
Improved Dynami
 Spatial Approximation Trees �Gonzalo NavarroDept. of Computer S
ien
e, University of Chile.Blan
o En
alada 2120, Santiago, Chile.gnavarro�d

.u
hile.
landNora ReyesDepto. de Inform�ati
a, Universidad Na
ional de San Luis.Ej�er
ito de los Andes 950, San Luis, Argentina.nreyes�unsl.edu.arAbstra
tThe Spatial Approximation Tree (sa-tree) is a re
ently proposed data stru
ture for sear
hing in metri
spa
es. It has been shown that it
ompares favorably against alternative data stru
tures in spa
es ofhigh dimension or queries with low sele
tivity. The main drawba
k of the sa-tree was that it was a stati
data stru
ture, that is, on
e built, it was diÆ
ult to add new elements to it. This ruled it out for manyinteresting appli
ations.We have already proposed several methods to handle insertions in the sa-tree. In this paper wepropose and study a new method that is an evolution over previous ones. We show that the new methodis superior to the former and that it permits fast insertions while keeping a good sear
h eÆ
ien
y.Keywords: databases, data stru
tures, algorithms.ResumenEl Arbol de Aproxima
i�on Espa
ial (sa-tree) es una estru
tura de datos para b�usqueda en espa
iosm�etri
os propuesta re
ientemente. Se ha mostrado que tiene buen desempe~no
omparada
ontra estru
-turas de datos alternativas en espa
ios de alta dimensi�on o
onsultas de baja sele
tividad. La prin
ipaldesventaja que present�o sa-tree fue la de ser una estru
tura de datos est�ati
a, es de
ir, era di�
ultosoagregarle nuevos elementos una vez
onstruida. Esto la des
artaba para mu
has apli
a
iones interesantes.Ya hemos propuesto varios m�etodos para manejar inser
iones en el sa-tree. En este art��
ulo pro-ponemos un m�etodo nuevo que es una evolu
i�on sobre algunos previos. Mostramos que el nuevo m�etodoes superior a los primeros y que permite inser
iones r�apidas mientras que mantiene una buena e�
ien
iade b�usqueda.Palabras
laves: bases de datos, estru
turas de datos, algoritmos.�This work was supported in part by CYTED VII.19 RIBIDI Proje
t.

1 Introdu
tionThe
on
ept of \approximate" sear
hing has appli
ations in a vast number of �elds. Some examples are non-traditional databases (e.g. storing images, �ngerprints or audio
lips, where the
on
ept of exa
t sear
h is ofno use and we sear
h instead for similar obje
ts); text sear
hing (to �nd words and phrases in a text databaseallowing a small number of typographi
al or spelling errors); information retrieval (to look for do
umentsthat are similar to a given query or do
ument); ma
hine learning and
lassi�
ation (to
lassify a new elementa

