
Overcoming the Curse of Dimensionality ?Edgar Ch�avez1, Jos�e L. Marroqu��n2, and Gonzalo Navarro31 Univ. Michoacana, Morelia, Mich. M�exico. elchavez@zeus.ccu.umich.mx.2 Cent. de Inv. en Mat. (CIMAT), Guanajuato, M�exico. jlm@fractal.cimat.mx.3 Dept. of Computer Science, Univ. of Chile, Santiago, Chile. gnavarro@dcc.uchile.cl.Abstract. We study the behavior of pivot-based algorithms for similarity searching in metricspaces. We show that they are e�ective tools for intrinsically high-dimensional spaces, and thattheir performance is basically dependent on the number of pivots used and the precision used tostore the distances. In this paper we give a simple yet e�ective recipe for practitioners seeking fora black-box method to plug in their applications. Besides, we introduce a new indexing algorithmthat gives the minimum overall CPU search time for a given amount of memory, compared withother state-of-the-art approaches.1 Introduction\Proximity" or \similarity" searching is the problem of looking for objects in a set close enough to a queryunder a certain (expensive to compute) distance. The goal is to preprocess the set in order to minimizethe number of distance evaluations at query time. This has applications in multimedia databases, machinelearning, data compression, text retrieval, computational biology and function prediction, to name a fewareas. A very common case arises when the objects are points in a k-dimensional Euclidean space, andwell known solutions exist, such as Voronoi diagrams [1], kd-trees [5] and R-trees [12]. However, this is notthe general case, and in many applications the distance is simply a metric (i.e. it satis�es the triangularinequality).In this paper we are interested in the case of general metric spaces, where there are essentially twodesign approaches. One approach is based on the concept of the Voronoi [1] diagram, a data structureproven to be useful in low dimensional vector spaces. The other approach, much more popular, is basedessentially in mapping the metric space onto a k-dimensional space. This last approach, the focus of thispaper, leads to a family called pivot-based indexing algorithms, which are e�ective tools to handle intrinsi-cally high-dimensional spaces (a concept explained later in this paper). This family is easily characterizedwith a few number of parameters governing the overall performance. We show that a particular algorithmof this family may become a reasonable choice for practitioners looking for a simple and e�cient solutionfor similarity queries in metric spaces.In this paper we discuss and give simple rules, i.e. recipes, to manage pivot-based algorithms. Similaritysearching is a healthy and on-the-run branch of computer science, seeking for a black-box to put inapplications. Our major contribution is aimed at this goal, via the discovery and systematization of aset of parameters of the pivot-based algorithms. We study two essential dimensions in the pivot-basedapproach, namely the number of pivots used and the discretization scheme. Both issues are thoroughlydiscussed through the paper.We also introduce a new method called Fixed Queries Array (or FQA), to reduce the overall CPUsearch time, independently of the number of distance evaluations performed.2 Basic Concepts2.1 Formal De�nitionsProximity/similarity queries can be formalized using the metric space model, where a distance functiond(x; y) is de�ned for every point in a set X. The distance function d has metric properties, i.e. it satis�esd(x; y) � 0 (positiveness), d(x; y) = d(y; x) (symmetry), d(x; y) = 0 i� x = y (strict positiveness), andthe property allowing the existence of solutions better than brute-force for similarity queries: d(x; y) �d(x; z) + d(z; y) (triangle inequality).The database is a set U� X, and we de�ne the query element as q, an arbitrary element of X. Asimilarity query involves additional information, besides q, and can be of two basic types:? Supported in by CYTED VII.13 AMYRI project, and also by CONACyT grant R-28923A (�rst author),CONACyT (second author) and by Fondecyt grant 99-0627 (third author).

