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A particularly interesting case of string matching is related to text com-pression. Text compression [5] tries to exploit the redundancies of the text torepresent it using less space. There are many di�erent compression schemes,among which the Ziv-Lempel family [23, 24] is one of the best in practice be-cause of their good compression ratios combined with e�cient compression anddecompression time.The compressed matching problem was �rst de�ned in the work of Amirand Benson [1] as the task of performing string matching in a compressed textwithout decompressing it. Given a text T , a corresponding compressed stringZ = z1 : : : zn, and a pattern P , the compressed matching problem consists in�nding all occurrences of P in T , using only P and Z. A naive algorithm, which�rst decompresses the string Z and then performs standard string matching,takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+R),where R is the number of matches (note that it could be that R = u > n).The compressed matching problem is important in practice. Today's textualdatabases are an excellent example of applications where both problems arecrucial: the texts should be kept compressed to save space and I/O time, and theyshould be e�ciently searched. Surprisingly, these two combined requirementsare not easy to achieve together, as the only solution before the 90's was toprocess queries by uncompressing the texts and then searching into them. Inparticular, approximate searching on compressed text was advocated in [1] as anopen problem.This is the problem we solve in this paper: we present the �rst solutionfor compressed approximate string matching. The format we choose is the Ziv-Lempel family, focusing in the LZ78 and LZW variants. By modifying the basicdynamic programming algorithm, we achieve a time complexity of O(mkn+R)and a space complexity of O(n(mk + log n)) bits (i.e. O(1 + mk= log n) timesthe memory necessary to decompress). The existence problem needs O(mkn)time and space. We show that the algorithm can be adapted to run in O(k2n+min(mkn;m2(m�)k) + R) average time, where � is the alphabet size.Some experiments have been conducted to assess the practical interest of ourapproach. We have developed a variant of LZ78 which is faster to decompress inexchange for somewhat worse compression ratios. Using this compression formatour technique can take less than 70% of the time needed by decompressing andsearching on the 
y with basic dynamic programming for moderate m and smallk values. Dynamic programming is considered as the most 
exible technique tocope with diverse variants of the problem. However, decompression followed byfaster search algorithms speci�cally designed for the edit distance still outper-forms our technique, albeit those algorithms are less 
exible to cope with othervariants of the problem.2 Related WorkWe consider in this work Ziv-Lempel compression, which is based on �ndingrepetitions in the text and replacing them with references to similar strings



previously appeared. LZ77 [23] is able to reference any substring of the textalready processed, while LZ78 [24] and LZW [21] reference only a single previousreference plus a new letter that is added. The �rst algorithm for exact searchingis from 1994 [2], which searches in LZ78 needing time and space O(m2 + n).The only search technique for LZ77 [9] is a randomized algorithm to deter-mine in time O(m+n log2(u=n)) whether a pattern is present or not in the text(it seems that with O(R) extra time they could �nd all the pattern occurrences).An extension of [2] to multipattern searching was presented in [11], togetherwith the �rst experimental results in this area. They achieve O(m2 + n) timeand space, although this time m is the total length of all the patterns.New practical results appeared in [16], who presented a general scheme tosearch on Ziv-Lempel compressed texts (simple and extended patterns) and spe-cialized it for the particular cases of LZ77, LZ78 and a new variant proposedwhich was competitive and convenient for search purposes. A similar result, re-stricted to the LZW format, was independently found and presented in [12]. In[17] a