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1 IntrodutionThe onept of \approximate" searhing has appliations in a vast number of �elds. Some examples are non-traditional databases (e.g. storing images, �ngerprints or audio lips, where the onept of exat searh is ofno use and we searh instead for similar objets); text searhing (to �nd words and phrases in a text databaseallowing a small number of typographial or spelling errors); information retrieval (to look for doumentsthat are similar to a given query or doument); mahine learning and lassi�ation (to lassify a new elementaording to its losest representative); image quantization and ompression (where only some vetors anbe represented and we ode the others as their losest representable point); omputational biology (to �nd aDNA or protein sequene in a database allowing some errors due to mutations); and funtion predition (tosearh for the most similar behavior of a funtion in the past so as to predit its probable future behavior).All those appliations have some ommon harateristis. There is a universe U of objets, and a non-negative distane funtion d : U � U �! R+ de�ned among them. This distane satis�es the three axiomsthat make the set a metri spae: strit positiveness (d(x; y) = 0 , x = y), symmetry (d(x; y) = d(y; x))and triangle inequality (d(x; z) � d(x; y) + d(y; z)). The smaller the distane between two objets, the more\similar" they are. We have a �nite database S � U , whih is a subset of the universe of objets and an bepreproessed (to build an index, for example). Later, given a new objet from the universe (a query q), wemust retrieve all similar elements found in the database. There are two typial queries of this kind:Range query: Retrieve all elements within distane r to q in S. This is, fx 2 S ; d(x; q) � rg.Nearest neighbor query (k-NN): Retrieve the k losest elements to q in S. That is, a set A � S suhthat jAj = k and 8x 2 A; y 2 S �A; d(x; q) � d(y; q).The distane is onsidered expensive to ompute (think, for instane, in omparing two �ngerprints).Hene, it is ustomary to de�ne the omplexity of the searh as the number of distane evaluations performed,disregarding other omponents suh as CPU time for side omputations, and even I/O time. Given a databaseof jSj = n objets, queries an be trivially answered by performing n distane evaluations. The goal is tostruture the database suh that we perform less distane evaluations.A partiular ase of this problem arises when the spae is a set of D-dimensional points and the dis-tane belongs to the Minkowski Lp family: Lp = (P1�i�D jxi � yijp)1=p. The best known speial asesare p = 1 (Manhattan distane), p = 2 (Eulidean distane) and p = 1 (maximum distane), that is,L1 = max1�i�D jxi � yij.There are e�etive methods to searh on D-dimensional spaes, suh as kd-trees [1℄ or R-trees [4℄. How-ever, for roughly 20 dimensions or more those strutures ease to work well. We fous in this paper ingeneral metri spaes, although the solutions are well suited also for D-dimensional spaes. It is interest-ing to notie that the onept of \dimensionality" an be translated to metri spaes as well: the typialfeature in high dimensional spaes with Lp distanes is that the probability distribution of distanes amongelements has a very onentrated histogram (with larger mean as the dimension grows), making the work ofany similarity searh algorithm more diÆult [2, 3℄. In the extreme ase we have a spae where d(x; x) = 0and 8y 6= x; d(x; y) = 1, where it is impossible to avoid a single distane evaluation at searh time. We saythat a general metri spae is high dimensional when its histogram of distanes is onentrated.There are a number of methods to preproess the set in order to redue the number of distane evaluations.All those strutures work on the basis of disarding elements using the triangle inequality, and most use thelassial divide-and-onquer approah (whih is not spei� of metri spae searhing).The Spatial Approximation Tree (sa-tree) is a reently proposed data struture of this kind [5, 6℄, basedon a novel onept: rather than dividing the searh spae, approah the query