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Abstract

We propose a text indexing technique for approximate pattern matching, which is practical
and especially aimed at Information Retrieval (IR). Unlike other indices of this kind, it is able
to retrieve any string that approximately matches a given search pattern. Every sequence of
a fixed length appearing in the text is stored in the index, together with pointers to all the
positions where it appears. The search pattern is cut into pieces so that at least one must
match exactly. All the pieces are searched in the index and the union of candidate positions
1s verified. To reduce space requirements, pointers to blocks instead of exact positions can be
used, which increases querying costs. We design an algorithm to optimize the pattern partition
into pieces so that the total number of verifications is minimized. This also allows to know in
advance the expected cost of the search and the expected relevance of the query to the user.
We show experimentally the build time, space requirements and query times of our index,
finding that it is a practical alternative for IR.
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1 Introduction

The problem of approximate string matching has a number of applications in computer science,
such as text retrieval, computational biology, signal processing, pattern recognition, etc. It is
defined as follows: given a long text of length n, and a (comparatively short) pattern of length
m, retrieve all the segments (or “occurrences”) of the text whose edit distance to the pattern is
at most k. The edit distance between two strings is defined as the minimum number of character
insertions, deletions and replacements needed to make them equal. It is common to report only
the endpoints of occurrences. We call @ = k/m the “error ratio”.

In the on-line version of the problem, it is possible to preprocess the pattern but not the text.
The classical solution involves dynamic programming and is O(mn) time [20]. Recently, a number
of algorithms improved the classical one, for instance [24, 9, 22, 8, 27, 28, 4]. Some of them are
“sublinear” in the sense that they do not inspect all the characters of the text, but of course the
on-line problem is Q(n) if m is taken as constant. In [4, 3], it is shown that [8] is the fastest
algorithm for moderately low error ratios and pattern length. Our present work can be seen as
an off-line version of that algorithm.

We are particularly interested in information retrieval (IR), where the text is normally so large
that the on-line algorithms are not practical. Moreover, queries are more frequent than changes
and therefore the text can be preprocessed, the query patterns are not too large (i.e. less than 25
letters), the alphabet size (¢) is not very small (36 at least) and expected error ratios are < 1/3
(since otherwise the query returns too many matches and is useless to the user).
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Classical indices for text databases allow fast search of exact patterns. These indices, however,
are unable to retrieve a word which has been mistyped. This is very common in texts obtained
by optical character recognition (OCR), or when there is no quality assurance for the content of
the database (e.g. when indexing the World Wide Web). Moreover, the query may be misspelled
or we may not remember the exact spelling of a foreign name. The edit distance defined above
captures very well such errors.

The first indexing schemes for approximate text retrieval have appeared only a few years ago.
There are two types of indexing mechanisms: word-oriented and sequence-oriented. In the first
one, the index is capable of retrieving every word whose edit distance to the pattern is at most
k. In the second one, useful also when the text is not natural language, the index is capable of
retrieving every sequence, without notion of word separation.

Indices of the first kind store the set of all different words of the text (the vocabulary) and use an
on-line algorithm on the vocabulary, thus obtaining the set of words to retrieve. From that point
on, the problem does not need to involve approximate matching anymore. Since the vocabulary
is sublinear in size with respect to the text, they achieve acceptable performance. These indices
are not capable, however, of retrieving an occurrence that is not a complete word. For instance,
if an OCR system has erroneously inserted a space in the middle of a word in the text, it will
be not possible to search that word with one error and retrieve it using a word-retrieving index.
Examples of these indices are Glimpse [18], Igrep [1] and [5].

In the indices of the second kind, the words are disregarded. They also apply if words do not
exist in the text, such as in DNA or protein databases.

One class of indices for this case is based on building the suffix tree of the text and traversing it
instead of the text, to avoid its redundancies [25, 10, 11, 7]. The main problem with this approach
is that suffix trees pose heavy space requirements: the index, unless compressed, is twelve times
the size of the text. Approaches to compress the suffix tree are still in their beginnings and have
not been implemented yet [14]. If the index does not fit in main memory (which is usually the
case), the construction process is very costly, even if the suffix tree is converted to a suffix array
[17], to which [11, 7] can be adapted.