ording to its
losest representative); image quantization and
ompression (where only some ve
tors
anbe represented and we
ode the others as their
losest representable point);
omputational biology (to �nd aDNA or protein sequen
e in a database allowing some errors due to mutations); and fun
tion predi
tion (tosear
h for the most similar behavior of a fun
tion in the past so as to predi
t its probable future behavior).All those appli
ations have some
ommon
hara
teristi
s. There is a universe U of obje
ts, and a non-negative distan
e fun
tion d : U � U �! R+ de�ned among them. This distan
e satis�es the three axiomsthat make the set a metri
 spa
e: stri
t positiveness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x))and triangle inequality (d(x; z) � d(x; y) + d(y; z)). The smaller the distan
e between two obje
ts, the more\similar" they are. We have a �nite database S � U , whi
h is a subset of the universe of obje
ts and
an beprepro
essed (to build an index, for example). Later, given a new obje
t from the universe (a query q), wemust retrieve all similar elements found in the database. There are two typi
al queries of this kind:Range query: Retrieve all elements within distan
e r to q in S. This is, fx 2 S ; d(x; q) � rg.Nearest neighbor query (k-NN): Retrieve the k
losest elements to q in S. That is, a set A � S su
hthat jAj = k and 8x 2 A; y 2 S �A; d(x; q) � d(y; q).The distan
e is
onsidered expensive to
ompute (think, for instan
e, in
omparing two �ngerprints).Hen
e, it is
ustomary to de�ne the
omplexity of the sear
h as the number of distan
e evaluations performed,disregarding other
omponents su
h as CPU time for side
omputations, and even I/O time. Given a databaseof jSj = n obje
ts, queries
an be trivially answered by performing n distan
e evaluations. The goal is tostru
ture the database su
h that we perform less distan
e evaluations.A parti
ular
ase of this problem arises when the spa
e is a set of D-dimensional points and the dis-tan
e belongs to the Minkowski Lp family: Lp = (P1�i�D jxi � yijp)1=p. The best known spe
ial
asesare p = 1 (Manhattan distan
e), p = 2 (Eu
lidean distan
e) and p = 1 (maximum distan
e), that is,L1 = max1�i�D jxi � yij.There are e�e
tive methods to sear
h on D-dimensional spa
es, su
h as kd-trees [1℄ or R-trees [4℄. How-ever, for roughly 20 dimensions or more those stru
tures
ease to work well. We fo
us in this paper ingeneral metri
 spa
es, although the solutions are well suited also for D-dimensional spa
es. It is interest-ing to noti
e that the
on
ept of \dimensionality"
an be translated to metri
 spa
es as well: the typi
alfeature in high dimensional spa
es with Lp distan
es is that the probability distribution of distan
es amongelements has a very
on
entrated histogram (with larger mean as the dimension grows), making the work ofany similarity sear
h algorithm more diÆ
ult [2, 3℄. In the extreme
ase we have a spa
e where d(x; x) = 0and 8y 6= x; d(x; y) = 1, where it is impossible to avoid a single distan
e evaluation at sear
h time. We saythat a general metri
 spa
e is high dimensional when its histogram of distan
es is
on
entrated.There are a number of methods to prepro
ess the set in order to redu
e the number of distan
e evaluations.All those stru
tures work on the basis of dis
arding elements using the triangle inequality, and most use the
lassi
al divide-and-
onquer approa
h (whi
h is not spe
i�
 of metri
 spa
e sear
hing).The Spatial Approximation Tree (sa-tree) is a re
ently proposed data stru
ture of this kind [5, 6℄, basedon a novel
on
ept: rather than dividing the sear
h spa
e, approa
h the query spatially, that is, start at somepoint in the spa
e and get
loser and
loser to the query. Apart from being algorithmi
ally interesting byitself, it has been shown that the sa-tree gives better spa
e-time tradeo�s than the other existing stru
tureson metri
 spa
es of high dimension or queries with low sele
tivity, whi
h is the
ase in many appli
ations.The sa-tree, however, has some important weaknesses. The �rst is that,
ompared to other indexes, itis relatively
ostly to build in low dimensions (it is harder to build in high dimensions, but in this
ase the
ompeting indexes are even more
ostly). The se
ond is that, in low dimensions or for queries with highsele
tivity (small r or k), its sear
h performan
e is poor when
ompared to simple alternatives. The third2

is that it is a stati
 data stru
ture: on
e built, it is hard to add elements to it. These weaknesses make thesa-tree unsuitable for important appli
ations su
h as multimedia databases.Permitting in
remental
onstru
tion is the aim of this paper. We present a dynami
 version of the sa-treethat handles insertions eÆ
iently. We show that the dynami
 sa-tree
an be built in
rementally (i.e., bysu

essive insertions) at the same
ost of its stati
 version, and that the sear
h performan
e is una�e
ted.In addition to the above a
hievement, we �nd out how to obtain large improvements in
onstru
tion andsear
h time for low dimensional spa
es or highly sele
tive queries. The method
onsists of limiting the treearity and involves new algorithmi
 insights on this data stru
ture. The lower the arity, the
heaper to buildthe tree. However, at sear
h time, the best arity depends on the dimension and the query sele
tivity. Inparti
ular, for low dimensions, we obtain improved
onstru
tion and sear
h time simultaneously.The out
ome is a mu
h more pra
ti
al data stru
ture that
an be useful in a wide range of appli
ations.We expe
t the dynami
 sa-tree to repla
e the stati
 version in the developments to
ome.This work builds over [7℄, where it was shown that insertions on the sa-tree
ould be reasonably handled.In addition, we
apture in the tree arity the parameter that permits adapting it better to di�erent dimensions.The original sa-tree adapts itself to the dimension, but not optimally.2 The Spatial Approximation TreeWe des
ribe brie
y in this se
tion the stati
 sa-tree data stru
ture. For la
k of spa
e we do not
overalternative stru
tures for metri
 spa
e sear
hing; the reader is referred to [3℄ for details.The sa-tree needs O(n) spa
e, O(n log2 n= log logn)
onstru
tion time, and sublinear sear
h time:O(n1��(1= log log n)) in high dimensions and O(n�) (0 < � < 1) in low dimensions. It is experimentally shownto o�er better spa
e-time tradeo�s than other data stru
tures when the dimension is high or the query radiusis large. For more details see the original referen
es [5, 6℄.2.1 Constru
tionWe sele
t a random element a 2 S to be the root of the tree. We then sele
t a suitable set of neighbors N(a)satisfyingCondition 1: (given a; S) 8x 2 S, x 2 N(a), 8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set su
h that any neighbor is
loser to a than to any other neighbor.The \only if" (() part of the de�nition guarantees that if we
an get
loser to any b 2 S then an elementin N(a) is
loser to b than a, be
ause we put as dire
t neighbors all those elements that are not
loser toanother neighbor. The \if" part ()) aims at putting as few neighbors as possible.Noti
e that the set N(a) is de�ned in terms of itself in a non-trivial way and that multiple solutions �tthe de�nition. For example, if a is far from b and
 and these are
lose to ea
h other, then both N(a) = fbgand N(a) = f
g satisfy the de�nition.Finding the smallest possible set N(a) seems to be a nontrivial
ombinatorial optimization problem, sin
eby in
luding an element we need to take out others (this happens between b and
 in the example of theprevious paragraph). However, simple heuristi
s whi
h add more neighbors than ne
essary work well. Webegin with the initial node a and its \bag" holding all the rest of S. We �rst sort the bag by distan
e to a.Then, we start adding nodes to N(a) (whi
h is initially empty). Ea
h time we
onsider a new node b, we
he
k whether it is
loser to some element of N(a) than to a itself. If that is not the
ase, we add b to N(a).At this point we have a suitable set of neighbors. Note that Condition 1 is satis�ed thanks to the fa
tthat we have
onsidered the elements in order of in
reasing distan
e to a. The \only if" part of Condition 1 is
learly satis�ed be
ause any element not satisfying it is inserted in N(a). The \if" part is more deli
ate. Letx 6= y 2 N(a). If y is
loser to a than x then y was
onsidered �rst. Our
onstru
tion algorithm guaranteesthat if we inserted x in N(a) then d(x; a) < d(x; y). If, on the other hand, x is
loser to a than y, thend(y; x) > d(y; a) � d(x; a) (that is, a neighbor
annot be removed by a new neighbor inserted later).3