spatially, that is, start at somepoint in the spae and get loser and loser to the query. Apart from being algorithmially interesting byitself, it has been shown that the sa-tree gives better spae-time tradeo�s than the other existing strutureson metri spaes of high dimension or queries with low seletivity, whih is the ase in many appliations.The sa-tree, however, has some important weaknesses. The �rst is that, ompared to other indexes, itis relatively ostly to build in low dimensions (it is harder to build in high dimensions, but in this ase theompeting indexes are even more ostly). The seond is that, in low dimensions or for queries with highseletivity (small r or k), its searh performane is poor when ompared to simple alternatives. The third2



is that it is a stati data struture: one built, it is hard to add elements to it. These weaknesses make thesa-tree unsuitable for important appliations suh as multimedia databases.Permitting inremental onstrution is the aim of this paper. We present a dynami version of the sa-treethat handles insertions eÆiently. We show that the dynami sa-tree an be built inrementally (i.e., bysuessive insertions) at the same ost of its stati version, and that the searh performane is una�eted.In addition to the above ahievement, we �nd out how to obtain large improvements in onstrution andsearh time for low dimensional spaes or highly seletive queries. The method onsists of limiting the treearity and involves new algorithmi insights on this data struture. The lower the arity, the heaper to buildthe tree. However, at searh time, the best arity depends on the dimension and the query seletivity. Inpartiular, for low dimensions, we obtain improved onstrution and searh time simultaneously.The outome is a muh more pratial data struture that an be useful in a wide range of appliations.We expet the dynami sa-tree to replae the stati version in the developments to ome.This work builds over [7℄, where it was shown that insertions on the sa-tree ould be reasonably handled.In addition, we apture in the tree arity the parameter that permits adapting it better to di�erent dimensions.The original sa-tree adapts itself to the dimension, but not optimally.2 The Spatial Approximation TreeWe desribe briey in this setion the stati sa-tree data struture. For lak of spae we do not overalternative strutures for metri spae searhing; the reader is referred to [3℄ for details.The sa-tree needs O(n) spae, O(n log2 n= log logn) onstrution time, and sublinear searh time:O(n1��(1= log log n)) in high dimensions and O(n�) (0 < � < 1) in low dimensions. It is experimentally shownto o�er better spae-time tradeo�s than other data strutures when the dimension is high or the query radiusis large. For more details see the original referenes [5, 6℄.2.1 ConstrutionWe selet a random element a 2 S to be the root of the tree. We then selet a suitable set of neighbors N(a)satisfyingCondition 1: (given a; S) 8x 2 S, x 2 N(a), 8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set suh that any neighbor is loser to a than to any other neighbor.The \only if" (() part of the de�nition guarantees that if we an get loser to any b 2 S then an elementin N(a) is loser to b than a, beause we put as diret neighbors all those elements that are not loser toanother neighbor. The \if" part ()) aims at putting as few neighbors as possible.Notie that the set N(a) is de�ned in terms of itself in a non-trivial way and that multiple solutions �tthe de�nition. For example, if a is far from b and  and these are lose to eah other, then both N(a) = fbgand N(a) = fg satisfy the de�nition.Finding the smallest possible set N(a) seems to be a nontrivial ombinatorial optimization problem, sineby inluding an element we need to take out others (this happens between b and  in the example of theprevious paragraph). However, simple heuristis whih add more neighbors than neessary work well. Webegin with the initial node a and its \bag" holding all the rest of S. We �rst sort the bag by distane to a.Then, we start adding nodes to N(a) (whih is initially empty). Eah time we