new, faster, algorithm was presented based on Boyer-Moore.The aim of this paper is to present a general solution to the approximatestring matching problem on compressed text in the LZ78 and LZW formats.3 Approximate String Matching by DynamicProgrammingWe introduce some notation for the rest of the paper. A string S is a sequenceof characters over an alphabet �. If the alphabet is �nite we call � its size. Thelength of S is denoted as jSj, therefore S = s1 : : : sjSj where si 2 �. A substringof S is denoted as Si:::j = sisi+1 : : : sj , and if i > j, Si:::j = ", the empty stringof length zero. In particular, Si = si. The pattern and the text, P and T , arestrings of length m and u, respectively.We recall that ed(A;B), the edit distance between A and B, is the minimumnumber of characters insertions, deletions and replacements needed to convert Ainto B or vice versa. The basic algorithm to compute the edit distance betweentwo strings A and B was discovered many times in the past, e.g. [18]. This wasconverted into a search algorithm much later [19]. We �rst show how to computethe edit distance between two strings A and B. Later, we extend that algorithmto search a pattern in a text allowing errors.To compute ed(A;B), a matrix C0:::jAj;0:::jBj is �lled, where Ci;j representsthe minimum number of operations needed to convert A1:::i to B1:::j. This iscomputed as Ci;0 = i, C0;j = j, andCi;j = if (Ai = Bj) then Ci�1;j�1 else 1 +min(Ci�1;j; Ci;j�1; Ci�1;j�1)where at the end CjAj;jBj = ed(A;B).We consider the text searching problem now. The algorithm is basically thesame, with A = P and B = T (computing C column-wise so that O(m) spaceis required). The only di�erence is that we must allow that any text position



is the potential start of a match. This is achieved by setting C0;j = 0 for allj 2 0 : : :u. That is, the empty pattern matches with zero errors at any textposition (because it matches with a text substring of length zero).The algorithm then initializes its column C0:::m with the values Ci = i, andprocesses the text character by character. At each new text character Tj , itscolumn vector is updated to C00:::m. The update formula isC0i = if (Pi = Tj) then Ci�1 else 1 + min(C0i�1; Ci; Ci�1)With this formula the invariant that holds after processing text position j isCi = led(P1:::i; T1:::j), whereled(A;B) = mini21:::jBj ed(A;Bi:::jBj)that is, Ci is the minimum edit distance between P1:::i and a su�x of the textalready seen. Hence, all the text positions where Cm � k are reported as endingpoints of occurrences.The search time of this algorithm is O(mu) and it needs O(m) space.The dynamic programming matrix has a number of properties that have beenused to derive better algorithms. We are interested in two of them.Property 1 Let A and B be two strings such that A = A1A2. Then there existstrings B1 and B2 such that B = B1B2 and ed(A;B) = ed(A1; B1)+ed(A2; B2).That is, there must be some point inside B where its optimal comparisonagainst A can be divided at any arbitrary point in A. This is easily seen byconsidering an optimal path on the C matrix that converts A into B. The pathmust have at least one node in each row (and column), and therefore it canbe split in a path leading to the cell (jA1j; r), for some r, and a path leadingfrom that cell to (jAj; jBj). Thus, r = jB1j, which determines B1. For exampleed("survey", "surgery") = ed("surv"; "surg") + ed("ey"; "ery").The second property refers to the so-called active cells of the C vector whensearching P allowing k errors. All the cells before and including the last one withvalue � k are called \active". As noted in [20]:Property 2 The output of the search depends only on the active cells, and therest can be assumed to be k + 1.Between consecutive iterations of the dynamic programming algorithm, thelast active cell can be incremented at most in 1 (because neighboring cells ofthe C matrix di�er at most in 1). Hence the last active cell can be maintainedat O(1) amortized time per iteration. The search algorithm needs to work onlyon the active cells. As conjectured in [20] and proved in [6, 4], there are O(k)active cells per column on average and therefore the dynamic programming takesO(ku) time on average.



