
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Maximum-Weight Planar Boxes in O(n2) Time (and Better)

Jérémy Barbay∗ Timothy M. Chan† Gonzalo Navarro‡ Pablo Pérez-Lantero§

Abstract

Given a set P of n points in Rd, where each point p of P
is associated with a weight w(p) (positive or negative),
the Maximum-Weight Box problem consists in find-
ing an axis-aligned box B maximizing

∑
p∈B∩P w(p).

We describe algorithms for this problem in two dimen-
sions that run in the worst case in O(n2) time, and much
less on more specific classes of instances. In particu-
lar, these results imply similar ones for the Maximum
Bichromatic Discrepancy Box problem. These im-
prove by a factor of Θ(log n) on the best worst-case com-
plexity previously known for these problems, O(n2 lg n)
[Cortés et al., J. Alg., 2009; Dobkin et al., J. Comput.
Syst. Sci., 1996]. Although the O(n2) result can be de-
duced from new results on the Klee’s Measure prob-
lem [Chan, 2013], it is a more direct and simplified (non-
trivial) solution, which further provides smaller running
times on specific classes on instances.

1 Introduction

Consider a set P of n points in Rd, such that the points
are in general position (i.e., no pair of points share the
same x or y coordinate). Each point p of P is assigned a
weight w(p) ∈ R that can be either positive or negative.
For any subset B ⊆ Rd let W (B) :=

∑
p∈B∩P w(p).

A box is an axis-aligned hyper-rectangle, and we say
that the weight of a box B is W (B). We consider the
Maximum-Weight Box problem, which given P and
w() consists in finding a box B with maximum weight
W (B).

Related work. In one dimension, the coordinates of
the points matter only in the order they induce on their
weights, and the problem reduces to the Maximum-
Sum Consecutive Subsequence problem [3], which

∗Department of Computer Science, University of Chile, Chile.
jbarbay@dcc.uchile.cl. Partially supported by grant CONI-
CYT, FONDECYT/Regular 1120054, Chile.
†Cheriton School of Computer Science, University of Waterloo,

Waterloo, Canada. tmchan@cs.uwaterloo.ca.
‡Department of Computer Science, University of Chile, Chile.

gnavarro@dcc.uchile.cl. Partially funded by Millennium Nu-
cleus Information and Coordination in Networks ICM/FIC P10-
024F, Mideplan, Chile.
§Escuela de Ingenieŕıa Civil en Informática, Universidad de

Valparáıso, Chile. pablo.perez@uv.cl. Partially supported by
grant CONICYT, FONDECYT/Iniciación 11110069, Chile.

can be solved in O(n) time if the coordinates are al-
ready sorted. Cortés et al. [6] solved the dynamic
version of this problem supporting updates of weights
for a fixed point set. They described a data struc-
ture called MCS-tree, which supports in O(lg n) time
both updates and Maximum-Sum Consecutive Sub-
sequence queries on any interval of the sequence of
points. The Maximum-Weight Box problem in two
dimensions was introduced by Cortés et al. [6], who gave
an algorithm running in O(n2 lg n) time within O(n)
space. Their algorithm is based on MCS-trees: they
reduce any instance of the Maximum-Weight Box
problem in two dimensions to O(n2) instances of the
problem in one dimension, each solved dynamically in
O(lg n) time by using the MCS-tree.

We consider the Maximum-Weight Box problem in
two dimensions on a set P of n weighted points, such
that no pair of points share the same x or y coordinate.

Basic definitions. A strip is the area delimited by two
lines parallel to the same axis. Given the point set P ,
we say that a strip S is monochromatic if S ∩ P is not
empty and the weights of all elements of S ∩P have the
same sign. A monochromatic strip S is positive (resp.
negative) if S contains points of P with positive (resp.
negative) weights. We say that P is composed of δ strips
if P can be covered by δ pairwise disjoint monochro-
matic strips of alternating signs. Given any bounded
set S ⊂ R2, let Box(S) denote the smallest box cover-
ing S.

Results. We present the following results for the
Maximum-Weight Box problem in two dimensions.
All our algorithms use space linear in the number of
input points. Over instances composed of n weighted
points, our general algorithm runs in O(n2) time (The-
orem 2).

