C and Z.

Fig. 4. Two choices to update the C vectors.

The formula to update C to a new C’ is therefore

min(¢—1,i—|B|+k)
C; « min(Pi(b),  min (Cir + Zirg1,4(0))) (2)
i’=max(1,i—|B|—k)
which finds the correct value if it is not larger than %, and gives something larger
than k otherwise (this is in accordance to our modified definition of ed). Since
there are m cells to compute and each one searches over at most 2k + 1 values,
the total cost to update C is O(mk).
Finally, j is easily updated by adding |B| to it.

7 Complexity

The space requirement for the algorithm is basically that to store the block
descriptions. The lengths len(-) add up wu, so in the worst case nlog(u/n) =
O(nlogn) bits are necessary to store them. The references to the previous blocks
ref(-) and M(-) need O(log n) bits per entry, for a total of O(nlogn) bits. For the
matrices, we observe that each element of those arrays differs from the previous
one in at most 1, that is |Z; ;/41(b) —Z; ++(b)| < 1 and |P;41(b) —Pi(b)| < 1. Their
first value is trivial and does not need to be stored. Therefore, each such cell can
be represented only with 2 bits, for a total space requirement of O(mkn) bits.

With respect to time complexity, all the processes described take O(mkn)
time for the existence problem and O(mkn+ R) time to report the R matches of
P. The update of P costs O(m) per block, but that of T takes O(mk). The same
happens to finding the overlapping matches and the update of C. The handling
of internal matches and merging with overlapping matches add up O(R) along
the total process.

8 A Faster Algorithm on Average

A simple form to speed up the dynamic programming algorithm on compressed
text is based on Property 2. That is, we try to work only on the active cells of

C, 7 and P.



We update only the active cells of C and P. If we assume a random pattern
P, then the property that says that there are on average O(k) active cells in C
at a random text position holds also when those text positions are the endpoints
of blocks in the text. The same happens to the P values, since P;(b) > C; after
processing block b.

We recall the minimization formula (2) to update C, and note that the C;: are
on average active only for ¢/ = O(k). Therefore only the values ¢ € |B| + O(k)
have a chance of being < k. The minimization with P; does not change things
because this vector has also O(k) active values on average.

Therefore, updating C costs O(k?) per block on average. Computing P takes
O(k) time since only the active part of the vector needs to be traversed.

A more challenging problem appears when trying to apply the technique to
Z;i+(b). They key idea in this case comes from considering that ed(P; ./, B) > k
if |IB|— (¢’ —i+1) > k, and therefore any block B such that |B| > m+ k cannot
have any active value in Z. Since there are at most O(c™**) different blocks of
length at most m—+k (recall that o is the alphabet size of the text), we can work
O(mko™**) in total in computing Z values. This is obtained by marking the
blocks that do not have any active value in their Z matrix, so that the Z matrix
of the blocks referencing them do not need to be computed either (moreover, the
computation of C and overlapping matches can be simplified).

However, this bound can be improved. The set of different strings matching
a pattern P with at most % errors, called Up(P) = {P’, ed(P, P') < k}, is finite.
More specifically, it is shown in [20] that if | P| = m, then |Ux(P)| = O((mo)*) at
most. This limits the total number of different blocks B that can be preprocessed
for a given pattern substring P; ;. Summing over all the possible substrings
P;. 4, considering that computing each such entry for each block takes O(1)
time, we have a total cost of O(m?(ma)¥). Note that this is a worst case result,
not only average case. Another limit for the total amount of work is still O(mkn),
so the cost is O(min(mkn, m?(mao)*)).

Finally, we have to consider the cost of processing the matches. This is O(R)
plus the cost to search the overlapping matches. We recall the formula (1) to find
them, which can be seen to cost O(k?) only, since there are O(k) active values in
C on average and therefore i’ € m=+ O(k) is also limited to O(k) different values.

Summarizing, we can solve the problem on LZ78 and LZW in O(k?n +
min(mkn, m?(mo)*) + R) average time. Note in particular that the middle term
is asymptotically independent on n. Moreover, the space required is O(k%n +
min(mkn, m?(mo)*) + nlogn) bits because only the relevant parts of the ma-
trices need to be stored.

9 Significance of the Results

9.1 Memory Requirements

First consider the space requirements. In the worst case we need O(n(mk+log n))
bits. Despite that this may seem impractical, this is not so. A first consideration



is that normal compressors use only a suffix (“window”) of the text already seen,
in order to use bounded memory independent of n. The normal mechanism is
that when the number of nodes in the LZ78 trie reaches a given amount N, the
trie is deleted and the compression starts again from scratch for the rest of the
file. A special mark is left in the compressed file to let the decompressor know
of this fact.