Considering Property 2, we use a modi�ed version of ed in this paper. Whenwe use ed(A;B) we mean the exact edit distance between A and B if it is � k,otherwise any number larger than k can be returned. It is clear that the outputof an algorithm using this de�nition is the same as with the original one.4 A General Search ApproachWe present now a general approach for approximate pattern matching over atext Z = b1 : : : bn, that is expressed as a sequence of n blocks. Each block brrepresents a substring Br of T , such that B1 : : :Bn = T . Moreover, each blockBr is formed by a concatenation of a previously seen blocks and an explicit letter.This comprises the LZ78 and LZW formats. Our goal is to �nd the positions inT where occurrences of P end with at most k errors, using Z.Our approach is to adapt an algorithm designed to process T character bycharacter so that it processes T block by block, using the fact that blocks arebuilt from previous blocks and explicit letters. In this section we show how havewe adapted the classical dynamic programming algorithm of Section 3. We showlater that the O(ku) algorithm based on active cells can be adapted as well.We need a little more notation before explaining the algorithm. Each matchis de�ned as either overlapping or internal. A match j is internal if there is anoccurrence of P ending at j totally contained in some block Br (i.e. if the blockrepeats the occurrence surely repeats). Otherwise it is an overlapping match. Wealso de�ne b(r), for a block b and a natural number r, as follows: b(0) = b andb(r+1) = (b0)(r), where b0 is the block referenced by b. That is, b(r) is the blockobtained by going r steps in the backward referencing chain of b.The general mechanism of the search is as follows: we read the blocks br oneby one. For each new block b read, representing a string B, and where we havealready processed T1:::j, we update the state of the search so that after workingon the block we have processed T1:::j+jBj = T1:::jB. To process each block, threesteps are carried out: (1) its description (to be speci�ed shortly) is computed,(2) the occurrences ending inside the block B are reported, and (3) the state ofthe search is updated. The state of the search consists of two elements{ The last text position considered, j (initially 0).{ A vector Ci, for i 2 0 : : :m, where Ci = led(P1:::i; T1:::j). Initially, Ci = i.This vector is the same as for plain dynamic programming.The description of all the blocks already seen is maintained. Say that blockb represents the text substring B. Then the description of b is formed by thelength len(b) = jBj, the referenced block ref(b) = b(1) and some vectors indexedby i 2 1 : : :m (their values are assumed to be k+ 1 if accessed outside bounds).{ Ii;i0(b) = ed(Pi:::i0 ; B), for i 2 1 : : :m; i0 2 max(i+jBj�k�1; i�1) : : :min(i+jBj+ k � 1;m), which at each point gives the edit distance between B andPi:::i0 . Note that I has O(mk) entries per block. In particular, the set ofpossible i0 values is empty if i > m+k+1�jBj, in which case Ii;i0(b) = k+1.



{ Pi(b) = led(P1:::i; B), for i 2 1 : : :m, gives the edit distance between thepre�x of length i of P and a su�x of B. P has O(m) entries per block.{ M(b) = b(r), where r = minfr0 � 0; Pm(b(r0)) � kg. That is, M(b) is thelast block in the referencing chain for b that �nishes with an internal matchof P . Its value is �1 if no such block exists.Figure 1 illustrates the I matrix and how is it �lled under di�erent situations.
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Fig. 1. The I matrix for a block b representing a string B.5 Computing Block DescriptionsWe show how to compute the description of a new block b0 that representsB0 = Ba, where B is the string represented by a previous block b and a isan explicit letter. The procedure is almost the same as for LZW so we omitit here and concentrate on LZ78 only. An initial block b0 represents the string", and its description is: len(b0) = 0; Ii;i0(b0) = i0 � i + 1, i 2 1 : : :m; i0 2i� 1 : : :min(i+ k � 1;m); Pi(b0) = i, i 2 1 : : :m; andM(b0) = �1.We give now the update formulas for the case when a new letter a is addedto B in order to form B0. These can be seen as special cases of dynamic pro-gramming matrices between B and parts of P .{ len(b0) = len(b) + 1.{ ref(b0) = b.{ Ii;i0(b0) = Ii;i0�1(b) if a = Pi0 , and 1 + min(Ii;i0(b); Ii;i0�1(b0); Ii;i0�1(b))otherwise. We start with1 Ii;max(i�1;i+jB0j�k�2)(b0) = min(jB0j; k + 1), andcompute the values for increasing i0. This corresponds to �lling a dynamicprogramming matrix where the characters of Pi::: are the columns and thecharacters of B are the rows. Adding a to B is equivalent to adding a new1 Note that it may be that this initial value cannot be placed in the matrix becauseits position would be outside bounds.



row to the matrix, and we store at each block only the row of the matrixcorresponding to its last letter (the rest could be retrieved by going backin the references). For each i, there are 2k + 1 such columns stored at eachblock B, corresponding to the interesting i0 values. Figure 2 illustrates. Torelate this to the matrix of I in Figure 1 one needs to consider that thereis a three dimensional matrix indexed by i, i0 and jBj. Figure 1 shows theplane stored at each block B, corresponding to its last letter. Figure 2 showsa plane obtained by �xing i.