onsider a new node b, wehek whether it is loser to some element of N(a) than to a itself. If that is not the ase, we add b to N(a).At this point we have a suitable set of neighbors. Note that Condition 1 is satis�ed thanks to the fatthat we have onsidered the elements in order of inreasing distane to a. The \only if" part of Condition 1 islearly satis�ed beause any element not satisfying it is inserted in N(a). The \if" part is more deliate. Letx 6= y 2 N(a). If y is loser to a than x then y was onsidered �rst. Our onstrution algorithm guaranteesthat if we inserted x in N(a) then d(x; a) < d(x; y). If, on the other hand, x is loser to a than y, thend(y; x) > d(y; a) � d(x; a) (that is, a neighbor annot be removed by a new neighbor inserted later).3



We now must deide in whih neighbor's bag we put the rest of the nodes. We put eah node not infag [N(a) in the bag of its losest element of N(a) (best-�t strategy). Observe that this requires a seondpass one N(a) is fully determined.We are done now with a, and proess reursively all its neighbors, eah one with the elements of its bag.Note that the resulting struture is a tree that an be searhed for any q 2 S by spatial approximationfor nearest neighbor queries. The reason why this works is that, at searh time, we repeat exatly whathappened with q during the onstrution proess (i.e. we enter into the subtree of the neighbor losest toq), until we reah q. This is is beause q is present in the tree, i.e., we are doing an exat searh after all.Finally, we save some omparisons at searh time by storing at eah node a its overing radius, i.e.,the maximum distane R(a) between a and any element in the subtree rooted by a. The way to use thisinformation is made lear in Setion 2.2.Figure 1 depits the onstrution proess. It is �rst invoked as BuildTree(a,S � fag) where a is arandom element of S. Note that, exept for the �rst level of the reursion, we already know all the distanesd(v; a) for every v 2 S and hene do not need to reompute them. Similarly, some of the d(v; ) distanes atline 9 is already known from line 6. The information stored by the data struture is the root a and the N()and R() values of all the nodes.BuildTree (Node a, Set of nodes S)1. N(a) ; // neighbors of a2. R(a) 0 // overing radius4. For v 2 S in inreasing distane to a Do5. R(a) max(R(a); d(v; a))6. If 8b 2 N(a); d(v; a) < d(v; b) Then N(a) N(a) [ fvg7. For b 2 N(a) Do S(b) ;8. For v 2 S �N(a) Do9.  argminb2N(a)d(v; b)10. S() S() [ fvg11. For b 2 N(a) Do BuildTree (b, S(b))Figure 1: Algorithm to build the sa-tree.2.2 SearhingOf ourse it is of little interest to searh only for elements q 2 S. The tree we have desribed an, however,be used as a devie to solve queries of any type for any q 2 U. We onsider �rst range queries with radius r.The key observation is that, even if q 62 S, the answers to the query are elements q0 2 S. So we use thetree to pretend that we are searhing for an element q0 2 S. We do not know q0, but sine d(q; q0) � r, wean obtain from q some distane information regarding q0: by the triangle inequality it holds that for anyx 2 U, d(x; q)� r � d(x; q0) � d(x; q) + r.Hene, instead of simply going to the losest neighbor, we �rst determine the losest neighbor  of qamong fag[N(a). We then enter into all neighbors b 2 N(a) suh that d(q; b) � d(q; )+2r. This is beausethe virtual element q0 sought an di�er from q by at most r at any distane evaluation, so it ould have beeninserted inside any of those b nodes. In the proess, we report all the nodes q0 we found lose enough to q.(A more sophistiated searh sheme is given in [6℄, but it annot be applied to our dynami version, so weprefer to omit it.)Finally, the overing radius R(a) is used to further prune the searh, by not entering into subtrees suhthat d(q; a) > R(a) + r, sine they annot ontain useful elements.Figure 2 illustrates the searh proess on the left, starting from the tree root p11. Only p9 is in theresult, but all the bold edges are traversed. On the right, we give the searh algorithm, initially invokedas RangeSearh(a,q,r), where a is the tree root. Note that in the reursive invoations d(a; q) is alreadyomputed.We an also perform nearest neighbor searhing by simulating a range searh where the searh radiusis redued as we proeed. We have a priority queue of subtrees sorted by the known lower bound distane4