2 E. Ch�avez, J. Marroqu��n and G. Navarro(a) Retrieve all elements which are within distance r to q, i.e. (q; r)d = fu 2U : d(q; u) � rg.(b) Retrieve the closest elements to q in U, i.e. nn(q)d = fu 2U : 8v 2 U; d(q; u) � d(q; v)g.In this paper we are devoted to type (a) or range queries. Nearest neighbor searching, or type (b)queries, can be embedded into range queries using a branch and bound heuristic; although several dedi-cated algorithms have been published[11, 13, 20].We present also the Minkowski distances for k-dimensional spaces. Under the Lp distance (r =1, 2,... 1), the distance between x and y is Lp = (Pi=1::k jxi � yijp)1=p, where some particular cases arep = 1 (Manhattan distance), p = 2 (Euclidean distance) and p = 1 (maximum distance). This last onedeserves an explicit formula: L1 = maxi=1::k jxi � yij.Finally, we discuss the issue of intrinsic dimensionality. The analysis of many similarity searchingalgorithms reveals that sub linear (and even logarithmic) average time complexity can be obtained forsimilarity queries. There is, however, an exponential dependence on the dimension in the case of vectorspaces. The reason lies in the shape of the histogram of distances between objects. In high dimensionalspaces, the histogram is more concentrated and the average distance is higher. This makes the searchproblem more di�cult since for the same search radius more points are captured in a generalized sphereshell, e.g. the region between two d-balls centered at a point. For pivot based algorithms this sphere shellis central to discard points, as we explain later on the paper.2.2 Related WorkHistorically, the similarity searching problem appeared in the more restricted form of vector spaces, wherethe objects are points in a k-dimensional space (with Euclidean or Minkowski distances). General metricspace algorithms inherited two major trends, very successful for vector spaces. Those models are derivedfrom Voronoi [1] diagrams and from kd-trees [5]. We brie
y discuss the �rst idea and then focus onpivot-based algorithms. Due to space limitation we merely sketch the approaches for similarity searching,for a more detailed discussion the reader can see [10].Voronoi-like Algorithms The Voronoi diagram [1], or proximity graph, has been used for proximityqueries in vector spaces. It is a fundamental structure in computational geometry, for solving closestpoint problems. It is really challenging to generalize it to metric spaces, because the algorithms to build itdepend heavily on coordinate information. Nevertheless, the concept itself has inspired several approachesconstructing a more or less �ne approximation to either the Voronoi graph or its dual, the Delaunaytriangulation. In this line we can �nd generalized hyper planes [17], the GNATS (Geometric NeighborAccess Trees) [7], and more recently the SB algorithm [11] and the SAT (Spatial Approximation Tree)[14]. The key idea in all these algorithms is to build a proximity graph allowing to search by approachingspatially to the query, as opposed to the pivot-based algorithms below.Pivot-BasedAlgorithms The kd-trees perform a hierarchical binary decomposition of the vector space.At each level the left and right branches account for points at the left or right of a threshold in a particularcoordinate. The coordinates alternate at each level.For general metric spaces the absence of coordinates urged the design of alternative rules for spacedecomposition, object location and cell discarding. An entire family of algorithms are direct descendantsof the kd-tree structure. Instead of using the coordinates directly, these algorithms use the distance to a setof distinguished database objects called keys, vantage points or pivots in the papers. Most of the schemesare tree-based data structures de�ning a hierarchical decomposition where the space cells coincide withleaves in the tree. Each branch, at each level, is related to the distance to some (set of) pivot(s). Subtledi�erences in how the pivots are selected yield to large performance di�erences.If the distance function is discrete we can directly assign one branch for each di�erent distance value.Selecting one pivot at the root level and a di�erent pivot in each child node gives us the Burkhard-Kellertree (BKT) [8]. Selecting more than one pivot at each node is also possible and is used in [16]. Otherinteresting alternative is to use one pivot in each tree level instead of each node. This scheme is used inthe Fixed Queries Trees (FQT) [3], which save distance computations in the backtracking at the expenseof somewhat taller trees. Since the pivot does not reside in the nodes one can think in a further re�nementof FQT, namely to arbitrarily increase the number of pivots, or equivalently the height of the tree. Thisarbitrarily tall trees are the Fixed Height Fixed Queries Trees (FHFQT) [2] and are proved to be moree�cient than its predecessors.