Our search mechanism can use the same mark to start reusing its allocated
memory from zero as well, since no node seen in the past will be referenced again.
This technique can be adapted to more complex ways of reusing the memory
under various LZ78-like compression schemes [5].

If a compressor is limited to use N nodes, the decompression needs at the very
least O(N log N) bits of memory. Since the search algorithm can be restarted af-
ter reading N blocks, it requires only O(N(mk +1log N)) bits. Hence the amount
of memory required to search is O(1+mk/log N) x memory for decompression,
and we recall that this can be lowered in the average case. Moreover, reason-
ably fast decompression needs to keep the decompressed text in memory, which
increases its space requirements.

9.2 Time Complexity

Despite that ours is the first algorithm for approximate searching on compressed
text, there exist also alternative approaches, some of them trivial and others not
specifically designed for approximate searching.

The first alternative approach is DS, a trivial decompress-then-search algo-
rithm. This yields, for the worst case, O(ku) [10] or O(m|Ui(P)|+ u) [20] time,
where we recall that |Ug(P)| is O((ma)*). For the average case, the best result
in theory is O(u + (k + log, m)u/m) = O(u) [7]. This is competitive when u/n
is not large, and it needs much memory for fast decompression.

A second alternative approach, OM, considers that all the overlapping matches
can be obtained by decompressing the first and last m + & characters of each
block, and using any search algorithm on that decompressed text. The inter-
nal matches are obtained by copying previous results. The total amount of
text to process is O(mn). Using the previous algorithms, this yields worst case
times of O(kmn + R) and O(m|Ux(P)| + mn + R) in the worst case, and
O((k + log, m)n + mn + R) = O(mn + R) on average. Except for large u/m, it
is normally impractical to decompress the first and last m + k characters of each
block.

Yet a third alternative, MP, is to reduce the problem to multipattern search-
ing of all the strings in U (P). As shown in [11], a set of strings of total length
M can be searched in O(M?+ n) time and space in LZ78 and LZW compressed
text. This yields an O(m?|Ux(P)|> + n + R) worst case time algorithm, which
for our case is normally impractical due to the huge preprocessing cost.

Table 1 compares the complexities. As can be seen, our algorithm yields the
best average case complexity for

kE=0(/u/n) A k=0(vym)

log, n
2(1 + log, m)

log, n
<k+0(1)< —2—
e ()_l—i—logam



where essentially the first condition states that the compressed text should be
reasonably small compared to the uncompressed text (this excludes DS), the
second condition states that the number of errors should be small compared
to the pattern length (this excludes OM) and the third condition states that
n should be large enough to make |Ui(P)| not significant but small enough to
make |Uy(P)|? significant (this excludes MP). This means in practice that our
approach is the fastest for short and medium patterns and low error levels.

|Algorithm|| Worst case time | Average case time |
DS ku u
m|Ur(P)| + u
OM kmn + R mn + R
m|Urp(P)|+ mn+ R
MP m2|Uk(P)|2—|—n m2|Uk(P)|2—|—n—|—R
Qurs kmn + R kZn + min(mkn, m2|Uk(P)|) + R

Table 1. Worst and average case time for different approaches.

9.3 Experimental Results

We have implemented our algorithm in order to determine its practical value.
Our implementation does not store the matrix values using 2 bit deltas, but
their full values are stored in whole bytes (this works for k& < 255). The space
is further reduced by not storing the information on blocks that are not to be
referenced later. In LZ78 this discards all the leaves of the trie. Of course a
second compression pass is necessary to add this bit to each compressed code.
Now, if this is done then we can even not assign a number to those nodes (i.e.
the original nodes are renumbered) and thus reduce the number of bits of the
backward pointers. This can reduce the effect of the extra bit and reduces the
memory necessary for decompression as well.

We ran our experiments on a Sun UltraSparc-1 of 167 MHz and 64 Mb
of RAM. We have compressed two texts: WSJ (10 Mb of Wall Street Journal
articles) and DNA (10 Mb of DNA text with lines cut every 60 characters).
We use an ad-hoc LZ78 compressor which stores the pair (s,a) corresponding
to the backward reference and new character in the following form: s is stored
as a sequence of bytes where the last bit is used to signal the end of the code;
and a is coded as a whole byte. Compression could be further reduced by better
coding but this would require more time to read the compressed file. The extra
bit indicating whether each node is going to be used again or not is added to s,
1.e. we code 2s or 25 + 1 to distinguish among the two possibilities.

Using the plain LZ78 format, WSJ was reduced to 45.02% of its original size,
while adding the extra bit to signal not referenced blocks raised this percentage
to 45.46%, i.e. less than 1% of increment. The figures for DNA were 39.69% and



40.02%. As a comparison, Unix Compress program, an LZW compressor that
uses bit coding, obtained 38.75% and 27.91%, respectively.