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p10 RangeSearh (Node a, Query q, Radius r)1. If d(a; q) � R(a) + r Then2. If d(a; q) � r Then Report a3. dmin  min fd(; q);  2 fag [N(a)g4. For b 2 N(a) Do5. If d(b; q) � dmin + 2r Then6. RangeSearh (b,q,r)Figure 2: On the left, an example of the searh proess. On the right, the algorithm to searh for q withradius r in a sa-tree.between the subtree and q. Initially, we insert the sa-tree root in the data struture. Iteratively, we extratthe (as far as it is known) losest subtree, proess its root, and insert all its subtrees in the queue. This isrepeated until the queue gets empty or the lower bound distane is larger than r. For lak of spae we omitfurther details.3 Inremental ConstrutionThe sa-tree is a struture whose onstrution algorithm needs to know all the elements of S in advane. Inpartiular, it is diÆult to add new elements under the best-�t strategy one the tree is already built. Eahtime a new element is inserted, we must go down the tree by the losest neighbor until the new element mustbeome a neighbor of the urrent node a. All the subtree rooted at a must be rebuilt from srath, sinesome nodes that went into another neighbor ould prefer now to get into the new neighbor.Several insertion alternatives have been previously onsidered [7, 6℄. The best methods turned out tobe the so-alled \timestamping" and \insertion at the fringe". In this setion we disuss and empiriallyevaluate these alternatives to permit insertion of new elements into an already built sa-tree. Then we proposea novel tehnique based on ideas from these two methods and we show that it is better than the others.For the experiments we have seleted two metri spaes. The �rst is a ditionary of 69,069 Englishwords, from where we randomly hose queries. The distane in this ase is the edit distane, that is,minimum number of harater insertions, deletions and replaements to make the strings equal. The seondspae is the real unitary ube in dimension 15 using Eulidean distane. We generated 100,000 randompoints with uniform distribution. For the queries, we build the indexes with 90% of the points and use theother 10% (randomly hosen) as queries. The results on these two spaes are representative of those on manyother metri spaes we tested: NASA images, ditionaries in other languages, Gaussian distributions, otherdimensions, et.As a omparison point for whih follows, a stati onstrution osts about 5 million omparisons for theditionary and 12.5 million for the vetor spae.Now we explain the two best methods previously proposed to permit insertion of new elements into analready built sa-tree. These methods show that it is possible to build the sa-tree inrementally.3.1 TimestampingThis alternative has resemblanes with other two also onsidered in [7℄, but it is more sophistiated onsistsin keeping a timestamp of the insertion time of eah element. When inserting a new element, we add it as aneighbor at the appropriate point using best-�t and do not rebuild the tree. Let us onsider that neighbors5



are added at the end, so by reading them left to right we have inreasing insertion times. It also holds thatthe parent is always older than its hildren.At searh time, we onsider the neighbors fv1; : : : ; vkg of a from oldest to newest. We perform theminimization while we traverse the neighbors, that is, we enter into the subtree of v1 if d(q; v1) � d(q; a)+2r;into the subtree of v2 if d(q; v2) � min(d(q; a); d(q; v1))+2r; and in general into the subtree of vi if d(q; vi) �min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r. This is beause vi+j an never take out an element from vi.. Thisis beause between the insertion of vi and vi+j there may have appeared new elements that preferred vi justbeause vi+j was not yet a neighbor, so we may miss an element if we do not enter into vi beause of theexistene