
Expressive Power ofa New Model for Structured Text Databases�Gonzalo Navarro Ricardo Baeza-YatesDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstractThis paper studies the expressivity of a new model for structuring and queryingtextual databases by both the structure and contents of the text. The key idea of themodel is a set-oriented query language based on operations on proximal nodes. Thismodel has been shown to be e�ciently implementable, and the aim of this paper is toshow that it is competitive in expressivity with models whose implementation is not soe�cient. The expressivity is studied by directly comparing it against related models,and by de�ning a framework on expressivity where these models are situated. Thiswork leads to the conclusion that the presented model is a good compromise betweenexpressivity and e�ciency.�This work has been supported in part by grants FONDECYT (Chile) 1940271 and 1950622.



1 IntroductionTextual databases are deserving more and more attention, due to their multiple applications:libraries, o�ce automation, software engineering, automated dictionaries and encyclopedias,and in general any problem based on keeping and retrieving textual information [9].The purpose of a textual database is to store textual documents, structured or not. Atextual database is composed by two parts: contents and structure (if present). The contentis the text itself, while the structure relates di�erent parts of the database with some criteria.Any information model related to textual databases must comprise three aspects: a textmodel, a structure model, and a query language.Unlike other kinds of databases, a text database is characterized by the fact that thereis no easy way to extract what the user wants. The user must specify what he/she wants,see the results, then reformulate the query, and so on, until is satis�ed with the answer.Anything we can do to help users to �nd what they want is worth considering.Another interesting fact is that human beings have \visual memory", e.g. they mayremember that what they want was typed in italics, short before a �gure that said somethingabout \earth". Searching for the word \earth" may not be a good idea, as may not besearching all �gures or all the text in italics. What really would help to exploit visualmemory would be a language in which we can say \I want a text on italics, near a �gurecontaining the word `earth' ". This query mixes content and structure of the database.Traditionally, textual databases have allowed their users to search their contents (words,phrases, etc.) or their structure (e.g. by looking at a table of contents).Mixing contents and structure allows to pose very powerful queries, being much moreexpressive than each mechanism by itself. By using a query language that integrates bothtypes of queries, we can potentiate the retrieval quality of our textual databases.The query language we present is not necessarily intended for �nal users, rather it is anoperational algebra onto which a more user-oriented query language can be mapped.The aim of this paper is to study the expressivity of a new model to structure andquery textual databases, which has been presented in [15, 16] and shown to have an e�cientimplementation. We want to show that this model is competitive in expressivity with othersthat are not e�ciently implementable.This paper is organized as follows. In Section 2, related work on this subject is reviewed.In Section 3, our model is informally presented, in terms of the data model and the operationsallowed for queries. In Section 4, we analyze its expressivity by comparing it against eachsimilar model we reviewed. In Section 5, we draw an informal framework on expressivity tosituate similar models. Finally, in Section 6, our conclusions and future work directions arepresented.2 Related WorkIn this section we cover previous approaches to the problem of querying a textual database.We �rst mention the traditional ones, and then cover novel ideas.



2.1 Traditional ApproachesThere are many classical approaches to the problem of querying a textual database. Someof them are: attempts to adapt the relational model to include text management [19, 7]; themany traditional models for information retrieval (e.g. the boolean model, the probabilisticmodel, the bit-vector model, the full-text model, etc.) [9]; hypertexts and semantic networks;and object-oriented databases adapted to manage text [2].None of these approaches satisfy our goals of mixing structure and contents in our queries.Some of them do not allow to express rich enough structures, some are too oriented tocontents, some to structure. Finally, although object-oriented databases can be extended tosuccessfully combine both areas, they are too general and do not fully exploit the semanticsinvolved in structure. They represent a structure merely as a network and have a querylanguage oriented to those graphs, this way making very ine�cient queries that are simple ifwe know the inclusion semantics involved in the structure (see [5] for an excellent discussionon this topic).Although these models are not powerful enough to extract the information we want fromtextual databases, they address di�erent problems that pure textual database models orientedto structure do not address in general (e.g. tuples and joins, attributes, etc.). We do notcompare our model to these, because they address di�erent goals.In [17] it is argued that is better to put a layer integrating a traditional database systemwith a textual one, than trying to design a language comprising all the features. This way,each subsystem focuses on the part of the query in which specializes (e.g. [5] integrates anobject-oriented database with a structured text engine).We rely on this approach. We design a language which is focused on exploiting thestructure- and text-related features. Other features, such as tuples and joins, should beadded by integrating this language with another one oriented to that kind of operations, e.g.a relational database.On the other hand, we do not address the issue of merging structural queries with thoseinvolving operations such as relevance ranking (e.g. the sections or titles where the word\computer" is relevant). See [17] for some ideas on this topic.2.2 Novel ApproachesThese approaches are characterized by generally imposing a hierarchical structure on thedatabase, and by mixing queries on contents and structure. Although this is simpler than, forexample, hypertexts, even in this simpler case the problem of mixing contents and structureis not satisfactorily solved.We present a sample of novel models, which cover many di�erent approaches to solve thisproblem under the stated conditions. See [13] for another survey.The Hybrid Model [1]: modelizes a textual database as a set of documents, which mayhave �elds. Those �elds need not to cover all the text of the document, and can nestand overlap. The query language is an algebra over pairs (D;M), where D is a setof documents and M is a set of match points in those documents. There is a num-ber of operations for obtaining match points: pre�x search, proximity, etc. There are