We now must de
ide in whi
h neighbor's bag we put the rest of the nodes. We put ea
h node not infag [N(a) in the bag of its
losest element of N(a) (best-�t strategy). Observe that this requires a se
ondpass on
e N(a) is fully determined.We are done now with a, and pro
ess re
ursively all its neighbors, ea
h one with the elements of its bag.Note that the resulting stru
ture is a tree that
an be sear
hed for any q 2 S by spatial approximationfor nearest neighbor queries. The reason why this works is that, at sear
h time, we repeat exa
tly whathappened with q during the
onstru
tion pro
ess (i.e. we enter into the subtree of the neighbor
losest toq), until we rea
h q. This is is be
ause q is present in the tree, i.e., we are doing an exa
t sear
h after all.Finally, we save some
omparisons at sear
h time by storing at ea
h node a its
overing radius, i.e.,the maximum distan
e R(a) between a and any element in the subtree rooted by a. The way to use thisinformation is made
lear in Se
tion 2.2.Figure 1 depi
ts the
onstru
tion pro
ess. It is �rst invoked as BuildTree(a,S � fag) where a is arandom element of S. Note that, ex
ept for the �rst level of the re
ursion, we already know all the distan
esd(v; a) for every v 2 S and hen
e do not need to re
ompute them. Similarly, some of the d(v;
) distan
es atline 9 is already known from line 6. The information stored by the data stru
ture is the root a and the N()and R() values of all the nodes.BuildTree (Node a, Set of nodes S)1. N(a) ; // neighbors of a2. R(a) 0 //
overing radius4. For v 2 S in in
reasing distan
e to a Do5. R(a) max(R(a); d(v; a))6. If 8b 2 N(a); d(v; a) < d(v; b) Then N(a) N(a) [fvg7. For b 2 N(a) Do S(b) ;8. For v 2 S �N(a) Do9.
 argminb2N(a)d(v; b)10. S(
) S(
) [fvg11. For b 2 N(a) Do BuildTree (b, S(b))Figure 1: Algorithm to build the sa-tree.2.2 Sear
hingOf
ourse it is of little interest to sear
h only for elements q 2 S. The tree we have des
ribed
an, however,be used as a devi
e to solve queries of any type for any q 2 U. We
onsider �rst range queries with radius r.The key observation is that, even if q 62 S, the answers to the query are elements q0 2 S. So we use thetree to pretend that we are sear
hing for an element q0 2 S. We do not know q0, but sin
e d(q; q0) � r, we
an obtain from q some distan
e information regarding q0: by the triangle inequality it holds that for anyx 2 U, d(x; q)� r � d(x; q0) � d(x; q) + r.Hen
e, instead of simply going to the
losest neighbor, we �rst determine the
losest neighbor
 of qamong fag[N(a). We then enter into all neighbors b 2 N(a) su
h that d(q; b) � d(q;
)+2r. This is be
ausethe virtual element q0 sought
an di�er from q by at most r at any distan
e evaluation, so it
ould have beeninserted inside any of those b nodes. In the pro
ess, we report all the nodes q0 we found
lose enough to q.(A more sophisti
ated sear
h s
heme is given in [6℄, but it
annot be applied to our dynami
 version, so weprefer to omit it.)Finally, the
overing radius R(a) is used to further prune the sear
h, by not entering into subtrees su
hthat d(q; a) > R(a) + r, sin
e they
annot
ontain useful elements.Figure 2 illustrates the sear
h pro
ess on the left, starting from the tree root p11. Only p9 is in theresult, but all the bold edges are traversed. On the right, we give the sear
h algorithm, initially invokedas RangeSear
h(a,q,r), where a is the tree root. Note that in the re
ursive invo
ations d(a; q) is already
omputed.We
an also perform nearest neighbor sear
hing by simulating a range sear
h where the sear
h radiusis redu
ed as we pro
eed. We have a priority queue of subtrees sorted by the known lower bound distan
e4