If the point set P is composed of δ ∈ [1..n] (either hor-
izontal or vertical) strips, our algorithm executes adap-
tively in SORT(n) + O(δn) ⊂ O(n lg n + δn) ⊂ O(n2)
time (Theorem 4), where SORT(n) is the time required
to sort the elements of P by their x-coordinates and by
their y-coordinates (O(n lg n) in the Comparison Model,
O(n lg lg n) in the RAM model, and O(n

√
lg lgn) with

randomization in the RAM model if the coordinates of
the points are integer numbers [10].)



25th Canadian Conference on Computational Geometry, 2013

Applications to other known problems. Let P be a
set of n planar points, each being colored either red or
blue.

The Maximum Bichromatic Discrepancy Box
problem [6, 7] consists in finding a box that maximizes
the absolute difference between the numbers of red and
blue points that it contains, and was solved in O(n2 lg n)
time by Dobkin et al. [7]. Any instance of this prob-
lem can be reduced to two particular instances of the
Maximum-Weight Box problem [6]. In the first one
red points have weight +1 and blue points weight −1,
and conversely in the second one. Then our results can
be applied and imply an O(n2) worst-case time algo-
rithm for the Maximum Bichromatic Discrepancy
Box problem, improving upon previous O(n2 lg n)-time
algorithms [6, 7].

The Maximum Box problem [6,8,11] consists in find-
ing a box B containing the maximum number of blue
points and no red point. Eckstein et al. [8] introduced
it in general dimension, proving that if the dimension
d of the points is part of the input then the problem
is NP-hard. In two dimensions it was later solved in
O(n2 lg n) time by Liu and Nediak [11]. In 2010 Backer
et al. [1] showed that the Maximum Box problem in
two dimensions can be solved in O(n lg3 n) time and
O(n lg n) space, and that for any fixed dimension d ≥ 3
it can be solved in time within O(nd lgd−2 n).

Any instance of the Maximum Box problem is equiv-
alent to a particular case of the Maximum-Weight
Box problem in which blue points have weight +1 and
red points have weight −∞ [6]. Then our techniques
can be applied and imply O(n2) worst-case time algo-
rithms for this problem. While this time complexity is
worse than the best known solution [1], it requires only
linear space, which in some cases can be an important
advantage over the O(n lg n) space required by Backer
et al.’s solution [1].

Note that our specialized results are faster on some
classes of instances which arise naturally in applications,
such as instances where one needs to find a maximum
box over an imbalanced red-blue dataset in data mining
and/or data analysis [8, 9, 13]. Generally, if the ratio of
the number of blue points over the number of red points
is within ω(1), then our techniques yield a running time
within SORT(n) + o(n2) on an instance of n points.

Outline. In Section 2 we describe the general O(n2)-
time algorithm. In Section 3 we obtain the adaptive
algorithm running in SORT(n) + O(δn) time, where
δ is the number of strips of the point set. Finally,
in Section 4, we discuss further adaptive results, a
connection to Klee’s Measure problem, potential
polylogarithmic-factor speedups, and open problems.

2 Quadratic worst-case time algorithm

Assume the elements of P are sorted twice, first by x-
coordinates and second by y-coordinates, in SORT(n)
time.

We say that X ⊆ P is a box set if X is the intersection
of P with some box. For any box set X ⊆ P we define
the score of X, S(X), as the following four boxes:

(1) Box(X);

(2) a maximum-weight box BL(X) ⊆ Box(X) of X
whose left side coincides with the left side of
Box(X);

(3) a maximum-weight box BR(X) ⊆ Box(X) of X
whose right side coincides with the right side of
Box(X); and

(4) a maximum-weight box B0(X) ⊆ Box(X) of X
whose top and bottom sides are aligned with the
top and bottom sides of Box(X), respectively.

(See Figure 1.) For each of these boxes we
keep only two opposed vertices defining it and its
weight, so representing a box set X by S(X) :=
(Box(X), BL(X), BR(X), B0(X)) requires only constant
space.

Box(X) B0(X)

BL(X) BR(X)

Figure 1: The score S(X) = (Box(X), BL(X), BR(X), B0(X))
of a box set X ⊆ P .