Overcoming the Curse of Dimensionality 3If, on the other hand, the distance function is continuous, then additional work has to be done. It isimpossible to assign directly one branch for each distance outcome, hence some discretization has to becarried out. In the Metric Trees [17] it is suggested to binarize the distance outcome using as threshold themedian of the distance from the pivot to all its associated elements. A more complete work on the sameidea is presented in the Vantage Point Trees (VPT) [19]. This tree is generalized to use more than onepivot per node and using arbitrary quantiles instead of just the median in the Multi-Vantage Point Trees(MVP) [6]. Another generalization of the same idea is to use a forest instead of a tree [20] to eliminatebacktracking in limited-radius nearest neighbor search in high dimensions.There is a trend of algorithms based simply in the use of k pivots, with little or no search structure.For each database element x, its distance to the k pivots (d(x; p1):::d(x; pk)) is stored. Given the queryq, its distance to the k pivots is computed (d(q; p1):::d(q; pk)). Now, if, for some pivot pi it holds thatjd(q; pi) � d(a; pi)j > r, then we know by the triangular inequality that d(q; a) > r and therefore thereis no need to explicitly evaluate d(a; p). All the other elements that cannot be eliminated using this ruleare directly compared against the query. Notice that this is no more than a mapping of the original spaceonto a k-dimensional space with the L1 distance. Algorithms such as AESA [18], LAESA [13], and [15]are variants of this idea.It is worth noting that all the tree-based schemes mentioned are also variants of this idea, except thatthey also add a data structure to avoid a linear CPU time (i.e. a linear traversal over the set).3 A Simple Recipe: Mapping to RkPivot-based algorithms can be viewed as a contractive mapping from the original metric space to adiscrete k-dimensional vector space with the L1 distance.The key factor is how close we can make this approximation. Adding more pivots monotonicallyincreases the quality of the approximation. We formally state this property as a theorem.Theorem 1. Let fpig � fpi+1g be a sequence of sets of elements of the database, N the size of thedatabase, v an arbitrary database element, q a query. Let Dk(q; v) = max1�j�kfjd(pj; q)�d(pj; v)jg. Thefollowing chain of inequalities hold Di(q; v) � Di+1(q; v) in particular DN (q; v) = d(q; v):Proof. Since the set of pivots form a chain of contentions, as i increases the maximum cannot decrease.For the last assertion, for DN we have already used all of the pivots (i.e. compared with every databaseelement), and by the triangle inequality d(v; q) � d(pj; q)�d(pj; v) for any pj, with equality when pj = v.A simple lesson is learned from the above theorem: one can increase the performance of a pivot-basedalgorithm by adding more pivots. Nevertheless, this implies using more memory each time we add a newpivot. If we simply use an array to store the distances, then we have to perform a linear pass over thisarray to compute the L1-ball or candidate list. A tree-based data structure allows, on the other hand,to build this L1-ball in sub linear time.An array uses a small amount of memory using a linear pass to isolate the set of candidate points,while a tree speeds up the process but uses a large amount of memory to maintain the index. It seems tobe a two-fold alternative. We present now an approach reaching both: a speed up, and small amount ofmemory.3.1 Internal and External ComplexityIn [10] a model for e�ectively describing the complexity of an indexing algorithm is presented. A commonmeasure of time complexity for similarity indexing is the number of distance computations, that are byfar the most complex operation in the process. According to [10] one can de�ne the internal complexityas the number of distance computations needed to isolate a list of candidates to satisfy the query. Thecandidate list is trimmed to obtain the outcome, and the number of objects in the candidate list is theexternal complexity (because one has to examine them to obtain the query outcome).For pivot-based algorithms the internal complexity is the number of pivots, while the external complex-ity is the number of database points not �ltered by the pivots. One can increase the internal complexityaccording to Theorem 1 knowing that the external complexity must decrease (or at least, not increase).