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00Fig. 2. The virtual dynamic programming matrices. On the left, between B and Pi:::,to compute I. On the right, between B and P , to compute P.{ Pi(b0) = Pi�1(b) if a = Pi and 1 + min(Pi(b);Pi�1(b0);Pi�1(b)) otherwise.We assume that P0(b0) = 0 and compute the values for increasing i. Thiscorresponds again to �lling a dynamic programming matrix where the char-acters of P are the columns, while the characters of B are the rows. The(virtual) matrix has i at the i-th column of the �rst row and zeros in the�rst column. Figure 2 illustrates.{ M(b0) = M(b) if Pm(b0) > k, and b0 otherwise. That is, if there is a newinternal match ending at jB0j then b0 is added to the list. This takes constanttime.6 Updating the Search StateWe specify now how to report the matches and update the state of the searchonce the description of a new block b has been computed. Three actions arecarried out, in this order.Reporting the overlapping matches. An overlapping match ending inside the newblock B corresponds to an occurrence that spans a su�x of the text already seenT1:::j and a pre�x of B. From Property 1, we know that if such an occurrencematches P with k errors (or less) then it must be possible to split P in P1:::iand Pi+1:::m, such that the text su�x matches the �rst half and the pre�x of Bmatches the second half. Figure 3 illustrates.
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C i+1,mIi + (b*)Fig. 3. Splitting of an overlapping match (grayed), where b� = b(jBj�i0 ).Therefore, all the possible overlapping matches are found by considering allthe possible positions i in the pattern. The check for a match ending at textposition j + i0 is then split into two parts. A �rst condition states that P1:::imatches a su�x of T1:::j with k1 errors, which can be checked using the C vector.A second condition states that Pi+1:::m matches B1:::i0 with k2 errors, which canbe checked using the I matrix of previous referenced blocks. Finally, k1 + k2must be � k.Summarizing, the text position j + i0 (for i0 2 1 : : :min(m + k � 1; jBj)) isreported if max(m�1;m�i0+k)mini=min(1;m�i0�k) (Ci + Ii+1;m(b(jBj�i0))) � k (1)where we need ref(�) to compute b(jBj�i0). Additionally, we have to report thepositions j + i0 such that Cm + i0 � k (for i0 2 1 : : :k). This corresponds toIm+1;m(b(jBj�i0)) = i0, which is not stored in that matrix.Note that if we check the i0 positions in decreasing order then the backwardreference chain has to be traversed only once. So the total cost for this check isO(mk). The occurrences are not immediately reported but stored in decreasingorder of i0 in an auxiliary array (of size at most m + k), because they can mixand collide with internal matches.Reporting the internal matches. These are matches totally contained inside B.Their o�sets can be retrieved by following theM(b) list until reaching the value�1. That is, we start with b0  M(b) and while b0 6= �1 report the positionsj+len(b0) and update b0  M(b0). This retrieves all the internal matches in timeproportional to their amount, in reverse order. These matches may collide andintermingle with the overlapping matches. We merge both chains of matches andreport them in increasing order and without repetitions. All this can be donein time proportional to the number of matches reported (which adds up O(R)across all the search).Updating the C vector and j. To update C we need to determine the best editdistance between P1:::i and a su�x of the new text T1:::j+jBj = T1:::jB. Twochoices exist for such a su�x: either it is totally inside B or it spans a su�x ofT1:::j and the whole B. Figure 4 illustrates the two alternatives. The �rst casecorresponds to a match of P1:::i against a su�x of B, which is computed in P.For the second case we can use Property 1 again to see that such an occurrence



is formed by matching P1:::i0 against some su�x of T1:::j and Pi0+1:::i against thewhole B. This can be solved by combining C and I.