We say that a box set X ⊆ P is scored if S(X) is
computed, and we use Box(X) to represent X instead
of X itself. Let the operator ⊕ : 2P × 2P → 2P be
defined over all pairs (X1, X2) of scored box sets of P
such that: X1 and X2 can be separated with a vertical
line, X1 is to the left of X2, and X1 ∪X2 is a box set.
Then X1⊕X2 returns the scored set X1∪X2, and it can
be computed in O(1) time from the next observations:

W (X1∪X2)=W (X1) +W (X2).

W (BL(X1∪X2))= max

{
W (BL(X1))
W (X1)+W (BL(X2)).



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

W (BR(X1∪X2))= max

{
W (BR(X2))
W (X2)+W (BR(X1)).

W (B0(X1 ∪X2))= max

 W (B0(X1))
W (B0(X2))
W (BR(X1)) +W (BL(X2)).

Notice that by applying the operators ⊕ to singletons
{p} over all points p of P in left-to-right order, we can
compute B0(P ), i.e., the maximum-weight vertical strip,
in O(n) time. After projection to the x-axis, this imme-
diately gives a linear-time algorithm for the Maximum-
Sum Consecutive Subsequence problem, studied by
Bentley [3] and often taught in undergraduate algo-
rithms classes.

Let S be a horizontal strip such that exactly m points
of P are not in S. The vertical lines passing through
the m points of P \ S split S into m+ 1 boxes denoted
S1,S2, . . . ,Sm+1 from left to right. Let B be a box of
maximum weight that has its top side above S and its
bottom side below S. Suppose that the left and right
sides of B intersect Si and Sj (1 ≤ i ≤ j ≤ m + 1),
respectively. If i 6= j, then W (B ∩ Si) and W (B ∩
Sj) are precisely W (BR(P ∩ Si)) and W (BL(P ∩ Sj)),
respectively (see Figure 2). Therefore we have W (B) =

W (BR(P∩Si))+
∑j−1

t=i+1W (St)+W (BL(P∩Sj))+W (B\
S). On the other hand, if i = j, then W (B) equals
W (B0(P ∩ Si)).

S
B

Si

Sj

BR(P ∩ Si) BL(P ∩ Sj)

Figure 2: The strip S is partitioned into m + 1 boxes
S1,S2, . . . ,Sm+1 by the vertical lines passing through the m
points in P \ S. If the left and right sides of an optimal box
B cross Si and Sj , respectively, then they are determined by
BR(P ∩ Si) and BL(P ∩ Sj).

Consider the following Strip-Constrained
Maximum-Weight Box problem: Let P be a
weighted point set and S be a horizontal strip so that:
P \ S consists of n points already sorted from left
to right; S splits P \ S into two halves; the vertical
lines through the points of P \ S split S into the
boxes S1,S2, . . . ,Sn+1 from left to right; and the

points of P ∩ S are summarized by the scored box sets
P ∩ S1, . . . ,P ∩ Sn+1. Find a maximum-weight box
of P, with the top side above S and the bottom side
below S.

The key to our new solution is an O(n2)-time al-
gorithm for this constrained problem, using an ap-
proach which may be nick-named “divide-summarize-
and-conquer”.

Lemma 1 The Strip-Constrained Maximum-
Weight Box problem admits a solution in O(n2) time
and O(n) space.

Proof. Let F (n) denote the time required to solve a
given instance of the Strip-Constrained Maximum-
Weight Box problem over n points. We apply divide-
and-conquer: Split the points of P above (resp. below)
S into two halves with a horizontal line `1 (resp. `2).
Let P1 denote the points above `1, P2 denote the points
in between `1 and S, P3 denote the points in between
S and `2, and P4 denote the points below `2. Then the
problem can be reduced to the next four subproblems:

(1) the points of P1 ∪ P4 outside a strip S ′ covering
P2 ∪ P3 ∪ S;

(2) the points of P1 ∪ P3 outside a strip S ′ covering
P2 ∪ S;

(3) the points of P2 ∪ P3 outside the strip S ′ = S; and

(4) the points of P2 ∪ P4 outside a strip S ′ covering
P3 ∪ S.