4 E. Ch�avez, J. Marroqu��n and G. Navarro3.2 A Uni�ed View for Pivot-Based AlgorithmsWe can consider the pivot-based algorithms as having two parts: An array with the coordinates of eachpoint, and a data structure to isolate a list of candidate points using the information of the array. Insome realizations of this idea, the array is stored partially in the �nal data structure, to allow the use ofmore pivots. It will be lengthly to describe here this uni�ed view, we refer the reader to [10] for a moredetailed discussion of these ideas.In the preceding section we have shown that increasing the number of pivots, i.e. the dimension ofthe target vector space, is e�ective to overcome the so called curse of dimensionality. On the other hand,we saw that the space requirements are increased. The question is, then, given an amount of availablememory, how well can we use it in order to have more pivots.Some approaches such as the FHFQT [2] try to reduce the side computations with a tree data structure.This structure, however, takes a lot of space and the net e�ect is that less pivots can be used in practice.Other approaches use little or no extra space (apart from the distances from each element of the databaseto the k pivots selected). These are [15,13, 9], some of which also present search algorithms trying toreduce the CPU time.4 Fixed Queries ArraysFor a traditional (exact) search problem, one can select between an array and a tree to implementessentially the same idea: binary searching. Both implementations have the same theoretical complexityfor searching; but a tree have facilities to dynamically insert/delete points. Our intention is to build ascheme where the array itself can be used for similarity searching directly, without an indexing structureand using a sublinear amount of time.In this section we introduce the Fixed Queries Array (FQA). This is a simple data structure which alsoallows sub linear CPU search time. Given k pivots, its performance is exactly the same as the methodsjust mentioned, but the search strategy is di�erent: the most interesting feature of FQAs is their abilityto reduce the precision of the distances stored, exchanging it for more pivots.4.1 The FQA StructureFirst assume that the set of possible distances is discrete. Given each element of the database, a list ofits distances to the k pivots is stored. In the FQA, this list is considered as a sequence of k integers. Thestructure simply stores the database elements lexicographically sorted by this sequence of distances, thatis, the elements are �rst sorted by their distance to the �rst pivot, those at the same distance to the �rstpivot are sorted by their distance to the second pivot, and so on. As more and more keys are added, thearray becomes more and more \sorted".The result has strong relations to the FHFQT. If the leaves of the tree are traversed in order, theoutcome is precisely the order imposed in the FQA. Moreover, the search algorithm of the FHFQT isinherited by the FQA. Each node of the FHFQT corresponds to a range of cells in the FQA. If a nodedescends from another in the tree, its range is a subrange of the other in the array1. Hence, each timethe tree algorithm moves from a node to a child in the tree, we mimic the movement in the array,by binary searching the new range inside the current one. This binary search does not perform extradistance evaluations. The net result is that the number of distance evaluations is the same, and the CPUcomplexity is multiplied by an additional O(log n) factor. As proved in [4], the FHFQT has O(n�) CPUcomplexity (0 < � < 1), and therefore the FQA is O(n� logn). The number of distance evaluations canbe made O(log n) by using �(log n) pivots.To make the idea more clear, we show explicitly the search algorithm. Given a query q to be searchedwith tolerance r and k pivots p1:::pk, we measure d1 = d(q; p1). Now, for every i in the range d1 � rto d1 + r, we binary search in the array the range where the �rst coordinate is i. Once that range iscomputed, for each i, we recursively continue the search on the sub array found, from the pivot p2 on.This is equivalent to recursively entering into the i-th subtree of the FHFQT. The search �nishes whenwe used the k pivots, and at that point the remaining sub arrays are sequentially checked. The recursiveprocedure obviously �nishes also when the remaining sub array is empty.1 This has close resemblances to su�x trees and su�x arrays, two text retrieval data structures.