A second class reduces the problem to exact matching of substrings of the pattern, and uses
an index that searches the substrings with no errors [12, 23, 19]. Later, the occurrences of those
matching substrings have to be verified to search the complete pattern. These indices can be
efficiently built and take less space than the others. However, they are less tolerant to errors.

In this work we propose a sequence retrieving index especially aimed at IR scenarios, in the
same lines of reducing the problem to exact matching. We show also an algorithm to optimize
the partition of the pattern in order to minimize the number of text positions to verify. This
also allows to predict the cost of the search and to give early feedback to the user about the
approximate size of the result set. In case of too many verifications (which involves probably too
many results), the user may preempt the search, given the poor precision to be obtained.

2 Previous Work

The idea of reduction to exact partitioning has been used many times for on-line searching [27,
8, 22, 4]. The basic idea is as follows: if a pattern occurs in the text with k errors, and if we
cut the pattern in k& + 1 pieces arbitrarily, then at least one of the pieces must be present in the
occurrence with no errors. This is easily seen by considering that each error modifies at most one
piece of the pattern, and therefore at least one piece survives unchanged. To find all approximate
occurrences it suffices to search all pieces and check their neighborhood.



Many generalizations of the idea have been studied. It has been shown that if the pattern is
cut in less pieces (say j) then the subpatterns are to be searched with |k/j] errors [4, 7].

Overlapping pieces have been considered in [22]. If all the pieces of length ¢ (called g-grams) in
the pattern are searched, then the search needs not to inspect every text position, but “samples”
separated by h characters that are not inspected at all. Moreover, they may also force that at
least s pieces are present in the candidate text area, by modifying h (s and h are related).

Recently, a particular case of matching more than one piece has been proposed [21]: if the
pattern is cut in k + s pieces, then at least s pieces must be present in every occurrence (moreover,
they observe some positional constraints). This increases the tolerance to errors in long patterns.
However, if the pattern is not long this partitioning gives very short pieces, which tend to trigger
much more verifications.

Despite all generalizations, the original partitioning idea leads to the fastest on-line algorithm
for moderate pattern length and error ratios, as shown in [4]. This is the typical case in IR.

The first idea to apply reduction to exact partitioning to indexing is [12], where the g-grams
approach is used. The positions of all g-grams are stored. To search a pattern of length m, the
text is divided into blocks of size 2(m — 1). The number of all ¢-grams of the pattern that fall
into each block is computed. Each text block with at least m 4+ 1 — (k + 1)g g-grams falling in is
verified with dynamic programming.

Independently, in [2] an alternative to Glimpse is proposed to allow more general searches.
Instead of indexing every word as Glimpse does, they index every substring of a fixed length g.
Although originally conceived for exact search, it is mentioned the possibility of combining the
index with exact partitioning to answer approximate search queries.

The idea of g-grams is used again in [23] with a different approach, more oriented to sampling
the text as in [22]. Every text sample is stored in the index (hence, the space requirements are
reduced). Given a search pattern, its g-grams are searched in the index, and the rest proceeds
as in the on-line version. The dependence between s and h allows to use a single index (with
samples separated by h characters) for different m and k values (i.e. s is adjusted accordingly).
Compression schemes are considered in [13], although the time complexity increases significantly.

Although the ¢-grams schemes have small space overhead, their tolerance to errors is very low
for IR purposes, as shown in [4, 3] for its on-line version. In particular, it is lower than that of
the on-line algorithm we are adapting [8].

A somewhat different idea is proposed in [19]. It uses an index where every sequence of the
text up to a given length ¢ is stored, together with the list of its positions in the text. Hence, the
structure of the index is similar to the one we propose. However, the reduction to exact search is
completely different. To search for a pattern shorter than ¢— k, all the maximal strings whose edit
distance to the pattern is less than k are generated, and each one is searched in the index. Later,
the lists are merged. To handle longer patterns, they are split in as many pieces as necessary to
make them of the required length.

The length of the strings stored in the index is made small enough to be able to represent them
as computer integers. This allows to build the index in O(n) time, and very quickly in practice.
The strings must be short also to avoid an explosive numbers of strings generated at search time.