The reduction to subproblem (1) can be done in O(n)
time as follows: Take each point p of P2 ∪ P3 and com-
pute the score S({p}). Simulate the merging of the left-
to-right orders of P1 ∪P4, P2 ∪P3, and S1,S2, . . . ,Sn+1

(each of which can be obtained in O(n) time) to com-
pute the corresponding scored box sets in the new strip
S ′. This computation can be done by applying the op-
erator ⊕ to successive box score sets in between consec-
utive points of P1 ∪ P4 in the left-to-right order. The
reductions to subproblems (2)–(4) are similar.

The base case occurs when n ∈ {1, 2}. In the most
general setting (n = 2) we have one point p1 above S
and one point p2 below S, defining boxes S1, S2, and
S3 on S. Assume w.l.o.g. that p1 is to the left of p2
and w(p1), w(p2) > 0 (for example, if w(p1) < 0, we can
eliminate p1). Then the solution is B0((P ∩S1)∪{p1}∪
(P ∩ S2) ∪ {p2} ∪ (P ∩ S3)), which can be computed in
constant time by applying the ⊕ operator.

This yields the recurrence

F (n) ∈ 4F (n/2) +O(n),

where F (1) ∈ O(1). Then F (n) ∈ O(n2). As for the
space G(n), since the four subproblems are solved inde-
pendently one after the other, the recurrence is G(n) ∈
G(n/2) +O(n), whose solution is within O(n). �



25th Canadian Conference on Computational Geometry, 2013

The reduction from the original Maximum-Weight
Box problem to the constrained problem follows from
a more straightforward divide-and-conquer:

Theorem 2 The Maximum-Weight Box problem
admits a solution in O(n2) time and O(n) space on in-
stances of n points.

Proof. We first sort the points of P by their x-
coordinates in SORT(n) time and then apply a recursive
procedure, whose time over n weighted points will be
T (n). The recursion applies divide-and-conquer as fol-
lows: Draw a horizontal strip S (a line) splitting P into
two halves P1 and P2, where P1 is above S and P2 is be-
low S. Then we can find a maximum-weight box B1 for
P1, a maximum-weight box B2 for P2, and a maximum-
weight box B1,2 for P1 ∪ P2 restricted to intersect S.
Then the box among B1, B2, and B1,2 maximizing W ()
is the solution. To compute B1,2 we will use the solu-
tion for the Strip-Constrained Maximum-Weight
Box problem over P and S, for which we split S into
n+1 empty scored boxes S1, . . . ,Sn according to all the
x-coordinates of P . This requires O(n) time and then
Lemma 1 allows us to compute B1,2 in O(n2) time and
O(n) space. Since B1 and B2 are computed recursively,
the time complexity is

T (n) ∈ 2T (n/2) +O(n2),

where T (1) ∈ O(1). Hence T (n) ∈ O(n2). As for
the space S(n), the three subproblems are solved in-
dependently one after the other, and thus it holds
S(n) ∈ max{S(n/2), S(n/2), O(n)} ⊆ O(n). �

3 δ-sensitive analysis

Assume that P is composed of δ ∈ [1..n] strips, and
suppose w.l.o.g. that these strips are horizontal. These
strips can be identified in O(n) time from the sorting
of the points in P by their y-coordinates. One does not
need to consider boxes whose horizontal sides are in the
middle of some of these strips: there always exists an
optimal box such that each horizontal side is aligned
with an edge of some strip; specifically, the top (resp.
bottom) of an optimal box will align with a positive
point at the top (resp. bottom) of a positive strip. Using
this observation we refine the results of Section 2.

Lemma 3 The Strip-Constrained Maximum-
Weight Box problem admits a solution in O(δn) time
and O(n) space if the points of P above (resp. below) S
are composed of δ/2 strips.

Proof. Let F (n, δ) denote the time required to solve
the problem. We modify the divide-and-conquer algo-
rithm from the proof of Lemma 1 as follows: We split the
points above S with a horizontal line `1 and the points

below S with a horizontal line `2, and define P1, . . . , P4

as before. However, we choose `1 and `2 differently, not
to ensure that each Pi has n/4 points, but to ensure
that each Pi is composed of δ/4 strips. Let ni denote
the size of Pi (so that n1 + n2 + n3 + n4 = n).