p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10 RangeSear
h (Node a, Query q, Radius r)1. If d(a; q) � R(a) + r Then2. If d(a; q) � r Then Report a3. dmin min fd(
; q);
 2 fag [N(a)g4. For b 2 N(a) Do5. If d(b; q) � dmin + 2r Then6. RangeSear
h (b,q,r)Figure 2: On the left, an example of the sear
h pro
ess. On the right, the algorithm to sear
h for q withradius r in a sa-tree.between the subtree and q. Initially, we insert the sa-tree root in the data stru
ture. Iteratively, we extra
tthe (as far as it is known)
losest subtree, pro
ess its root, and insert all its subtrees in the queue. This isrepeated until the queue gets empty or the lower bound distan
e is larger than r. For la
k of spa
e we omitfurther details.3 In
remental Constru
tionThe sa-tree is a stru
ture whose
onstru
tion algorithm needs to know all the elements of S in advan
e. Inparti
ular, it is diÆ
ult to add new elements under the best-�t strategy on
e the tree is already built. Ea
htime a new element is inserted, we must go down the tree by the
losest neighbor until the new element mustbe
ome a neighbor of the
urrent node a. All the subtree rooted at a must be rebuilt from s
rat
h, sin
esome nodes that went into another neighbor
ould prefer now to get into the new neighbor.Several insertion alternatives have been previously
onsidered [7, 6℄. The best methods turned out tobe the so-
alled \timestamping" and \insertion at the fringe". In this se
tion we dis
uss and empiri
allyevaluate these alternatives to permit insertion of new elements into an already built sa-tree. Then we proposea novel te
hnique based on ideas from these two methods and we show that it is better than the others.For the experiments we have sele
ted two metri
 spa
es. The �rst is a di
tionary of 69,069 Englishwords, from where we randomly
hose queries. The distan
e in this
ase is the edit distan
e, that is,minimum number of
hara
ter insertions, deletions and repla
ements to make the strings equal. The se
ondspa
e is the real unitary
ube in dimension 15 using Eu
lidean distan
e. We generated 100,000 randompoints with uniform distribution. For the queries, we build the indexes with 90% of the points and use theother 10% (randomly
hosen) as queries. The results on these two spa
es are representative of those on manyother metri
 spa
es we tested: NASA images, di
tionaries in other languages, Gaussian distributions, otherdimensions, et
.As a
omparison point for whi
h follows, a stati

onstru
tion
osts about 5 million
omparisons for thedi
tionary and 12.5 million for the ve
tor spa
e.Now we explain the two best methods previously proposed to permit insertion of new elements into analready built sa-tree. These methods show that it is possible to build the sa-tree in
rementally.3.1 TimestampingThis alternative has resemblan
es with other two also
onsidered in [7℄, but it is more sophisti
ated
onsistsin keeping a timestamp of the insertion time of ea
h element. When inserting a new element, we add it as aneighbor at the appropriate point using best-�t and do not rebuild the tree. Let us
onsider that neighbors5