of vi+j .Up to now we do not really need timestamps but just to keep the neighbors sorted. Yet a more so-phistiated sheme is to use the timestamps to redue the work done inside older neighbors. Say thatd(q; vi) > d(q; vi+j) + 2r. We have to enter into vi beause it is older. However, only the elements withtimestamp smaller than that of vi+j should be onsidered when searhing inside vi; younger elements haveseen vi+j and they annot be interesting for the searh if they are inside vi. As parent nodes are older thantheir desendants, as soon as we �nd a node inside the subtree of vi with timestamp larger than that of vi+jwe an stop the searh in that branh, beause its subtree is even younger.An alternative view, equivalent as before but fousing on maximum allowed radius instead of maximumallowed timestamp, is as follows. Eah time we enter into a subtree y of vi, we searh for the siblings vi+j ofvi that are older than y. Over this set, we ompute the maximum radius that permits to avoid proessingy, namely ry = max(d(q; vi)� d(q; vi+j))=2. If it holds r < ry, we do not need to enter into the subtree y.Let us now onsider nearest neighbor searhing. Assume that we are urrently proessing node vi andinsert its hildren y in the priority queue. We ompute ry as before and insert it together with y in thepriority queue. Later, when the time to proess y omes, we onsider our urrent searh radius r� anddisard y if r� < ry. If we insert a hildren z of y, we put it the value min(ry ; rz).This was an exellent alternative to the stati onstrution in the ase of our vetor spae example,providing basially the same onstrution and searh ost with the added value of dynamism. In the ase ofthe ditionary, the timestamping tehnique is signi�antly worse than the stati one.3.2 Inserting at the FringeYet another good alternative also onsidered in [7℄ is as follows. We an relax Condition 1 (Setion 2.1),whose main goal is to guarantee that if q is loser to a than to any neighbor in N(a) then we an stop thesearh at that point. The idea is that, at searh time, instead of �nding the losest  among fag [ N(a)and entering into any b 2 N(a) suh that d(q; b) � d(q; ) + 2r, we exlude the subtree root fag from theminimization. Hene, we always ontinue to the leaves by the losest neighbor and others lose enough. Thisseems to make the searh time slightly worse, but the ost is marginal.The bene�t is that we are not fored anymore to put a new inserted element x as a neighbor of a, evenwhen Condition 1 would require it. That is, at insertion time, even if x is loser to a than to any elementin N(a), we have the hoie of not putting it as a neighbor of a but inserting it into its losest neighbor ofN(a). At searh time we will reah x beause the searh and insertion proesses are similar.This freedom opens a number of new possibilities that deserve a muh deeper study, but an immediateonsequene is that we an insert always at the leaves of the tree. Hene, the tree is read-only in its toppart and it hanges only in the fringe. However, we have to permit the reonstrution of small subtrees soas to avoid that the tree beomes almost a linked list. So we permit inserting x as a neighbor when the sizeof the subtree to rebuild is small enough, whih leads to a tradeo� between insertion ost and quality of thetree at searh time.As an be seen in [7℄, some reonstrution sizes yield the same and even better searh time ompared tothe stati version, whih shows that it may be bene�al to move elements downward in the tree. This fatmakes this alternative a very interesting hoie deserving more study.