The base case arises when there is at most one strip
above (resp. below) S, and can be solved as follows:
Assume w.l.o.g. that the weights of these at most two
strips are positive (if one of the strips has all negative
weights, we can eliminate all of its points). Then the
solution is B0(P ), which can be computed by applying
the operator ⊕ to the sequence, arranged in left-to-right
order, consisting of P ∩ S1, . . . ,P ∩ Sn+1 together with
singletons {pi} over all pi in P \ S. The base case then
requires O(n) time.

The recurrence is now modified to the following:

F (n, δ) ∈ F (n1 + n3, δ/2) + F (n1 + n4, δ/2)

+ F (n2 + n3, δ/2) + F (n2 + n4, δ/2)

+O(n).

where F (n, 1) ∈ O(n). Observe that the recursion tree
for F (n, δ) has at most lg δ levels, and that in the i-
th level the computation time besides recursive calls is
O(2in). Then F (n, δ) ∈ O(δn). The space is within
O(n) as in Theorem 2. �

Theorem 4 The Maximum-Weight Box problem
admits a solution in SORT(n) + O(δn) time and O(n)
space on instances of n points composed of δ strips.

Proof. Let T (n, δ) denote the time required to solve the
Maximum-Weight Box problem over n points com-
posed of δ strips. We apply divide-and-conquer as in
Theorem 2, but selecting strip S such that both result-
ing sets P1 and P2 are composed of δ/2 strips, and n1
points and n2 points respectively. If there is only δ = 1
strip then the solution is either empty (if the strip is
negative) or all the points (if it is positive), so in the
base case it holds T (n, 1) ∈ O(n). In the recursive case
we have:

T (n, δ) = T (n1, δ/2) + T (n2, δ/2) + F (n, δ)

∈ T (n1, δ/2) + T (n2, δ/2) +O(δn).

The recursion tree of T (n, δ) has at most lg δ levels and
in the i-th level the computation time besides recursive
calls is O(δn/2i), and thus T (n, δ) ∈ O(δn). Again, the
space is O(n) as before. �

Some naturally occurring instances will have a low
number of strips. For example, instances with an un-
balanced number of positive and negative points are due
to contain few strips. The following corollary captures
this observation.



CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Corollary 5 Let n+ and n− be the number of points
with positive and negative weight of an instance of
n = n+ + n− points, respectively. Then the Maximum-
Weight Box problem admits a solution in SORT(n)+
O(min{n+, n−} · n) time.

Proof. Observe that δ ≤ 2 min{n+, n−}+ 1 and apply
Theorem 4. �

4 Discussion

Improved adaptive results. Our SORT(n) + O(δn)
time algorithm adapts well to instances where points
associated with weights of same sign can be clustered
into a small number of vertical or horizontal strips. It
improves a previous O(δn lg(n/δ)) result [2], which con-
sidered adaptive results in other parameters.

To obtain better adaptive algorithms, we can consider
more general clusterings into rectangles. One approach
is as follows: Call (C1, . . . , Ck) a cluster partition of P
if {C1, . . . , Ck} is a partition of P and in every axis
the orthogonal projections of Box(C1), . . . , Box(Ck) are
pairwise disjoint.

Given a single rectangular cluster, the optimal box
of the whole instance can intersect the cluster bound-
aries in 10 distinct ways. Considering the top, bottom,
left or right edges of the cluster, an optimal box can
either intersect none of them (1 case where the optimal
box is strictly contained in the cluster), exactly two (4
cases where it contains exactly one of the corners of the
cluster), exactly three of them (4 cases where it entirely
contains exactly one cluster edge), or exactly four (1
case where it contains the whole cluster). Note that if
a box intersects exactly one edge, or exactly two oppo-
site edges (e.g., top and bottom), then there is a box of
the same score which intersects no cluster boundaries,
since by the definition of a cluster partition, there are
no other points exactly above, below, to the left or to
the right of the cluster.

In the extended version of this article we will show
how, given a partition of the n points into k clusters
of respective sizes n1, . . . , nk, one can compute the 10
optimal boxes (extending the 4 from Section 2) corre-
sponding to the cases described above in time within
O(
∑k

i=1 n
2
i ) and combine these results in time O(k2)

to obtain the optimal box of the whole instance. This
yields an O(

∑k
i=1 n

2
i + k2) time algorithm. Finding an

optimal cluster partition seems hard.