Overcoming the Curse of Dimensionality 5
1 2 3 4 7 8 9

2 3 3 4 5 4 3 4 3 2

5 5 5 4 6 1 1 2 3 1 2

1 1 2 4 6 1 3 1 5 5 3 6

1 2 3 4 5 6 7 8 9 14 1510 11 12 13

p

p

p

p

1

2

3

4

7 2Fig. 1. A tree implementation (FQA) for a small example4.2 An ExampleConsider the FHFQT of Figure 1. Each branch from the root represents a distance to pivot p1. Branchesfrom the second-level nodes refer to the distances to p2, and so on. Given a query (q; r)d, the searchalgorithm enter, at level i in the tree, only those branches within the interesting interval d(q; pi) � r.Consider r = 2 and fd(q; pi)g = f3; 4; 5; 4g: Branches labeled [1; 2; 3; 4] in the �rst level will be examinedand, recursively, all branches below them will be traversed according to the appropriate interval for theirrespective levels. When a branch is outside the interesting interval it is pruned, e.g. branches [7; 8; 9] inthe example. At the end, database elements f4; 6; 7; 8gwill remain in the candidate list, and will be testedagainst the query to see if they should be in the query outcome. The memory usage of this tree is 215bytes: 45 nodes assuming 5 bytes per node (a very e�cient implementation).The equivalent FQA stores the elements in the left-to-right order shown in Figure 1, keeping the fourdistances for each element. Figure 2 illustrates the search process.We have four pivots, and each row in the four tables a,b,c and d represents a branch in the tree;these in turn represent the distances from the database point to the appropriate pivot. For a query q wecompute the vector (d(q; p0); � � �; d(q; p4)), in this case (3; 4; 5; 4):The search radius is 2. We have to searchthe intervals (f1; 5g; f2; 6g;f3;7g;f2;6g) respectively. Figure 2 illustrates this. With binary search we �ndthe intervals in the �rst column (boldface rows). In each one of the four tables, we show in boldface thecandidates after each search step. Table (a) is equivalent to the �rst level in the tree, and so on for therest of them. We can easily check that binary searching intervals in each column is equivalent to boundingthe search in the appropriate levels in the tree.It is worth to observe that lexicographical ordering allows one to use binary searching in subsequentcolumns. Consider for example rows beginning with a 3: all the elements of the second column are alsosorted in increasing order, and so on.(1,5) (a)1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6 (2,6) (b)1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6 (3,7) (c)1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6 (2,6) (d)1 1 4 41 2 5 11 2 5 12 3 5 13 3 5 23 3 5 73 4 4 23 5 6 43 5 6 64 4 1 17 3 1 37 3 2 17 3 2 57 4 3 58 3 1 39 2 2 6Fig.2. Searching an FQA.