are added at the end, so by reading them left to right we have in
reasing insertion times. It also holds thatthe parent is always older than its
hildren.At sear
h time, we
onsider the neighbors fv1; : : : ; vkg of a from oldest to newest. We perform theminimization while we traverse the neighbors, that is, we enter into the subtree of v1 if d(q; v1) � d(q; a)+2r;into the subtree of v2 if d(q; v2) � min(d(q; a); d(q; v1))+2r; and in general into the subtree of vi if d(q; vi) �min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r. This is be
ause vi+j
an never take out an element from vi.. Thisis be
ause between the insertion of vi and vi+j there may have appeared new elements that preferred vi justbe
ause vi+j was not yet a neighbor, so we may miss an element if we do not enter into vi be
ause of theexisten
e of vi+j .Up to now we do not really need timestamps but just to keep the neighbors sorted. Yet a more so-phisti
ated s
heme is to use the timestamps to redu
e the work done inside older neighbors. Say thatd(q; vi) > d(q; vi+j) + 2r. We have to enter into vi be
ause it is older. However, only the elements withtimestamp smaller than that of vi+j should be
onsidered when sear
hing inside vi; younger elements haveseen vi+j and they
annot be interesting for the sear
h if they are inside vi. As parent nodes are older thantheir des
endants, as soon as we �nd a node inside the subtree of vi with timestamp larger than that of vi+jwe
an stop the sear
h in that bran
h, be
ause its subtree is even younger.An alternative view, equivalent as before but fo
using on maximum allowed radius instead of maximumallowed timestamp, is as follows. Ea
h time we enter into a subtree y of vi, we sear
h for the siblings vi+j ofvi that are older than y. Over this set, we
ompute the maximum radius that permits to avoid pro
essingy, namely ry = max(d(q; vi)� d(q; vi+j))=2. If it holds r < ry, we do not need to enter into the subtree y.Let us now
onsider nearest neighbor sear
hing. Assume that we are
urrently pro
essing node vi andinsert its
hildren y in the priority queue. We
ompute ry as before and insert it together with y in thepriority queue. Later, when the time to pro
ess y
omes, we
onsider our
urrent sear
h radius r� anddis
ard y if r� < ry. If we insert a
hildren z of y, we put it the value min(ry ; rz).This was an ex
ellent alternative to the stati

onstru
tion in the
ase of our ve
tor spa
e example,providing basi
ally the same
onstru
tion and sear
h
ost with the added value of dynamism. In the
ase ofthe di
tionary, the timestamping te
hnique is signi�
antly worse than the stati
 one.3.2 Inserting at the FringeYet another good alternative also
onsidered in [7℄ is as follows. We
an relax Condition 1 (Se
tion 2.1),whose main goal is to guarantee that if q is
loser to a than to any neighbor in N(a) then we
an stop thesear
h at that point. The idea is that, at sear
h time, instead of �nding the
losest
 among fag [N(a)and entering into any b 2 N(a) su
h that d(q; b) � d(q;
) + 2r, we ex
lude the subtree root fag from theminimization. Hen
e, we always
ontinue to the leaves by the
losest neighbor and others
lose enough. Thisseems to make the sear
h time slightly worse, but the
ost is marginal.The bene�t is that we are not for
ed anymore to put a new inserted element x as a neighbor of a, evenwhen Condition 1 would require it. That is, at insertion time, even if x is
loser to a than to any elementin N(a), we have the
hoi
e of not putting it as a neighbor of a but inserting it into its
losest neighbor ofN(a). At sear
h time we will rea
h x be
ause the sear
h and insertion pro
esses are similar.This freedom opens a number of new possibilities that deserve a mu
h deeper study, but an immediate
onsequen
e is that we
an insert always at the leaves of the tree. Hen
e, the tree is read-only in its toppart and it
hanges only in the fringe. However, we have to permit the re
onstru
tion of small subtrees soas to avoid that the tree be
omes almost a linked list. So we permit inserting x as a neighbor when the sizeof the subtree to rebuild is small enough, whi
h leads to a tradeo� between insertion
ost and quality of thetree at sear
h time.As
an be seen in [7℄, some re
onstru
tion sizes yield the same and even better sear
h time
ompared tothe stati
 version, whi
h shows that it may be bene�
al to move elements downward in the tree. This fa
tmakes this alternative a very interesting
hoi
e deserving more study.
6

4 A New In
remental Constru
tion Te
hniqueTimestamping permitted inserting an element with a te
hnique very similar to that of the stati