Connection to Klee’s measure problem and higher
dimensions. Our O(n2) worst-case time algorithm is
actually a special case of a more general result for a
problem related to the well known Klee’s Measure
problem (computing the volume of a union of n boxes).

In the D-dimensional Weighted Depth problem,
we are given a set of n weighted boxes in RD and we

want a point p ∈ RD that maximizes the depth, defined
as the sum of the weights of the boxes that contain p.
All known algorithms for Klee’s Measure problem
can be modified to solve the Weighted Depth prob-
lem. In particular, Overmars and Yap’s algorithm [12]
runs in O(nD/2 lg n) time, Chan’s algorithm [4] runs in
O(nD/22O(lg∗ n)) time, and a new simple algorithm by
Chan [5] runs in O(nD/2) time.

The following observation has not been noted before:

Observation 6 The Maximum-Weight Box prob-
lem in any constant dimension d can be reduced to the
Weighted Depth problem in dimension D = 2d.

Proof. Given a point set P in Rd, we map each
point p = (a1, . . . , ad) ∈ P to a region Rp in
R2d, consisting of all 2d-tuples (x1, . . . , xd, x

′
1, . . . , x

′
d)

such that p lies inside the box with opposite corners
(x1, . . . , xd) and (x′1, . . . , x

′
d); in other words, Rp =

{(x1, . . . , xd, x′1, . . . , x′d) | [(x1 ≤ a1 ≤ x′1) ∨ (x′1 ≤ a1 ≤
x1)] ∧ · · · ∧ [(xd ≤ ad ≤ x′d) ∨ (x′d ≤ ad ≤ xd)]}. We
can decompose Rp into a constant number of boxes in
R2d. The maximum-weight box for P corresponds to
a point (x1, . . . , xd, x

′
1, . . . , x

′
d) that has the maximum

depth among these regions. �

According to the above observation, our O(n2) re-
sult for the Maximum-Weight Box problem in two
dimensions is thus not new, but can be deduced from
Chan’s latest result for the Weighted Depth prob-
lem in D = 4 dimensions [5]. In fact, the O(n2) time
algorithm presented in this paper is inspired by the algo-
rithm in [5], which is also based on a “divide-summarize-
and-conquer” approach. We feel that the algorithm
here is nevertheless interesting, because it is a more
direct solution, and can be viewed as a further sim-
plification of [5], avoiding the need to work explicitly
in 4-dimensional space. (Besides, our O(n2) time algo-
rithm is a stepping stone towards our SORT(n)+O(δn)
time algorithm.)

The above observation also implies that the
Maximum-Weight Box problem in d dimensions can
be solved in O(nd) time by Chan’s new algorithm.
Previously, only an O(n2d−2 lg n) time bound was re-
ported [6].

Polylogarithmic-factor speedups and applications.
Chan [5] also showed how to further speed up his al-
gorithm by a polylogarithmic factor for the Weighted
Depth problem, but only when the dimension is suffi-
ciently large (in particularly, not for D = 4).

However, in the unweighted case of the Depth prob-
lem, it is shown [4, 5] that polylogarithmic speedup is
possible for any D ≥ 3: the running time can be im-
proved to O((nD/2/ lgD/2 n)(lg lg n)O(1)). This extends
to the case where the weights are integers bounded by



25th Canadian Conference on Computational Geometry, 2013

O(1) in absolute value, since we can replace a box with
positive weight c by c copies of the box, and we can
replace a box with negative weight −c by c copies of its
complement (which can be decomposed into a constant
number of boxes).

In particular, we can thus solve the Maximum-
Weight Box problem for the case of +1 and −1
weights in O((nd/ lgd n)(lg lg n)O(1)) time. The same
bound thus follows for the Maximum Bichromatic
Discrepancy problem mentioned in the introduction.
Previously, only an O(n2 lg n) bound was known for
d = 2 [6, 7]. Similarly, by straightforward changes to
incorporate −∞ weights, the Maximum Box problem
problem mentioned in the introduction can be solved in
O((nd/ lgd n)(lg lg n)O(1)) time, improving the previous
O(nd lgd−2 n) bound for d ≥ 3 [1].