operations for set manipulation of both documents and match points; for restrictingmatches to only some �elds; and for retrieving �elds owning some match point. Inclu-sion relationships can only be queried with respect to a �eld and a match point, thusthe language is at and not fully compositional. This model can be implemented verye�ciently.PAT Expressions [18, 8]: sees only match points, which are used to de�ne regions. Re-gions are de�ned bymatch expressions that specify how their endpoints are. Each regionrepresents a set of disjoint segments. This allows dynamic de�nition of regions, andto match all queries on regions to queries on matches. The need to avoid overlappingregions cause a lot of trouble and lack of orthogonality in the language. This languageachieves high e�ciency at the cost of some restrictions, which for some applications arereasonable.Overlapped Lists [3, 4]: solves the problem of PAT expressions in an elegant way, byallowing overlaps, but not nesting. Each region is a list of (possibly overlapping) seg-ments, originated by textual searches or by named regions (like chapters, for example).The idea is to unify both searches by using an extension of inverted lists, where regionsand words are indexed the same way. The implementation of this model can be ase�cient as that of PAT expressions.Lists of References [14]: is a general model to structure and query textual databases,including also hypertext-like linkages, attribute management and external procedures.The structure of documents can be hierarchical (no overlaps), but answers to queriesare at (only the top-level elements qualify), and all elements must be from the sametype (e.g. only sections, or only paragraphs). Answers to queries are seen as lists ofreferences (i.e. pointers to the database). This allows to integrate in an elegant wayanswers to queries to hypertext links, since all are seen as lists of references. This modelis very powerful, but hard to implement e�ciently [14]. To make the model suitablefor comparison, we consider only the portion related to querying structures. Even thisportion is quite powerful.Parsed Strings [10]: is in fact a data manipulation language. The language used to expressdatabase schemas is a context-free grammar, that is, the database is structured bygiving a grammar to parse its text. The fundamental data structure is the p-string,or parsed string, which is composed of a derivation tree plus the underlying text. Themanipulation is carried out via a number of powerful operations to transform trees. Theapproach is extremely powerful, and it is shown to be relationally complete. However,it is hard to implement e�ciently.Tree Matching [12]: is a query model relying on a single primitive: tree inclusion. The ideais, seeing both the structure of the database and the query (a pattern on structure)as trees, to �nd an embedding of the pattern into the database which respects thehierarchical relationships between nodes of the pattern. The language is enriched byProlog-like variables, which can be used to express requirements on equality betweenparts of the matched substructure, and to retrieve another part of the match, not only



the root. The complexity of the algorithms is studied, showing that the only case inwhich the problem is of polynomial time is when no logical variables are used and thematches have to respect the left-to-right ordering in the pattern. Even in the polynomialcase, the operations have to traverse the whole database structure to �nd the matches.3 A New Model for Querying Structured TextIn this section we outline the main features of our model. A more complete presentation canbe found in [15, 16].3.1 Data ModelWe see a text database as composed of two parts:� Text, which is seen as a (long) array of symbols. Whether this text is stored as it isseen, or it is �ltered to hide markup or uninteresting components, is not important forthe model, since we use the logical view of the text. This may include also eliminationof stopwords, replacement of synonyms, etc. Additionally, symbols may be characters,words, etc.� Structure, which is organized as a set of independent (orthogonal) hierarchies. Eachhierarchy has its own types of nodes, and the areas covered by the nodes of di�erenthierarchies can overlap, although this cannot happen inside the same hierarchy. Theydo not need to cover the whole text.Each view has a set of constructors, which denote types of nodes of the correspondingtree. Examples of constructors are page, chapter and section. The sets of constructors ofdi�erent views are disjoint.Each node of the tree corresponding to a view has an associated constructor, and asegment, which is pair of numbers representing a contiguous portion of the underlying text.The segment of a node must include the segments of its children in the tree (this inclusionneeds not to be strict).Text subqueries are introduced in the model by considering any set of disjoint segmentsas belonging to a special text view.3.2 Query LanguageWe have a set-at-a-time query language, where both operands and answers are sets of nodes,and nodes can be selected by regarding their context in the structure. All sets are subsets ofa single view.The idea of the query language is that the leaves of the query syntax trees (pattern-matching expressions and basic constructor names) must be solved by using some indexingscheme that avoids the need to traverse the whole database to �nd the answers. That is,we use a bottom-up evaluation approach. Thereafter, the operators work on sets of nodes