Query complexity is sublinear for sufficiently low error ratios. This maximum allowed error
ratio increases with the alphabet size. For example, the formula shows that it is 0.33 for ¢ = 4
and 0.56 for o = 20. However, the scheme gets worse (because of the number of strings generated)
as o grows, which is the typical case in IR.

A useful concept to reduce the space requirements of these indices is block addressing. The
main idea is to cut the text in a number of blocks. Instead of storing all the exact positions where



each word or g-gram occurs, only the blocks where it appears are stored. At search time, the
candidate blocks must be completely verified, which increases search times.

This concept has been used in word-retrieving indices [18, 5] with good results. It is also used
in Grampse [16], which is based on [23] (although approximate search is not implemented yet).
As opposed to block addressing, we denote character addressing the case when all the positions
are recorded.

3 A New Indexing Scheme

Our proposal aims specifically at building a practical index for IR purposes. It indexes all g-grams
and uses the simplest partitioning (i.e. in k + 1 disjoint pieces). This can be seen as an off-line
version of [8] (studied more in detail in [4, 3]). This is combined with a new pattern splitting
optimization technique to minimize the number of verifications to perform, which is especially
useful on natural language texts. Pointers to exact occurrences or to blocks can be used, although
we show later that only character addressing gives a useful index.

At indexing time, we select a fixed length ¢. Every g-gram of the text is stored in the index
(in lexical order). To resemble traditional inverted lists, we call vocabulary the set of all different
g-grams. The number of different g-grams is denoted V', which is < n (in a text of n characters
there are n g-grams, but only V' different g-grams). For the correctness of the algorithms, it is
necessary that the last ¢ — 1 sufflixes of the text are entered as ¢-grams too, even when they are
of length < ¢g. Together with each ¢-gram, we store the list of the text positions where it appears,
in ascending positional order. Figure 1 shows a small example.
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Figure 1: The indexing scheme for ¢ = 4.

If block addressing is used, the text is divided in blocks of a fixed length b, and all the g-grams
that start in the block are considered to lie inside the block. Only the ascending list of the blocks
where each ¢-gram appears is stored in this case. This makes the index smaller (since there is
only one reference for all the occurrences of a ¢g-gram in a single block).

To search a pattern of length m with k errors, we split the pattern in k£ 4 1 pieces, search each
piece in the index of g-grams of the text, and merge all the occurrences of all the pieces, since
each one is a candidate position for a match. The neighborhood of each candidate position is then
verified with a sequential algorithm. If blocks are used, each candidate block must be completely
traversed with an on-line algorithm.



Of course the pieces may not have the same length ¢. If a piece is shorter than ¢, all the g-
grams with the piece as prefix are to be considered as occurrences of the piece (they are contiguous
in the index of ¢-grams). If the piece is longer, it is simply truncated to its first ¢ letters (it is
possible to verify later, in the text, whether the g-gram starts in fact an occurrence of the piece
before verifying the whole area).

We describe now a splitting optimization technique to be used at query time.

When the pattern is split in & + 1 pieces, we are free to select those pieces as we like. This
idea is mentioned in [6] for an on-line algorithm as follows: knowing or assuming a given letter
distribution for the text to search, the pieces are selected so that the probabilities of all pieces are
similar. This minimizes the total number of verifications to perform, on average.

We can do much better here. They key point is that it is very cheap to compute in advance
the exact number of verifications to perform for a given piece. We just locate the piece in the
g-gram index with binary search. In the general case we obtain a contiguous region, for pieces
shorter than g. By storing, for each ¢-gram, the accumulated length of the lists of occurrences,
we can subtract the lengths at the endpoints of the region to obtain immediately the number of
verifications to perform. The complete process takes O(log V') = O(logn).

We describe a dynamic programming algorithm to compute the partition that minimizes the
total number of verifications to perform. As a side result, we know in advance the total cost to
pay to retrieve the results, which as explained is useful as early feedback to the user.

Let pat]0..m — 1] be the search pattern. Let R[i,j] be the number of verifications to perform
for the piece pat[i..j — 1] (computed as explained above), for every 0 < ¢ < 7 < m. Using R we
build two matrices, namely
e P[i, k] = sum of the verifications of the pieces in the best partition for pat[i..m — 1] with k errors,
e ([i, k] = where must the next piece start in order to obtain P[i, k].