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4 A New Inremental Constrution TehniqueTimestamping permitted inserting an element with a tehnique very similar to that of the stati onstrution,by reording the time every element was inserted. Remarkably, this tehnique obtained a performane verysimilar to that of the stati version, by avoiding any reonstrution. Insertion at the fringe, on the otherhand, limits the maximum tree size where a new element an be inserted, with the aim of reonstruting onlysmall subtrees. The tehnique permits us avoiding insertion at the point where Condition 1 would requireit, delaying it to a point downwards the tree. Surprisingly, this tehnique even improved the performanein low dimensions, so there was a fator largely ompensating the ost of the reonstrutions. Where thisfator ame from was not lear at that time [7℄.We have pursued this line and determined that the key fat is that these trees have a redued arity.Moreover, the main reason of the poor performane of the sa-tree in low dimensional spaes is its exessivelyhigh arity (the tree automatially adapts its arity to the dimension, but not optimally). Hene we deidedto fous diretly on the maximum permitted arity and made it a tuning parameter. The same delayingtehnique used to limit the tree size to rebuild is now used to limit the tree arity. Moreover, by mergingthis tehnique with timestamping, we have no reonstrution ost to ompensate, so we get the best of bothworlds.Observe that one of the nie features of the original sa-tree was that it had no parameter to set, so anynon-expert ould just use it. Our new parameter does not harm in this sense, beause it an be set to 1to obtain the same performane of the original sa-tree. On the other hand, very large improvements an beobtained in low dimensions by appropriately setting the maximum tree arity. We get into the details now.4.1 InsertionTo onstrut the sa-tree inrementally we �x a maximum tree arity, and also keep a timestamp of the insertiontime of eah element. When inserting a new element x, we add it as a neighbor at the appropriate point a(Condition 1) only if the arity of node a is not already maximal. Otherwise, even when x is loser to a thanto any b 2 N(a), we fore x to hoose the losest neighbor in N(a) and keep walking down the tree, until wereah a node a where Condition 1 is satis�ed (x is loser to a than to any b 2 N(a)) and the arity of nodea is not maximal (this eventually ours at a tree leaf). At this point we add x at the end of the list N(a),put the urrent timestamp to x and inrement the urrent timestamp.Note that by reading neighbors from left to right we have inreasing timestamps. It also holds that theparent is always older than its hildren. Note also that now it is not sure anymore that a new insertedelement x is a neighbor of the �rst node a that satis�es Condition 1 in its path. It may be that the arity ofa was maximal and x was fored to hoose a neighbor of a. This has impliations in the searh proess thatwill be onsidered soon.Figure 3 illustrates the insertion proess. We follow only one path from the tree root to the parent ofthe inserted element. The funtion is invoked as Insert(a,x), where a is the tree root and x is the elementto be inserted. The sa-tree an now be built by starting with a �rst single node a where N(a) = ; andR(a) = 0, and then performing suessive insertions.Insert (Node a, Element x)1. R(a) max(R(a); d(a; x))2.  argminb2N(a)d(b; x)3. If d(a; x) < d(; x) ^ jN(a)j < MaxArity Then4. N(a) N(a) [ fxg5. N(x) ;, R(x) 06. time(x) CurrentT ime7. Else Insert (,x)Figure 3: Insertion of a new element x into a dynami sa-tree with root a. MaxArity is the maximum treearity and CurrentT ime is the urrent time, whih is inremented after eah new insertion.7



Figure 4 ompares the ost of inremental onstrution using our tehnique against stati onstrutionfor inreasing subsets of the database. We show arities 4, 8, 16 and 32. In both ases, the onstrutionperformane improves as we redue the tree arity, being by far better than the stati onstrution (twieas fast on strings and four times faster on vetors). Note that if we permit a suÆiently large arity (e.g.,32 on strings) the inremental version beomes somewhat worse than the stati version (whose arity isunlimited). This shows that the redued arity is a key fator in lowering onstrution osts. This is lear,as the insertion ost with arity A is A logA n, while on unlimited arity it was shown in [6℄ that the averagearity is A = O(logn), so the onstrution ost per element is O(log2 n= log logn).The question is how a redued arity a�ets searh time. We onsider this next.