to produce new sets of nodes. All these operators work on proximal nodes, i.e. nodes whosesegments are more or less proximal. This way, by using an appropriate arrangement to keepthe nodes of each set (operand), we can perform all operations very e�ciently.This way, we do not de�ne a monolithic, comprehensive query language, but point outa number of operations that are coherent with this philosophy, and consequently can bee�ciently implemented. Most operations �tting into this scheme can be implemented inlinear time. We refer the reader to [15] for implementation details.Our aim is to show that a set of operators that operate exclusively on proximal nodesand regarding only their identity and associated segment can be very expressive.Figure 1 outlines the schema of the operations. There are basic extraction operations(forming the basis of querying on structure and on contents), and there are operations tocombine results from others, which are classi�ed in a number of groups: those which operateby considering included elements, including elements, nearby elements, to manipulate setsand by direct structural relationships.
Positional

By including
elements

Free

Positional

endin

beginin

in

Content
Basis

expr.
Match

matches
Basis
Structure

Constructor

View

[s] endin

[s] beginin

[s] in

By included elements

on matches
Opers

with(k)

withbegin(k)

withend(k)

after, after(k)

before, before(k)

Direct structural

parent(k)

Set manipulation

Composition
Operations

Same hierarchy

Distinct

hierarchies

+, -, is

same

[s] child

collapse, subtract...Figure 1: The operations of our model, classi�ed by type.



4 Comparison with Similar ModelsThe aim of this section is to study the expressivity of our model, by comparing it against theother models we cover. The formal semantics of our model and the equations to translate itto others and vice versa are presented in [15]. Because of their length, we present only themain points in this section.The Hybrid Model: Our model can completely represent this one, by means of two ex-pressions that return the set of resulting documents and the set of resulting matches(size-1 text segments). On the other hand, this model can represent little from ours.PAT Expressions: Our model can represent this one almost completely (except some un-desirable features). We represent answers as a set of text regions corresponding to the\areas" of this model. On the other hand, we have to leave out a lot of structuringpower to embed our model into this one (all our structures have to be at, for example).Overlapped Lists: Our model can represent this one, except for the overlapping feature,which is in fact central to this model. We can represent, as text regions, the resultingsegments, although collapsed when they overlap. On the other hand, this model cannotrepresent nested answers, which is a central feature of our model. Apart from thatrestriction, an interesting number of operators can be translated.Lists of References: We can represent all of this model (except its attribute managementand hypertextual features, that we left aside from this comparison). On the other hand,this model poses some strong restrictions to embed our model into it: answers have tobe at and a subset of a single constructor. Also, only one hierarchy exists. Except forthese (important) restrictions, an interesting subset of our operators can be translatedinto this one.Tree Matching: We are not able to fully represent this model. The reason is that the treepattern-matching semantics impose that any labeling, ancestorship and (optionally)ordering relations hold in the match point if and only if they hold in the pattern. Wecannot express this except under certain restrictions. Moreover, we cannot representany of the features of this model regarding logical variables. On the other hand, thismodel can represent some of ours, being its main limitations to have a single hierarchy,not being able to express direct structural relations and its weak link between text andstructure.5 A Comparison FrameworkIn this section, we draw an informal framework to situate the expressivity of any similarmodel.Our aim is to make a move in the direction of unifying the diversity present in the similarapproaches, in order to situate them in a common framework, to reasonably compare theirdistinguishing features.