Hence, we need O(m?) space. Computing R as described takes O(m?logn), and the following
algorithm computes the optimal partition in O(m?k) time.

for (1=10i<m;i++)
{ P[i,0] = R[i,m]; C[i,0]=m; }
for (r=1;r<k;r++)
for (¢ =050 <m—r;i++)
{ Pli,r] = minjeipr m—r (B[4, 7]+ Plj,r = 1]);
Cli,r] = j that minimizes the expression above; }

The final number of verifications is P[0, k]. The beginnings of the pieces are {y = 0, {1 = C[{y, k],
ly = Clly, k—1], ooy by = C[lg_q, 1].

4 Analysis

We analyze the time and space requirements of our index.

To build the index we scan the text in a single pass, using hashing to store all the g-grams
that appear in the text. This ¢ must be selected as large as possible, but small enough for the
total number of such g-grams to be small (practical values for natural language text are ¢ = 3..5).

Although we scan every ¢-gram and any good hash function of a ¢-gram takes O(q) time, the
total expected time is kept O(n) instead of O(ng) by using a technique similar to Karp-Rabin
[15] (i.e. the hash value of the next ¢-gram can be obtained in O(1) from the current one). The
occurrences are found in ascending order, hence each insertion takes O(1) time.



Therefore, this index is built in O(n) expected time and a single pass over the text. The worst
case can be made O(n) by modifying Ukkonen’s technique to build a suffix tree in linear time [26].

We analyze space now. To determine the number of different ¢g-grams in random text, consider
that there are o different “urns” (¢-grams) and n “balls” (g-grams in the text). The probability
of a g-gram to be selected in a trial is 1/09. Therefore, the probability of a ¢g-gram not being
hit in n trials is (1 — 1/0%)". Hence, the average number of g-grams hit in the n trials is V =
oi(1=(1=1/09") = O(c?(1—e~"/7")) = ©(min(n, 0?)). This shows that ¢ must be kept o(log, n)
for the vocabulary space to be sublinear. We show practical sizes in the experiments.

We consider the lists of occurrences now. Since we index all positions of all ¢g-grams, the space
requirements are O(n), being effectively 4n on a 32-bit architecturel. If block addressing is used
(with blocks of size b), the same urn argument used above shows that the space requirements are
O(nV/b(1 — e=/V)), which is o(n) if and only if V = o(b).

We now turn our attention to the time to answer a query. The first splitting optimization
phase is O(m?(k + logn)) as explained. Once we have all the positions to verify, we check each
zone using a classical algorithm [24], at a cost of O(m?) each. This cost is exactly the same as in
the on-line version [8], since it is related to the number of occurrences of the pieces in the text.

We analyze only the case of random text (natural language is shown in the experiments).
Under this assumption, we discard the effect of the optimization and assume that the pattern is
split in pieces of lengths as similar as possible. In fact, the optimization technique makes more
difference in natural language texts, making the approach in that case more similar in performance
to the case of random text.

Therefore, we split the pattern in pieces of length |m/(k + 1)] and [m/(k 4+ 1)]. In terms of
probability of occurrence, the shorter pieces are ¢ times more probable than the others (where o
is the size of the alphabet). The total cost of verifications is no more than

(k+ 1)ym?
oLF1]
which is sublinear approximately for a < 1/(3log, m).

On the other hand, if we use block addressing, we must find the exact candidate positions
before verifying them with the above technique. To do this, we use the on-line version of our
algorithm (i.e. [8]), which in turn finds the candidate areas and verifies using [24]. Excluding
the above considered verifications, the on-line algorithm runs in O(n) time . Therefore, we show
under which restrictions a sublinear part of the text is sequentially traversed. This new condition
goes together with a@ < 1/(3log, m) in the case of block addressing.