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Figure 4: Stati versus dynami onstrution osts.4.2 SearhingAt searh time we have to onsider two fats. The �rst is that, at the time an element x was inserted, anode a in its path may not have been hosen as its parent beause its arity was already maximal. So insteadof hoosing the losest to x among fag [N(a), we may have hosen only among N(a). This means that wehave to remove fag from the minimization of line 3 in Figure 2. The seond fat to onsider is that, at thetime x was inserted, elements with higher timestamp were not present in the tree, so x ould hoose its bestneighbor only among elements older than itself.Hene, we onsider the neighbors fb1; : : : ; bkg of a from oldest to newest, disregarding a, and performthe minimization as we traverse the list. This means that we enter into the subtree of bi if d(q; bi) �min(d(q; b1); : : : ; d(q; bi�1)) + 2r. That is, we always enter into b1; we enter into b2 if d(q; b2) � d(q; b1) + 2r;and so on. Let us stress again the reason: between the insertion of bi and bi+j there may have appeared newelements that hose bi just beause bi+j was not yet present, so we may miss an element if we do not enterinto bi beause of the existene of bi+j .Up to now we do not really need the exat timestamps but just to keep the neighbors sorted by timestamp.We an make better use of the timestamp information in order to redue the work done inside older neighbors.Say that d(q; bi) > d(q; bi+j)+2r. We have to enter into the subtree of bi anyway beause bi is older. However,only the elements with timestamp smaller than that of bi+j should be onsidered when searhing inside bi;younger elements have seen bi+j and they annot be interesting for the searh if they are inside bi. As parentnodes are older than their desendants, as soon as we �nd a node inside the subtree of bi with timestamplarger than that of bi+j we an stop the searh in that branh, beause all its subtree is even younger.Figure 5 shows the searh algorithm, initially invoked as RangeSearh(a,q,r,1), where a is the treeroot. Note that d(a; q) is always known exept in the �rst invoation. Despite of the quadrati nature of theloop impliit in lines 4 and 6, the query is of ourse ompared only one against eah neighbor.Figure 6 ompares this tehnique against the stati one. In the ase of strings, the stati method providesslightly better searh time ompared to the dynami tehnique. In vetor spaes of dimension 15, arities 168



RangeSearh (Node a, Query q, Radius r, Timestamp t)1. If time(a) < t ^ d(a; q) � R(a) + r Then2. If d(a; q) � r Then Report a3. dmin  14. For bi 2 N(a) in inreasing timestamp order Do5. If d(bi; q) � dmin + 2r Then6. k min fj > i; d(bi; q) > d(bj ; q) + 2rg7. RangeSearh (bi,q,r,time(bk))8. dmin  minfdmin; d(bi; q)gFigure 5: Searhing q with radius r in a dynami sa-tree.and 32 improve (by a small margin) the stati performane. We have also inluded an example in dimension5, showing that in low dimensions small arities largely improve the searh time of the stati method. Thebest arity for searhing depends on the metri spae, but the rule of thumb is that low arities are good forlow dimensions or small searh radii.It is important to notie that we have obtained dynamism and also have improved the onstrutionperformane. In some ases we have also (largely) improved the searh performane, while in other ases wehave paid a small prie for the dynamism. Overall, this turns out to be a very onvenient hoie.
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Figure 6: Stati versus dynami searh osts.This tehnique an be easily adapted to nearest neighbor searhing with the same results, but we omitthe desription for lak of spae. 9



We show now a omparison of onstrution and searh osts between the previous inremental methodsand the new method proposed. Figure 7 shows the onstrution and searh osts in the spae of strings, ofthe stati sa-tree, timestamp, insertion at the fringe, and our new timestamp with bounded arity. We haveused the best parameters for all the methods. Figure 8 shows the same omparison for the spae of vetorsin dimension 15.
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Timestamp with Arity 24Figure 8: Constrution and searh osts for di�erent methods in the sape of vetors in dimension 15.As it an be seen, our new method largely outperforms previous inremental methods at onstrutiontime, and at the same time it remains ompetitive (when not the best) at searh time. In the ase ofoordinates it outperforms by far the stati version, while in the ase of strings it is almost equal, with theadded value of dynamism.We have introdued the tree arity as a new tuning parameter. A remaining issue is how diÆult is it to�nd the best arity and how ostly is a small error in this tuning.We show some results about optimal arities for the two spaes onsidered. Figure 9 shows arities aroundthe optimal value. The best arity found is 24 for the vetor spae in dimension 15 and arity 29 for thespae of strings. It is important to note that, around these optimal, the osts di�er by very few distaneevaluations. Table 1 gives the numbers for the spae of strings.This shows that, if we fail to hoose the best arity to onstrut the sa-tree by a reasonable margin, theprie paid at searh time is not very signi�ative. 10
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