Finding a model of expressivity as it could be the hierarchy of formal languages is certainlyan ambitious goal (a �rst step in this direction could be [6]). We content ourselves withpointing out a number of aspects in which (at least) a model should be examined in order toanalyze its expressivity.In [17], a number of queries that this kind of language should be able to answer arepointed out. We show in [15] that we can express all in the areas we are interested in (i.e.excluding the features related to relevance ranking and connection to relational databases,which we do not address in this model).Another attempt to classify these kind of models is made in [13], which surveys a numberof approaches to structured text retrieval. In that case, the study is broader, since it alsocovers indexing and editing aspects, but its focus on data models and query languages is notso deep as in this one. Moreover, they have only two models under study in common.5.1 A Methodology to Analyze a LanguageWe want to make a stricter analysis that the one done in [17], since its requirements are alsoful�lled by less powerful languages. We divide our analysis in three main areas, and posesome example questions related to that area. More details can be found in [15].Structuring mechanism: It refers to the capabilities of the language to express the struc-ture of a textual database. Some questions one should ask here are: is it possible toexpress a hierarchy? is there any limit on it? can multiple hierarchies be expressed?Query language for contents: It refers to the part of the query language related to thetext of the database, and especially the way to relate it to the structure. Some importantquestions are: how is the string matching sublanguage? how is a matching subqueryinserted in the context of a structural query? how is the text seen in the model? howcan restrictions on distances be expressed? are text segments �rst-class objects? (e.g.can they be retrieved, can we ask if they include something, etc.).Query language for structure: It refers to the part of the query language related to thestructure of the database. Important questions are: how can ancestorship be expressed?can it distinguish between direct and transitive relations? can it discriminate orderingor positions among siblings? which are the set manipulation features?5.2 A Brief AnalysisTable 1 answers the posed questions for the models we have been analyzing. We are goingto be very brief here. Recall that we disregard matching sublanguages in this analysis.In Figure 2 we present a graphical version of this analysis. The main desirable featuresare presented, and each model is represented as a set of the features it supports. Recall thatwe only consider part of the lists-of-references model.From the �gure, we can see that the main features lacking in our model are tuples, semijoinby contents and the possibility of having overlaps and combined nodes in the result set of aquery.



Area Structuring Querying contents Querying structureA set of disjoint Text is a special view. Can express inclusion,strict trees (views), Nodes cannot be disso- positions, direct andwith no more ciated from segments. transitive relations;restrictions. Views Text queries are leaves discriminates orderingcan overlap. of query syntax trees. (with restrictions)Our There are powerful dis- and manipulates sets.model tance operators. Text Cannot express relation-content is accessed only ships between di�erentin matching subqueries, parts of the structure.thereafter it is seen as Can express contextsegments. There are special conditions relatingset operators for text. proximal nodes.IR-like documents Query = matches + Only to restrict match-+ �elds + text. documents. Almost all the ing points to be in aFields can nest and language is oriented to given �eld or to selectHybrid overlap, but it is matches, which are seen �elds including match-model [1] a at model. as their start point. Ex- ing points (selectedpresses distances. Has sep- �elds are then seen asarate set manipulation tools matching points).for matches and documents.Dynamic de�nition Powerful matching lang- Structures are at.of regions, by pattern uage. Has matching points Can express inclusion,PAT matching. Each and regions. Regions are set manipulationexpressions region is a at just segments. Has set and little more.[18] list of disjoint manipulation operations.segments. Expresses distances.A set of regions, Not speci�ed. Words and Results are at, althoughOverlapped each one a at regions are seen in a they can overlap. Canlists [3] list of possibly uniform way, by an inverted express inclusion, unionoverlapping segments. list metaphor. and combinations (3;4).A single hierarchy Text queries can only be Results are at and fromReference with attributes in used to restrict other the same constructor. Canlists [14] nodes and hypertext queries. express inclusions,links. complex context conditionsand set manipulation.A single tree, with Not speci�ed, orthogonal Powerful tree patternstrict hierarchy. to the model. Apparently matching language. CanNo more it can only be used to distinguish order but notrestrictions. restrict sets of nodes of positions nor directTree the tree. Weak link between relationships. Can expressmatching contents and structure. equality between di�erent[12] parts of a structure, byusing logical variables.Set manipulation vialogical connectives.Table 1: An analysis of similar models.