The probability of a text position matching one piece is, as explained, (k + 1)/0Lm/(k+1)J.
Therefore, the probability of a block (of size b) being sequentially traversed is

k—|—1)b
1—(1- ——
( olritl

and since there are n/b blocks and traversing each one costs O(b), we have that the expected
amount of work to traverse blocks is n times the above expression, which is

n (1 - e‘ﬁ%) (1 +0 (k/UL%J))

The above expression is sublinear approximately for o < 1/log, (bm).

n

!'We store just one pointer for each g-gram position. This allows to index up to 4 Gb of text. Therefore we would
use more than four bytes to index longer texts. On the other hand, we are not considering here the possibility of
using a compressed list of positions, which can considerably reduce the space requirements.



5 Experiments

We show experimentally the index building times and sizes for different values of ¢, with character
and block addressing. We also show the querying effectiveness of the indices, by comparing the
percentage of the query time using the index against that of using the on-line algorithm. The
experimental values agree well with our analysis in terms of the error ratios and block sizes up to
where the indices are useful. All the tests were run on a Sun SparcClassic with 16 Mb of RAM,
running SunOS 4.1.3.

For the tests we use a collection of 8.84 Mb of English literary text, filtered to lower-case and
with all separators converted to a single space. We test the cases ¢ = 3..5, as well as character
addressing and block addressing with blocks of size 2 Kb to 64 K. Blocks smaller than 2 Kb were
of no interest because the index size was the same as with character addressing, and larger than
64 Kb were of no interest because query times were too close to the on-line algorithm.

Figure 2 shows index build time and space overhead for different ¢ values and block sizes. The
size of the vocabulary file was 61 Kb for ¢ = 3, 384 Kb for ¢ = 4 and 1.55 Mb for ¢ = 5, which
shows a sharp increase.
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Figure 2: On the left, index construction times (minutes of user time). On the right, their space
overhead (i.e. index space divided by text space).

We show now query times. We tested queries of length m = 8, 16 and 24. The queries are
randomly chosen from the text at the beginning of non-stopwords (stopwords are words which
carry no meaning and are normally not allowed in queries, such as "a", "the", etc.). This setup
mimics common IR scenarios. For m = 8 we show tests with & = 1 and 2; for m = 16 with
k = 1.4 and for m = 24 with £ = 1..6. Every data point was obtained by averaging Unix’s user
time over 100 random trials.

Figure 3 shows query times as a percentage of the on-line algorithm. For lack of space we
do not include the percentage of traversed text, which in principle is proportional to the data we
show. However, the overhead of manipulating the index is high and we prefer to give the more
realistic figures. The overhead of managing the index makes it better to use the on-line algorithm
when the filtration efficiency of the index is not good (moreover, the indices with larger b become
better because the overhead is less and the verifications are the same). In the character addressing
index, this happens for @ > 1/4. Up to that point, the search times are under 10 seconds. The
block addressing indices, on the other hand, cease to be useful too soon, namely for @ > 1/8.



6 Conclusions and Future Work

We have described a practical indexing scheme especially suited for IR and capable of retrieving
any sequence matching a pattern with a given maximum number of errors. It is based on storing all
text g-grams in the index together with their occurrences. Querying is performed by searching in
the index pieces of the pattern and verifying the candidate positions. A variant pointing to blocks
instead of exact positions is described too. We analyze and experimentally test our approach.

The experiments show that the scheme is practical when the pointers point to exact occur-
rences. The value ¢ may be between 3 and 5, giving a tradeoff between index space and query
performance. Depending on ¢ and for a reasonable error level (a < 1/4 in English text), querying
the index takes 20% to 60% of the time of the on-line algorithm. The space overhead depends on
¢ and is between two and four times the text size.

Pattern pieces longer than ¢ are truncated. This loses part of the information on the pattern.
This case could justify the approach of [21] of splitting the pattern in more pieces and forcing
more than one piece to match before verifying. Extending the scheme to matching more than one
piece reduces the number of verifications but leads to a more complex algorithm, whose costs may
outweight the gains of less verifications. We are currently studying this issue, as well as improved
pattern splitting heuristics.
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Figure 3: Query time using the index divided by query time using the on-line algorithm (percent-
age). The rows correspond to ¢ = 3, 4 and 5. The columns correspond to m = 8, 16 and 24.
The dashed line corresponds to character addressing, full lines to block addressing. From lower

to upper (at k = 1) they correspond to b = 2, 4, 8, 16, 32 and 64 Kb.