onstru
tion,by re
ording the time every element was inserted. Remarkably, this te
hnique obtained a performan
e verysimilar to that of the stati
 version, by avoiding any re
onstru
tion. Insertion at the fringe, on the otherhand, limits the maximum tree size where a new element
an be inserted, with the aim of re
onstru
ting onlysmall subtrees. The te
hnique permits us avoiding insertion at the point where Condition 1 would requireit, delaying it to a point downwards the tree. Surprisingly, this te
hnique even improved the performan
ein low dimensions, so there was a fa
tor largely
ompensating the
ost of the re
onstru
tions. Where thisfa
tor
ame from was not
lear at that time [7℄.We have pursued this line and determined that the key fa
t is that these trees have a redu
ed arity.Moreover, the main reason of the poor performan
e of the sa-tree in low dimensional spa
es is its ex
essivelyhigh arity (the tree automati
ally adapts its arity to the dimension, but not optimally). Hen
e we de
idedto fo
us dire
tly on the maximum permitted arity and made it a tuning parameter. The same delayingte
hnique used to limit the tree size to rebuild is now used to limit the tree arity. Moreover, by mergingthis te
hnique with timestamping, we have no re
onstru
tion
ost to
ompensate, so we get the best of bothworlds.Observe that one of the ni
e features of the original sa-tree was that it had no parameter to set, so anynon-expert
ould just use it. Our new parameter does not harm in this sense, be
ause it
an be set to 1to obtain the same performan
e of the original sa-tree. On the other hand, very large improvements
an beobtained in low dimensions by appropriately setting the maximum tree arity. We get into the details now.4.1 InsertionTo
onstru
t the sa-tree in
rementally we �x a maximum tree arity, and also keep a timestamp of the insertiontime of ea
h element. When inserting a new element x, we add it as a neighbor at the appropriate point a(Condition 1) only if the arity of node a is not already maximal. Otherwise, even when x is
loser to a thanto any b 2 N(a), we for
e x to
hoose the
losest neighbor in N(a) and keep walking down the tree, until werea
h a node a where Condition 1 is satis�ed (x is
loser to a than to any b 2 N(a)) and the arity of nodea is not maximal (this eventually o

urs at a tree leaf). At this point we add x at the end of the list N(a),put the
urrent timestamp to x and in
rement the
urrent timestamp.Note that by reading neighbors from left to right we have in
reasing timestamps. It also holds that theparent is always older than its
hildren. Note also that now it is not sure anymore that a new insertedelement x is a neighbor of the �rst node a that satis�es Condition 1 in its path. It may be that the arity ofa was maximal and x was for
ed to
hoose a neighbor of a. This has impli
ations in the sear
h pro
ess thatwill be
onsidered soon.Figure 3 illustrates the insertion pro
ess. We follow only one path from the tree root to the parent ofthe inserted element. The fun
tion is invoked as Insert(a,x), where a is the tree root and x is the elementto be inserted. The sa-tree
an now be built by starting with a �rst single node a where N(a) = ; andR(a) = 0, and then performing su

essive insertions.Insert (Node a, Element x)1. R(a) max(R(a); d(a; x))2.
 argminb2N(a)d(b; x)3. If d(a; x) < d(
; x) ^ jN(a)j < MaxArity Then4. N(a) N(a) [fxg5. N(x) ;, R(x) 06. time(x) CurrentT ime7. Else Insert (
,x)Figure 3: Insertion of a new element x into a dynami
 sa-tree with root a. MaxArity is the maximum treearity and CurrentT ime is the
urrent time, whi
h is in
remented after ea
h new insertion.7

Figure 4
ompares the
ost of in
remental
onstru
tion using our te
hnique against stati

onstru
tionfor in
reasing subsets of the database. We show arities 4, 8, 16 and 32. In both
ases, the
onstru
tionperforman
e improves as we redu
e the tree arity, being by far better than the stati

onstru
tion (twi
eas fast on strings and four times faster on ve
tors). Note that if we permit a suÆ
iently large arity (e.g.,32 on strings) the in
remental version be
omes somewhat worse than the stati
 version (whose arity isunlimited). This shows that the redu
ed arity is a key fa
tor in lowering
onstru
tion
osts. This is
lear,as the insertion
ost with arity A is A logA n, while on unlimited arity it was shown in [6℄ that the averagearity is A = O(logn), so the
onstru
tion
ost per element is O(log2 n= log logn).The question is how a redu
ed arity a�e
ts sear
h time. We
onsider this next.

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
00

0)

Percentage of database used

Construction cost for n = 69,069 words

Static construction
Arity 4
Arity 8

Arity 16
Arity 32

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
00

0)