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We update only the active cells of C and P. If we assume a random patternP , then the property that says that there are on average O(k) active cells in Cat a random text position holds also when those text positions are the endpointsof blocks in the text. The same happens to the P values, since Pi(b) � Ci afterprocessing block b.We recall the minimization formula (2) to update C, and note that the Ci0 areon average active only for i0 = O(k). Therefore only the values i 2 jBj � O(k)have a chance of being � k. The minimization with Pi does not change thingsbecause this vector has also O(k) active values on average.Therefore, updating C costs O(k2) per block on average. Computing P takesO(k) time since only the active part of the vector needs to be traversed.A more challenging problem appears when trying to apply the technique toIi;i0(b). They key idea in this case comes from considering that ed(Pi:::i0 ; B) > kif jBj � (i0� i+1) > k, and therefore any block B such that jBj > m+ k cannothave any active value in I. Since there are at most O(�m+k) di�erent blocks oflength at most m+k (recall that � is the alphabet size of the text), we can workO(mk�m+k) in total in computing I values. This is obtained by marking theblocks that do not have any active value in their I matrix, so that the I matrixof the blocks referencing them do not need to be computed either (moreover, thecomputation of C and overlapping matches can be simpli�ed).However, this bound can be improved. The set of di�erent strings matchinga pattern P with at most k errors, called Uk(P ) = fP 0; ed(P; P 0) � kg, is �nite.More speci�cally, it is shown in [20] that if jP j = m, then jUk(P )j = O((m�)k) atmost. This limits the total number of di�erent blocks B that can be preprocessedfor a given pattern substring Pi:::i0 . Summing over all the possible substringsPi:::i0 , considering that computing each such entry for each block takes O(1)time, we have a total cost of O(m2(m�)k). Note that this is a worst case result,not only average case. Another limit for the total amount of work is still O(mkn),so the cost is O(min(mkn;m2(m�)k)).Finally, we have to consider the cost of processing the matches. This is O(R)plus the cost to search the overlapping matches. We recall the formula (1) to �ndthem, which can be seen to cost O(k2) only, since there are O(k) active values inC on average and therefore i0 2 m�O(k) is also limited to O(k) di�erent values.Summarizing, we can solve the problem on LZ78 and LZW in O(k2n +min(mkn;m2(m�)k)+R) average time. Note in particular that the middle termis asymptotically independent on n. Moreover, the space required is O(k2n +min(mkn;m2(m�)k) + n logn) bits because only the relevant parts of the ma-trices need to be stored.9 Signi�cance of the Results9.1 Memory RequirementsFirst consider the space requirements. In the worst case we need O(n(mk+log n))bits. Despite that this may seem impractical, this is not so. A �rst consideration



is that normal compressors use only a su�x (\window") of the text already seen,in order to use bounded memory independent of n. The normal mechanism isthat when the number of nodes in the LZ78 trie reaches a given amount N , thetrie is deleted and the compression starts again from scratch for the rest of the�le. A special mark is left in the compressed �le to let the decompressor knowof this fact.Our search mechanism can use the same mark to start reusing its allocatedmemory from zero as well, since no node seen in the past will be referenced again.This technique can be adapted to more complex ways of reusing the memoryunder various LZ78-like compression schemes [5].If a compressor is limited to use N nodes, the decompression needs at the veryleast O(N logN ) bits of memory. Since the search algorithm can be restarted af-ter reading N blocks, it requires only O(N (mk+logN )) bits. Hence the amountof memory required to search is O(1+mk= logN ) � memory for decompression,and we recall that this can be lowered in the average case. Moreover, reason-ably fast decompression needs to keep the decompressed text in memory, whichincreases its space requirements.9.2 Time ComplexityDespite that ours is the �rst algorithm for approximate searching on compressedtext, there exist also alternative approaches, some of them trivial and others notspeci�cally designed for approximate searching.The �rst alternative approach is DS, a trivial decompress-then-search algo-rithm. This yields, for the worst case, O(ku) [10] or O(mjUk(P )j+ u) [20] time,where