PAT expressions
Hybrid model
Lists of references

Text is first-
class object

Overlaps 
in resultsCompositional

language

Positional
inclusion

Direct
ancestorship

Distances

Semijoin

by contentsand join

Tuples

Set
manipulation

structure

Inclusion
relations

Tree
matching

Our
model

Combination
of nodes

lists
Overlapped

Overlaps in

Hierarchy
on results

structures
Recursive

Figure 2: A graphical representation of the comparison made in the framework.Regarding tuples, joins and semijoins, only the tree matching model can manage thesefeatures (and also p-strings, in its own context of a data manipulation language). Thesetwo languages do not have an e�cient implementation. On the other hand, overlaps andcombination of resulting nodes from a query are allowed by the overlapped lists model, butat the expense of not allowing them to form a hierarchy. We have not found an e�cientimplementation if we allow both features at the same time, and we consider that havinghierarchies is more important in real cases.Therefore, we have that our model has most of the features that are important in practice.Those which are not present appear to be not suitable of an e�cient implementation.6 Conclusions and Future WorkThe problem of querying a textual database on both its contents and structure has beenanalyzed. We found the existing approaches to be either not expressive enough or ine�cient.So, we propose a model based on a set-oriented query language that operates on nearby nodesand is e�ciently implementable. We have compared the expressivity of our model with otherrelated ones, and we have de�ned a framework in which to evaluate any similar model.The conclusion of this comparison is that our model is competitive in expressivity withothers that do not have such an e�cient implementation, while the models with comparable



e�ciency are less expressive than ours.See Figure 3 for a graphical (and informal) comparison of similar models when takinginto account both e�ciency and expressivity. Note that we have included p-strings in thisdrawing, assuming an expressivity superior to all the languages we have analyzed. Note alsothat only a part of the lists-of-references model is considered. Finally, we observe that, asany quantization of concepts it is, up to a certain extent, subjective. Nevertheless, it doesgive an idea of where our model is.
Expressivity

Our model

model

Hybrid

E
ff

ic
ie

nc
y

lists

PAT
expressions

Overlapped

Lists of references

Tree matching

p-stringsFigure 3: A comparison between similar models, regarding e�ciency and expressivity.A central issue that has appeared in this work is how to compare information models,even when they are quite similar. Although we have done one step forward in this direction,the problem is by no means solved. A formal framework in which to compare expressivity isneeded. The long-term goal should be a formal and sound hierarchy like what can be foundin the area of formal languages (see [6, 11] for some initial attempts). Many of the coveredmodels are known to have expressivity limitations (e.g. semijoins).References[1] R. Baeza-Yates. An hybrid query model for full text retrieval systems. Technical ReportDCC-1994-2, Dept. of Computer Science, Univ. of Chile, 1994.[2] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents tonovel query facilities. In Proc. ACM SIGMOD'94, pages 313{324, 1994.[3] C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and aframework for its implementation. The Computer Journal, 1995. To appear.



[4] C. Clarke, G. Cormack, and F. Burkowski. Schema-independent retrieval from hetero-geneous structured text. In Procs. of the 4th Annual Symposium on Document Analysisand Information Retrieval, Las Vegas, Nevada, Apr. 1995.[5] M. Consens and T. Milo. Optimizing queries on �les. In Proc. ACM SIGMOD'94, pages301{312, 1994.[6] M. Consens and T. Milo. Algebras for querying text regions. In Proc. PODS'95, 1995.California.[7] B. Desai, P. Goyal, and S. Sadri. A data model for use with formatted and textual data.Journal of ASIS, 37(3):158{165, 1986.[8] H. Fawcett. PAT 3.3 User's Guide. UW Centre for the New OED and Text Research,Univ. of Waterloo, 1989.[9] W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures andAlgorithms. Prentice-Hall, Englewood Cli�s, New Jersey 07632, 1992.[10] G. Gonnet and F. Tompa. Mind Your Grammar: a new approach to modelling text. InProc. VLDB'87, pages 339{346, 1987.[11] M. Gyssens, J. Paredaens, and D. V. Gucht. A grammar-based approach towards uni-fying hierarchical data models. In Proc. ACM SIGMOD'89, pages 263{272, 1989.[12] P. Kilpel�ainen and H. Mannila. Retrieval from hierarchical texts by partial patterns. InProc. ACM SIGIR'93, pages 214{222, 1993.[13] A. Loe�en. Text databases: A survey of text models and systems. ACM SIGMODConference. ACM SIGMOD RECORD, 23(1):97{106, Mar. 1994.[14] I. MacLeod. A query language for retrieving information from hierarchic text structures.The Computer Journal, 34(3):254{264, 1991.[15] G. Navarro. A language for queries on structure and contents of textual databases.Master's thesis, Dept. of Computer Science, Univ. of Chile, Apr. 1995.[16] G. Navarro and R. Baeza-Yates. A language for queries on structure and contents oftextual databases. In Proc. ACM SIGIR'95, July 1995. Seattle, WA.[17] R. Sacks-Davis, T. Arnold-Moore, and J. Zobel. Database systems for structured docu-ments. In Proc. ADTI'94, pages 272{283, 1994.[18] A. Salminen and F. Tompa. PAT expressions: an algebra for text search. In COM-PLEX'92, pages 309{332, 1992.[19] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman. Document processingin a relational database system. ACM TOIS, 1(2):143{158, Apr. 1983.