6 E. Ch�avez, J. Marroqu��n and G. NavarroIt is clear that the candidate list using either representation is unchanged. In the array based searchwe have to pay O(log n) (the cost of a binary search) to simulate a visit to a branch. If we visit m nodesin the tree, we use O(m log n) time in the array.5 The Continuos CaseWe assumed that the distance is discrete, and this is not the general case. Observe that the FHFQT andthe FQA do not work well if the distance is continuous. Hence, it is necessary to de�ne ranges in thecontinuum of possible outcomes of the distance function and assign them to a small set of discrete values.This idea, however, has its own value, as we need less space to store these discretized values.In general, instead of storing k coordinates separately, we consider the whole sequence of (discretized)values as an unsigned b bits integer. Each group of bs bits represents the distance from the databaseelement to a pivot, i.e. we can represent 2bs values. Since the most signi�cant bits are assigned to the�rst pivots, we have the lexicographical ordering inherited by the integer ordering of the b bits. Hence,we can have more pivots at the expense of storing less bits for the distances. This allows an extra degreeof freedom in the use of the available memory.It is worth noting that the representation is not tightly linked with the discretization rule. One canuse any suitable rule to assign database points to branches in the tree. The next section is devoted to thequest for the optimal scheme of discretization.5.1 Discretizing SchemasIn this section we discuss two discretizing schemes for the Fixed Queries Arrays.FHQA For each pivot, independently, we obtain Dmax = maxfd(pi; u)g and Dmin = minfd(pi; u)g foru 2U, and u 6= pi. The range Dmax�Dmin is divided then in 2bs parts, and each binary number x willbe associated to the interval [Dmin + x (Dmax �Dmin)=2bs ; Dmin + (x+ 1) (Dmax �Dmin)=2bs).We call this scheme �xed slices, and the resulting FQA is called FHQA.FMVPA In the above scheme we have no control on the number of database points falling in a particularinterval. It is even possible to have empty slices, where no database point falls. This motivates anotherdiscretization scheme where the control variable is the number of database points falling in a giveninterval.The procedure ensures that in each interval there are exactly n=2bs points. In other words, we �nd2bs quantiles. We call this scheme �xed quantiles, and the resulting FQA is called FMVPA.6 Some ExperimentsWe have selected a sample of 100,000 uniformly distributed real vectors on the unit cube for our experi-ments and used the L2 (Euclidean) distance. Although this is a space with coordinates, we treat it as ageneral metric space (not making use of the coordinates). This allows us to control precisely the e�ectivedimension of the data. All the graphs show how many distance computations are needed to satisfy aquery retrieving 0.01% of the database.Note that for a �xed amount of memory there are many possible combinations of pivots and resolutionfor both FHMVPA and FHQA. For example if we have 32 bits for each database point, then we canchoose to have 32 1-bit pivots, or 16 2-bit pivots, or 8 4-bit pivots, etc. As it is not clear what is the bestcombination, we try to �gure out it and obtain a recommendation for practitioners.Another unclear issue is what is the best scheme for FQA: FHMVPA or FHQA. In the graphs theschemes are named \FHMVPA/FHQA h� b", where h is the number of pivots used and b is the numberof bits per pivot. If the same memory is used then h2b is constant.6.1 Memory OptimizationFHQA In Figure 3 (top) we observe that for a small amount of memory, the di�erence between schemesis negligible. However, using 256 bits (8 words), the best is 4 bits per pivot in almost every dimension.

Overcoming the Curse of Dimensionality 7
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FQHA 16-2
FQHA 8-4
FQHA 4-8

FQHA 32-1

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FQHA 256-1
FQHA 128-2
FQHA 64-4
FQHA 32-8

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FMVPA 16-2
FMVPA 8-4
FMVPA 4-8

FMVPA 32-1

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

FMVPA 256-1
FMVPA 128-2
FMVPA 64-4
FMVPA 32-8

Fig. 3. FHQA (top) and FMVPA (bottom) using 32 bits (left) and 256 bits (right), for several combinations ofresolution/pivots for a �xed amount of memory.
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

BKT
GNAT
SAT

FHQA 1024 bits
FMVPA 1024 bits
LAESA 2048 bitsFig. 4. Comparing FQA with state-of-the-art approaches.FHMVPA Figure 3 (bottom) shows the same behavior for the FHMVPA, the optimal selection being4 bits per pivot. However, the slopes in the curves are di�erent. It is clear that the FHQA is the bestselection as a discretization scheme in this experiment.6.2 Against-all ComparisonIn Figure 4 we show plots of the number of distance computations vs. dimension for state of the artapproaches. The parameters of the algorithms were chosen empirically and following the original sug-gestions of their authors. The memory usage can be controlled explicitly for the pivot-based algorithms.Observe how one can decrease arbitrarily the number of distance computations at the expense of morememory.Figure 4 shows many interesting facts on similarity searching. First observe how the performance of allthe algorithms decreases as the dimension increases. Some algorithms degrade faster than others. A simpleextrapolation of the behavior allows one to predict that as the dimension increases no algorithm will beable to save a single distance computation. This is the experimental face of the \curse of dimensionality".The other important conclusion is that pivot based algorithms can be tuned to beat any algorithm,providing enough memory for them. One of the least demanding pivot based scheme is LAESA, whichdoes not discretize and stores a plain array with the k coordinates. From the experiment we see that