Lower bounds? We conjecture that nd is the best
possible for the Maximum-Weight Box problem, ig-
noring polylogarithmic factors. Unconditional lower
bounds are probably difficult to prove. If one could
show a converse to Observation 6 (a reduction from
some problem related to Klee’s Measure problem in
2d dimensions to the Maximum-Weight Box prob-
lem in d dimensions), that might provide evidence for
the conjecture. We are only able to show the following:

Observation 7 The Weighted Depth problem in
any constant dimension d can be reduced to the
Maximum-Weight Box problem in dimension d.

Proof. We first reduce the Weighted Depth prob-
lem to a special case of the Weighted Depth problem
where all the input boxes are “dominance” ranges of the
form (−∞, b1]× · · · × (−∞, bd]. To see this, for a given
i ∈ [1..d], we replace any input box [a1, b1]×· · ·× [ad, bd]
of weight w with two boxes: [a1, b1]×· · ·× [ai−1, bi−1]×
(−∞, bi] × [ai+1, bi+1] × · · · × [ad, bd] of weight w, and
[a1, b1] × · · · × [ai−1, bi−1] × (−∞, ai] × [ai+1, bi+1] ×
· · · × [ad, bd] of weight −w. By repeating this for each
i ∈ [1..d], each original box is replaced with 2d boxes of
the desired special form.

Now, given an instance of this special case of the
Weighted Depth problem, we map each input box
b = (−∞, b1] × · · · × (−∞, bd] to the point pb =
(b1, . . . , bd), of the same weight. We have the obvious
property that pb lies inside the box [x1,∞)×· · ·×[xd,∞)
iff (x1, . . . , xd) lies inside b. We add an extra point at
(∞, . . . ,∞) with weight M for a sufficiently large num-
ber M . The maximum-weight box containing the result-
ing point set must be of the form [x1,∞)×· · ·× [xd,∞)
because of this extra point, and so corresponds to a
point of maximum depth of the given boxes. �

The above observation implies the W [1]-hardness of
the Maximum-Weight Box problem with respect to

d, since Klee’s Measure problem and the Weighted
Depth problem are W [1]-hard [4]. It also implies the
unlikeness of an algorithm that runs faster than nd/2

time with current knowledge about Klee’s Measure
problem.

References

[1] J. Backer and J. Keil. The mono- and bichromatic
empty rectangle and square problems in all dimensions.
In LATIN, pages 14–25. Springer, 2010.

[2] J. Barbay, G. Navarro, and P. Pérez-Lantero. Adaptive
techniques to find optimal planar boxes. In CCCG,
pages 71–76, 2012.

[3] J. Bentley. Programming pearls: algorithm design tech-
niques. Commun. ACM, 27(9):865–873, 1984.

[4] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. Comput. Geom., 43(3):243–250,
2010.

[5] T. M. Chan. Klee’s measure problem made
easy. Submitted, https://cs.uwaterloo.ca/~tmchan/
easyklee4_13.pdf, 2013.

[6] C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero,
C. Seara, J. Urrutia, and I. Ventura. Bichromatic sep-
arability with two boxes: A general approach. J. Algo-
rithms, 64(2-3):79–88, 2009.

[7] D. P. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy, with appli-
cations to computer graphics and machine learning. J.
Comput. Syst. Sci., 52(3):453–470, 1996.

[8] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its ap-
plication to data analysis. Comput. Optim. App.,
23(3):285–298, 2002.

[9] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou.
On the class imbalance problem. In Proceedings of the
Fourth International Conference on Natural Computa-
tion, pages 192–201, 2008.

[10] Y. Han and M. Thorup. Integer sorting in
O(n
√

log logn) expected time and linear space. In Pro-
ceedings of the Thirty-Third IEEE Symposium on Foun-
dations of Computer Science, pages 135–144, 2012.

[11] Y. Liu and M. Nediak. Planar case of the maximum box
and related problems. In CCCG, pages 14–18, 2003.

[12] M. H. Overmars and C.-K. Yap. New upper bounds
in Klee’s measure problem. SIAM J. Comput.,
20(6):1034–1045, 1991.

[13] S. Visa and A. Ralescu. Issues in mining imbalanced
data sets - a review paper. In Proceedings of the Six-
teen Midwest Artificial Intelligence and Cognitive Sci-
ence Conference, pages 67–73, 2005.