We have compared our algorithm against a more practical version of DS,
which decompresses the text on the fly and searches over it, instead of writing it
to a new decompressed file and then reading it again to search. The search algo-
rithm used is that based on active columns (the one we adapted). This gives us
a measure of the improvement obtained over the algorithm we are transforming.

It is also interesting to compare our technique against decompression plus
searching using the best available algorithm. For this alternative (which we call
“Best” in the experiments) we still use our compression format, because it de-
compresses faster than Gnu gzip and Unix compress. Our decompression times
are 2.09 seconds for WSJ and 1.80 for DNA. The search algorithms used are
those of [15,4, 13], which were the fastest for different m and % values in our
texts.

On the other hand, the OM-type algorithms are unpractical for typical com-
pression ratios (i.e. u/n at most 10) because of their need to keep count of the
m + k first and last characters of each block. The MP approach does not seem
practical either, since for m = 10 and £ = 1 it has to generate an automaton of
more than one million states at the very least. We tested the code of [11] on our
text and it took 5.50 seconds for just one pattern of m = 10, which outrules it
in our cases of interest.

We tested m = 10, 20 and 30, and £ = 1, 2 and 3. For each pattern length,
we selected 100 random patterns from the text and used the same patterns for
all the algorithms. Table 2 shows the results.

WSJ
k|| Ours DS Best Ours DS Best Ours DS Best
m = 10|m = 10|m = 10||m = 20|m = 20|m = 20||m = 30|m = 30|m = 30
1| 3.77 4.72 2.40 3.23 4.64 2.28 3.08 4.62 2.27
2|| 5.63 5.62 2.74 4.72 5.46 2.42 6.05 5.42 2.33
3| 11.60 6.43 3.64 9.17 6.29 2.75 13.56 6.22 2.44

DNA
k|| Ours DS Best Ours DS Best Ours DS Best
m = 10|m = 10|m = 10||m = 20|m = 20|m = 20||m = 30|m = 30|m = 30
1|| 3.91 5.21 2.66 2.49 5.08 2.46 2.57 5.06 2.51
2|| 6.98 6.49 2.88 3.81 6.31 2.91 5.02 6.28 2.71
3| 11.51 8.91 3.08 9.28 7.51 3.24 15.35 7.50 3.18

Table 2. CPU times to search over the WSJ and DNA files.

As the table shows, we can actually improve over the decompression of the
text and the application of the same search algorithm. In practical terms, we
can search the original file at about 2.6...4.0 Mb/sec when k& = 1, while the
time keeps reasonable and competitive for ¥ = 2 as well. Moreover, DS needs for



fast decompression to store the uncompressed file in main memory, which could
pose a problem in practice.

On the othe hand, the “Best” option is faster than our algorithm, but we re-
call that this is an algorithm specialized for edit distance. Dynamic programming
is unbeaten in its flexibility to accommodate other variants of the approximate
string matching problem.

10 Conclusions

We have presented the first solution to the open problem of approximate pat-
tern matching over Ziv-Lempel compressed text. Our algorithm can find the
R occurrences of a pattern of length m allowing %k errors over a text com-
pressed by LZ78 or LZW into n blocks in O(kmn + R) worst-case time and
O(k%*n + min(mkn, m?(mo)¥) + R) average case time. We have shown that this
is of theoretical and practical interest for small & and moderate m values.

Many theoretical and practical questions remain open. A first one is whether
we can adapt an O(ku) worst case time algorithm (where u is the size of the
uncompressed text) instead of the dynamic programming algorithm we have
selected, which is O(mu) time. This could yield an O(k?n + R) worst-case time
algorithm. Our efforts to adapt one of these algorithms [10] yielded the same
O(mkn + R) time we already have.

A second open question is how can we improve the search time in practice.
For instance, we have not implemented the version that stores 2 bits per number,
which could reduce the space. The updates to P and Z could be done using bit-
parallelism by adapting [13]. We believe that this could yield improvements for
larger &k values. On the other hand, we have not devised a bit-parallel technique
to update C and to detect overlapping matches. Another idea is to map all the
characters not belonging to the pattern to a unique symbol at search time, to
avoid recomputing similar states. This, however, requires a finer tracking of the
trie of blocks to detect also descendants of similar states. This yields a higher
space requirement.

A third question is if faster filtration algorithms can be adapted to this
problem without decompressing all the text. For example, the filter based in
splitting the pattern in k& + 1 pieces, searching the pieces without errors and
running dynamic programming on the text surrounding the occurrences [22]
could be applied by using the multipattern search algorithm of [11]. In theory
the complexity is O(m? 4 n + wkm?/cl™/ (#+1]) which is competitive for k <
m/©(log, (u/n) + log, m).
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