we recall that jUk(P )j is O((m�)k). For the average case, the best resultin theory is O(u+ (k + log�m)u=m) = O(u) [7]. This is competitive when u=nis not large, and it needs much memory for fast decompression.A second alternative approach, OM, considers that all the overlapping matchescan be obtained by decompressing the �rst and last m + k characters of eachblock, and using any search algorithm on that decompressed text. The inter-nal matches are obtained by copying previous results. The total amount oftext to process is O(mn). Using the previous algorithms, this yields worst casetimes of O(kmn + R) and O(mjUk(P )j + mn + R) in the worst case, andO((k+ log�m)n +mn+R) = O(mn +R) on average. Except for large u=m, itis normally impractical to decompress the �rst and last m+k characters of eachblock.Yet a third alternative, MP, is to reduce the problem to multipattern search-ing of all the strings in Uk(P ). As shown in [11], a set of strings of total lengthM can be searched in O(M2+n) time and space in LZ78 and LZW compressedtext. This yields an O(m2jUk(P )j2 + n + R) worst case time algorithm, whichfor our case is normally impractical due to the huge preprocessing cost.Table 1 compares the complexities. As can be seen, our algorithm yields thebest average case complexity fork = O(pu=n) ^ k = O(pm) ^ log� n2(1 + log� m) � k +O(1) � log� n1 + log�m



where essentially the �rst condition states that the compressed text should bereasonably small compared to the uncompressed text (this excludes DS), thesecond condition states that the number of errors should be small comparedto the pattern length (this excludes OM) and the third condition states thatn should be large enough to make jUk(P )j not signi�cant but small enough tomake jUk(P )j2 signi�cant (this excludes MP). This means in practice that ourapproach is the fastest for short and medium patterns and low error levels.Algorithm Worst case time Average case timeDS ku umjUk(P )j+ uOM kmn+R mn+RmjUk(P )j+mn+RMP m2jUk(P )j2 + n m2jUk(P )j2 + n+ROurs kmn+R k2n+min(mkn;m2jUk(P )j) +RTable 1. Worst and average case time for di�erent approaches.9.3 Experimental ResultsWe have implemented our algorithm in order to determine its practical value.Our implementation does not store the matrix values using 2 bit deltas, buttheir full values are stored in whole bytes (this works for k < 255). The spaceis further reduced by not storing the information on blocks that are not to bereferenced later. In LZ78 this discards all the leaves of the trie. Of course asecond compression pass is necessary to add this bit to each compressed code.Now, if this is done then we can even not assign a number to those nodes (i.e.the original nodes are renumbered) and thus reduce the number of bits of thebackward pointers. This can reduce the e�ect of the extra bit and reduces thememory necessary for decompression as well.We ran our experiments on a Sun UltraSparc-1 of 167 MHz and 64 Mbof RAM. We have compressed two texts: WSJ (10 Mb of Wall Street Journalarticles) and DNA (10 Mb of DNA text with lines cut every 60 characters).We use an ad-hoc LZ78 compressor which stores the pair (s; a) correspondingto the backward reference and new character in the following form: s is storedas a sequence of bytes where the last bit is used to signal the end of the code;and a is coded as a whole byte. Compression could be further reduced by bettercoding but this would require more time to read the compressed �le. The extrabit indicating whether each node is going to be used again or not is added to s,i.e. we code 2s or 2s + 1 to distinguish among the two possibilities.Using the plain LZ78 format, WSJ was reduced to 45.02% of its original size,while adding the extra bit to signal not referenced blocks raised this percentageto 45.46%, i.e. less than 1% of increment. The �gures for DNA were 39.69% and



40.02%. As a comparison, Unix Compress program, an LZW compressor thatuses bit coding, obtained 38.75% and 27.91%, respectively.We have compared our algorithm against a more practical version of DS,which decompresses the text on the 