Percentage of database used

Construction cost for n = 100,000 vectors dimension 15

Static
Arity 4
Arity 8

Arity 16
Arity 32

Figure 4: Stati
 versus dynami

onstru
tion
osts.4.2 Sear
hingAt sear
h time we have to
onsider two fa
ts. The �rst is that, at the time an element x was inserted, anode a in its path may not have been
hosen as its parent be
ause its arity was already maximal. So insteadof
hoosing the
losest to x among fag [N(a), we may have
hosen only among N(a). This means that wehave to remove fag from the minimization of line 3 in Figure 2. The se
ond fa
t to
onsider is that, at thetime x was inserted, elements with higher timestamp were not present in the tree, so x
ould
hoose its bestneighbor only among elements older than itself.Hen
e, we
onsider the neighbors fb1; : : : ; bkg of a from oldest to newest, disregarding a, and performthe minimization as we traverse the list. This means that we enter into the subtree of bi if d(q; bi) �min(d(q; b1); : : : ; d(q; bi�1)) + 2r. That is, we always enter into b1; we enter into b2 if d(q; b2) � d(q; b1) + 2r;and so on. Let us stress again the reason: between the insertion of bi and bi+j there may have appeared newelements that
hose bi just be
ause bi+j was not yet present, so we may miss an element if we do not enterinto bi be
ause of the existen
e of bi+j .Up to now we do not really need the exa
t timestamps but just to keep the neighbors sorted by timestamp.We
an make better use of the timestamp information in order to redu
e the work done inside older neighbors.Say that d(q; bi) > d(q; bi+j)+2r. We have to enter into the subtree of bi anyway be
ause bi is older. However,only the elements with timestamp smaller than that of bi+j should be
onsidered when sear
hing inside bi;younger elements have seen bi+j and they
annot be interesting for the sear
h if they are inside bi. As parentnodes are older than their des
endants, as soon as we �nd a node inside the subtree of bi with timestamplarger than that of bi+j we
an stop the sear
h in that bran
h, be
ause all its subtree is even younger.Figure 5 shows the sear
h algorithm, initially invoked as RangeSear
h(a,q,r,1), where a is the treeroot. Note that d(a; q) is always known ex
ept in the �rst invo
ation. Despite of the quadrati
 nature of theloop impli
it in lines 4 and 6, the query is of
ourse
ompared only on
e against ea
h neighbor.Figure 6
ompares this te
hnique against the stati
 one. In the
ase of strings, the stati
 method providesslightly better sear
h time
ompared to the dynami
 te
hnique. In ve
tor spa
es of dimension 15, arities 168

RangeSear
h (Node a, Query q, Radius r, Timestamp t)1. If time(a) < t ^ d(a; q) � R(a) + r Then2. If d(a; q) � r Then Report a3. dmin 14. For bi 2 N(a) in in
reasing timestamp order Do5. If d(bi; q) � dmin + 2r Then6. k min fj > i; d(bi; q) > d(bj ; q) + 2rg7. RangeSear
h (bi,q,r,time(bk))8. dmin minfdmin; d(bi; q)gFigure 5: Sear
hing q with radius r in a dynami
 sa-tree.and 32 improve (by a small margin) the stati
 performan
e. We have also in
luded an example in dimension5, showing that in low dimensions small arities largely improve the sear
h time of the stati
 method. Thebest arity for sear
hing depends on the metri
 spa
e, but the rule of thumb is that low arities are good forlow dimensions or small sear
h radii.It is important to noti
e that we have obtained dynamism and also have improved the
onstru
tionperforman
e. In some
ases we have also (largely) improved the sear
h performan
e, while in other
ases wehave paid a small pri
e for the dynamism. Overall, this turns out to be a very
onvenient
hoi
e.

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search Radius

Query Cost per element for n = 69,069 words

Static SAT (Best-Fit)
Arity 4
Arity 8

Arity 16
Arity 32

50000

55000

60000

65000

70000

75000

80000

85000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost for n = 100,000 vectors dim. 15

Static
Arity 4
Arity 8

Arity 16
Arity 32

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query cost for n = 100,000 vectors dim. 5

Static
Arity 4
Arity 8

Arity 16
Arity 32

Figure 6: Stati
 versus dynami
 sear
h
osts.This te
hnique
an be easily adapted to nearest neighbor sear
hing with the same results, but we omitthe des
ription for la
k of spa
e. 9

We show now a
omparison of
onstru
tion and sear
h
osts between the previous in
remental methodsand the new method proposed. Figure 7 shows the
onstru
tion and sear
h
osts in the spa
e of strings, ofthe stati
 sa-tree, timestamp, insertion at the fringe, and our new timestamp with bounded arity. We haveused the best parameters for all the methods. Figure 8 shows the same
omparison for the spa
e of ve
torsin dimension 15.

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
00

0)

Percentage of database used

Construction Cost for n = 69,069 words

Static SAT (Best-Fit)
Fringe with Tree size 100

Timestamp
Timestamp with Arity 29

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search Radius

Query Cost per element for n = 69,069 words

Static SAT (Best-Fit)
Fringe with Tree size 100

Timestamp
Timestamp with Arity 29Figure 7: Constru
tion and sear
h
osts for di�erent methods in the spa
e of strings.