8 E. Ch�avez, J. Marroqu��n and G. NavarroLAESA needs twice as many bits as our FQA to match the same complexity. Moreover, FQA has sublinearside computations (O(n� log n)) while LAESA is linear (O(n) to O(kn)). Other sublinear-time schemessuch as FHFQT need much more space to reach the same number of computations as our FQA.7 Conclusions and Future WorkWe have presented a study of the behavior of pivot-based algorithms for similarity searching in metricspaces. We have shown that pivot-based algorithms are e�ective tools to deal with intrinsically high-dimensional spaces. We have also shown that their performance is basically dependent on the number ofpivots used. We have presented a new data structure, called Fixed Queries Array (FQA), to reduce thenumber of CPU computations and the space requirements of the index.The FQA is shown to be a simple yet e�ective structure for this problem. Its most important featureis that it allows e�ective space usage, not only because it puts minimal overhead over the storage re-quirements but also because it allows to reduce the precision with which the coordinates are stored. Thisreduced precision is exchanged for more pivots.We will guide our research trough the quest for less expensive (in memory usage) alternatives toovercome the curse of dimensionality.References1. F. Aurenhammer. Voronoi diagrams { a survey of a fundamental geometric data structure. ACM ComputingSurveys, 23(3), 1991.2. R. Baeza-Yates. Searching: An algorithmic tour. In Allen Kent and James G. Willias, editors, Encyclopediaof Computer Science and Technology, volume 37, pages 331{359. Marcel Dekker, Inc., 1997.3. R. Baeza-Yates, W. Cunto, Udi Manber, and Sun Wu. Proximity matching using �xed-queries trees. InM. Crochemore and D. Gus�eld, editors, 5th Combinatorial Pattern Matching, LNCS 807, pages 198{212,Asilomar, CA., June 1994. Springer-Verlag.4. R. Baeza-Yates and G. Navarro. Fast approximate string matching in a dictionary. In Proc. String Processingand Information Retrieval (SPIRE'98), pages 14{22. IEEE CS Press, 1998.5. J. Bentley. Multidimensional binary search trees in database applications. IEEE Trans. on Software Engi-neering, 5(4):333{340, 1979.6. T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces. Manuscript.7. S. Brin. Near neighbor search in large metric spaces. In Proc. VLDB'95, pages 574{584, 1995.8. W. A. Burkhard and R.M. Keller. Some approaches to best-match �le searching. Communications of theACM, 16(4):230{236, April 1973. The source for BK-trees.9. E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates. Spaghettis: an array based algorithm for similarity queries inmetric spaces. In Proc. String Processing and Information Retrieval (SPIRE'99), Cancun, Mexico, September1999. To appear. ftp://garota.fismat.umich.mx/pub/users/elchavez/spa.ps.gz.10. E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Marroqu��n. Searching in metric spaces. Technical ReportTR/DCC-99-3, Dept. of Computer Science, Univ. of Chile, 1999. Submitted. ftp://ftp.dcc.uchile.cl/-pub/users/gnavarro/survmetric.ps.gz.11. K. L. Clarkson. Nearest neighbor searching in metric spaces: Some experimental results. 1999.12. A. Guttman. R-trees: a dynamic index structure for spatial searching. In The ACM SIGMOD InternationalConference on the management of data, pages 47{57, 1984.13. L. Mic�o, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approximating and eliminatingsearch (aesa) with linear preprocessing-time and memory requirements. Pattern Recognition Letters, 15:9{17,1994.14. G. Navarro. Searching in metric spaces by spatial approximation. In Proc. String Processing and InformationRetrieval (SPIRE'99), Cancun, Mexico, September 1999. To appear. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/metric.ps.gz.15. S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high dimensions. Technical ReportCUCS-030-95, Dept. of Computer Science, Columbia University, NY, October 1995.16. M. Shapiro. The choice of reference points in best-match �le searching. Comm. ACM, 20(5):339{343, 1977.17. J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Processing Letters,40:175{179, 1991.18. E. Vidal. An algorithm for �nding nearest neighbors in (approximately) constant average time. PatternRecognition Letters, 4:145{157, 1986.19. P. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In Proc.ACM-SIAM SODA'93, pages 311{321, 1993.20. Peter N. Yianilos. Excluded middle vantage point forests for nearest neighbor search. Technical report, NECResearch Institute, Princeton, NJ, July 1998.