y and searches over it, instead of writing itto a new decompressed �le and then reading it again to search. The search algo-rithm used is that based on active columns (the one we adapted). This gives usa measure of the improvement obtained over the algorithm we are transforming.It is also interesting to compare our technique against decompression plussearching using the best available algorithm. For this alternative (which we call\Best" in the experiments) we still use our compression format, because it de-compresses faster than Gnu gzip and Unix compress. Our decompression timesare 2.09 seconds for WSJ and 1.80 for DNA. The search algorithms used arethose of [15,4, 13], which were the fastest for di�erent m and k values in ourtexts.On the other hand, the OM-type algorithms are unpractical for typical com-pression ratios (i.e. u=n at most 10) because of their need to keep count of them + k �rst and last characters of each block. The MP approach does not seempractical either, since for m = 10 and k = 1 it has to generate an automaton ofmore than one million states at the very least. We tested the code of [11] on ourtext and it took 5.50 seconds for just one pattern of m = 10, which outrules itin our cases of interest.We tested m = 10, 20 and 30, and k = 1, 2 and 3. For each pattern length,we selected 100 random patterns from the text and used the same patterns forall the algorithms. Table 2 shows the results.WSJk Ours DS Best Ours DS Best Ours DS Bestm = 10 m = 10 m = 10 m = 20 m = 20 m = 20 m = 30 m = 30 m = 301 3.77 4.72 2.40 3.23 4.64 2.28 3.08 4.62 2.272 5.63 5.62 2.74 4.72 5.46 2.42 6.05 5.42 2.333 11.60 6.43 3.64 9.17 6.29 2.75 13.56 6.22 2.44DNAk Ours DS Best Ours DS Best Ours DS Bestm = 10 m = 10 m = 10 m = 20 m = 20 m = 20 m = 30 m = 30 m = 301 3.91 5.21 2.66 2.49 5.08 2.46 2.57 5.06 2.512 6.98 6.49 2.88 3.81 6.31 2.91 5.02 6.28 2.713 11.51 8.91 3.08 9.28 7.51 3.24 15.35 7.50 3.18Table 2. CPU times to search over the WSJ and DNA �les.As the table shows, we can actually improve over the decompression of thetext and the application of the same search algorithm. In practical terms, wecan search the original �le at about 2:6 : : :4:0 Mb/sec when k = 1, while thetime keeps reasonable and competitive for k = 2 as well. Moreover, DS needs for



fast decompression to store the uncompressed �le in main memory, which couldpose a problem in practice.On the othe hand, the \Best" option is faster than our algorithm, but we re-call that this is an algorithm specialized for edit distance. Dynamic programmingis unbeaten in its 
exibility to accommodate other variants of the approximatestring matching problem.10 ConclusionsWe have presented the �rst solution to the open problem of approximate pat-tern matching over Ziv-Lempel compressed text. Our algorithm can �nd theR occurrences of a pattern of length m allowing k errors over a text com-pressed by LZ78 or LZW into n blocks in O(kmn + R) worst-case time andO(k2n+min(mkn;m2(m�)k) +R) average case time. We have shown that thisis of theoretical and practical interest for small k and moderate m values.Many theoretical and practical questions remain open. A �rst one is whetherwe can adapt an O(ku) worst case time algorithm (where u is the size of theuncompressed text) instead of the dynamic programming algorithm we haveselected, which is O(mu) time. This could yield an O(k2n+R) worst-case timealgorithm. Our e�orts to adapt one of these algorithms [10] yielded the sameO(mkn+R) time we already have.A second open question is how can we improve the search time in practice.For instance, we have not implemented the version that stores 2 bits per number,which could reduce the space. The updates to P and I could be done using bit-parallelism by adapting [13]. We believe that this could yield improvements forlarger k values. On the other hand, we have not devised a bit-parallel techniqueto update C and to detect overlapping matches. Another idea is to map all thecharacters not belonging to the pattern to a unique symbol at search time, toavoid recomputing similar states. This, however, requires a �ner tracking of thetrie of blocks to detect also descendants of similar states. This yields a higherspace requirement.A third question is if faster �ltration algorithms can be adapted to thisproblem without decompressing all the text. For example, the �lter based insplitting the pattern in k + 1 pieces, searching the pieces without errors andrunning dynamic programming on the text surrounding the occurrences [22]could be applied by using the multipattern search algorithm of [11]. In theorythe complexity is O(m2 + n + ukm2=�bm=(k+1)c), which is competitive for k <m=�(log�(u=n) + log�m).References1. A. Amir and G. Benson. E�cient two-dimensional compressed matching. In Proc.DCC'92, pages 279{288, 1992.2. A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching inZ-compressed �les. J. of Comp. and Sys. Sciences, 52(2):299{307, 1996. Earlierversion in Proc. SODA'94.
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