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

 (
x

10
00

0)

Percentage of database used

Construction Cost for n = 100,000 vectors dimension 15

Static SAT (Best-Fit)
Fringe with Tree size 50

Timestamp
Timestamp with Arity 24

50000

55000

60000

65000

70000

75000

80000

85000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 100,000 vectors dim. 15

Static SAT (Best-Fit)
Fringe with Tree size 50

Timestamp
Timestamp with Arity 24Figure 8: Constru
tion and sear
h
osts for di�erent methods in the sap
e of ve
tors in dimension 15.As it
an be seen, our new method largely outperforms previous in
remental methods at
onstru
tiontime, and at the same time it remains
ompetitive (when not the best) at sear
h time. In the
ase of
oordinates it outperforms by far the stati
 version, while in the
ase of strings it is almost equal, with theadded value of dynamism.We have introdu
ed the tree arity as a new tuning parameter. A remaining issue is how diÆ
ult is it to�nd the best arity and how
ostly is a small error in this tuning.We show some results about optimal arities for the two spa
es
onsidered. Figure 9 shows arities aroundthe optimal value. The best arity found is 24 for the ve
tor spa
e in dimension 15 and arity 29 for thespa
e of strings. It is important to note that, around these optimal, the
osts di�er by very few distan
eevaluations. Table 1 gives the numbers for the spa
e of strings.This shows that, if we fail to
hoose the best arity to
onstru
t the sa-tree by a reasonable margin, thepri
e paid at sear
h time is not very signi�
ative. 10

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4

D
is

ta
nc

e
ev

al
ua

tio
ns

Search Radius

Query Cost per element for n = 69,069 words

Static SAT (Best-Fit)
Arity 16
Arity 20
Arity 24
Arity 28
Arity 29
Arity 32

50000

55000

60000

65000

70000

75000

80000

85000

0.01 0.1 1

D
is

ta
nc

e
ev

al
ua

tio
ns

Percentage of database retrieved

Query Cost per element for n = 100,000 vectors in dim 15

Static SAT (Best-Fit)
Arity 16
Arity 20
Arity 24
Arity 28
Arity 32Figure 9: Stati
 vs. dynami
 sear
h
osts for di�erent arities.Method Sear
h Radius1 2 3 4Stati
 9324.89 25065.42 35883.64 44335.43Arity 16 9972.58 27298.47 38249.70 46146.64Arity 20 9958.61 25554.92 36367.81 44665.95Arity 24 9816.64 25286.59 36088.06 44471.21Arity 28 9762.68 25123.40 35898.67 44296.86Arity 32 10679.11 27971.59 38685.50 46575.76Arity 29 9795.26 25110.16 35862.23 44268.24Table 1: Numeri
 values of Figure 9 (left).5 Con
lusionsWe have presented a new te
hnique to modify the sa-tree in order to make it a dynami
 data stru
turesupporting insertions, without degrading its
urrent performan
e. We have shown that this new alternativeis better than the others previously
onsidered. In fa
t, only now we have understood the key fa
tors thatmade our previous work [7℄ reasonably su

essful. In this paper we used that knowledge to
ombine thetwo best previous methods into a new one that has the best from ea
h and outperforms both of them.Furthermore, we have shown how to improve the behavior of the sa-tree in low dimensional spa
es, both for
onstru
tion and sear
h
osts.This work is a �rst step of a broader proje
t [8℄ whi
h aims at a fully dynami
 data stru
ture for sear
hingin metri
 spa
es, whi
h
an also work on se
ondary memory. We have not tou
hed this last aspe
t in thispaper but it is our
urrent fo
us.Referen
es[1℄ J. Bentley. Multidimensional binary sear
h trees in database appli
ations. IEEE Trans. on SoftwareEngineering, 5(4): 333{340, 1979.[2℄ S. Brin. Near neighbor sear
h in large metri
 spa
es. In Pro
. 21st Conferen
e on Very Large Databases(VLDB'95), pages 574{584, 1995.[3℄ E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Marroqu��n. Sear
hing in metri
 spa
es. ACM ComputingSurveys, 33(3):273{321, September 2001.[4℄ A. Guttman. R-trees: a dynami
 index stru
ture for spatial sear
hing. In Pro
. ACM SIGMOD Inter-national Conferen
e on Management of Data, pages 47{57, 1984.11

[5℄ G. Navarro. Sear
hing in metri
 spa
es by spatial approximation. In Pro
. String Pro
essing and Infor-mation Retrieval (SPIRE'99), pages 141{148. IEEE CS Press, 1999.[6℄ G. Navarro. Sear
hing in metri
 spa
es by spatial approximation. The VLDB Journal, 2002. To appear.[7℄ G. Navarro and N. Reyes. Dynami
 spatial approximation trees. In Pro
. XXI Conferen
e of the ChileanComputer S
ien
e So
iety (SCCC'01), pages 213{222. IEEE CS Press, 2001.[8℄ N. Reyes. Dynami
 data stru
tures for sear
hing metri
 spa
es. MS
. Thesis, Univ. Na
. de San Luis,Argentina, 2002. In progress. G. Navarro, advisor.

12

