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Abstract

We present a new bit-parallel technique for approximate string matching. We build on
two previous techniques. The first one, BPM [Myers, J. of the ACM, 1999], searches for a
pattern of length m in a text of length n permitting & differences in O([m/w]n) time, where
w is the width of the computer word. The second one, ABNDM [Navarro and Raffinot, ACM
JEA, 2000], extends a sublinear-time exact algorithm to approximate searching. ABNDM relies
on another algorithm, BPA [Wu and Manber, Comm. ACM, 1992], which makes use of an
O(k[m/w]n) time algorithm for its internal workings. BPA is slow but flexible enough to
support all operations required by ABNDM. We improve previous ABNDM analyses, showing
that it is average-optimal in number of inspected characters, although the overall complexity is
higher because of the O(k[m/w]) work done per inspected character. We then show that the
faster BPM can be adapted to support all the operations required by ABNDM. This involves
extending it to compute edit distance, to search for any pattern suffix, and to detect in advance
the impossibility of a later match. The solution to those challenges is based on the concept of
a witness, which permits sampling some dynamic programming matrix values so as to bound,
deduce, or compute others fast. The resulting algorithm is average-optimal for m < w, assuming
the alphabet size is constant. In practice, it performs better than the original ABNDM and is
the fastest algorithm for several combinations of m, k and alphabet sizes that are useful, for
example, in natural language searching and computational biology. To show that the concept
of witnesses can be used in further scenarios, we also improve a recent bit-parallel algorithm
based on Myers [Fredriksson, SPIRE 2003]. The use of witnesses greatly improves the running
time of this algorithm too.

1 Introduction

Approximate string matching is one of the main problems in classical string algorithms, with
applications to text searching, computational biology, pattern recognition, etc. Given a text of
length n, a pattern of length m, and a maximal number of differences permitted, k, we want to
find all the text positions where the pattern matches the text up to k differences. The differences
can be substituting, deleting or inserting a character. We call « = k/m the difference ratio, and
o the size of the alphabet . All the average case figures in this paper assume random text and
uniformly distributed alphabet.

In this paper we consider online searching, that is, the pattern can be preprocessed but the text
cannot. The classical solution to the problem is based on filling a dynamic programming matrix
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and needs O(mn) time [18]. Since then, many improvements have been proposed (see [13] for a
complete survey). These can be divided into four types.

The first type is based on dynamic programming and has achieved O(kn) worst case time [8, 11].
These algorithms are not really practical, but there exist also practical solutions that achieve, on
the average, O(kn) [22] and even O(kn/+/o) time [4].

The second type reduces the problem to an automaton search, since approximate searching can
be expressed in that way. A deterministic finite automaton (DFA) is used in [22] so as to obtain
O(n) search time, which is worst-case optimal. The problem is that the preprocessing time and the
space is O(min(3™, (mo)¥) in the worst case, which makes the approach practical only for very small
patterns. In [25] they trade time for space using a Four Russians approach, achieving O(kn/log s)
time on average and O(mn/logs) in the worst case, assuming that O(s) space is available for the
DFAs.

The third approach filters the text to quickly discard large text areas, using a necessary condition
for an approximate occurrence that is easier to check than the full condition. The areas that cannot
be discarded are verified with a classical algorithm [20, 19, 5, 14, 16]. These algorithms achieve
“sublinear” expected time in many cases for low difference ratios, that is, not all text characters are
inspected. However, the filtration is not effective for higher ratios. The typical average complexity
is O(knlog, m/m) for « = O(1/log, m). The optimal average complexity is O((k + log, m)n/m)
for o <1 —0O(1/y/0) [5], which is achieved in the same paper. The algorithm, however, is not the
fastest in practice.

Finally, the fourth approach is bit-parallelism [1, 24], which consists in packing several values
in the bits of the same computer word and managing to update them all in a single operation.
The idea is to simulate another algorithm using bit-parallelism. The first bit-parallel algorithm for
approximate searching [24] parallelized an automaton-based algorithm: a nondeterministic finite
automaton (NFA) was simulated in O(k[m/w]n) time, where w is the number of bits in the
computer word. We call this algorithm BPA (for Bit-Parallel Automaton) in this paper. BPA was
improved to O([km/w]n) [3] and finally to O(]m/w]|n) time [12]. The latter simulates the classical
dynamic programming algorithm using bit-parallelism, and we call it BPM (for Bit-Parallel Matrix)
in this paper.

Currently the most successful approaches in practice are filtering and bit-parallelism. A promis-
ing approach combining both [16] will be called ABNDM in this paper (for Approximate BNDM,
where BNDM stands for Backward Nondeterministic DAWG Matching). The original ABNDM
was built on BPA because the latter is the most flexible for the particular operations needed. The
faster BPM was not used at that time yet because of the difficulty in modifying it to be suitable
for ABNDM.

In this paper we extend BPM in several ways so as to permit it to be used in the framework of
ABNDM. The result is a competitive approximate string matching algorithm. We show that, for
m < w, the algorithm has average-optimal complexity O((k +logm)n/m) for a < 1/2 —O(1/+/0).
Note that optimality holds provided we assume o is a constant. For longer patterns it becomes
O((k+logm)n/w). In practice, the algorithm turns out to be the fastest for a range of m and & that
includes interesting cases of natural language searching and computational biology applications. For
our analysis, we prove that ABNDM inspects a (truly) optimal number of characters, despite not
having an optimal overall complexity.



Among the extensions needed by BPM, the most challenging one is making it detect whether or
not the characters read up to now can lead to a match. Under the automaton approach (BPA) this is
easy because it is equivalent to the automaton having run out of active states. BPM, however, does
not simulate an automaton but rather a dynamic programming matrix. In this case, the condition
sought is that all matrix values in the last column exceed k. Since BPM handles differential rather
than absolute matrix values, this kind of check is difficult and has prevented using BPM instead of
BPA for ABNDM.

We solve the problem by introducing the witness concept. A witness is a matrix cell whose
absolute value is known. Together with the differential values, we update one or more witness
values in parallel. Those witnesses are used to deduce, bound or compute all the other matrix
values.

The usefulness of the witness concept goes well beyond the application we developed it for. To
demonstrate this, we show how it can be used to improve a recently proposed algorithm [7] where
the main idea is to compute the dynamic programming matrix, using BPM, in row-wise rather than
the usual column-wise fashion. One of the subproblems addressed in [7] is how to determine that
it is not necessary to compute more rows. Again, the condition is that all current values exceed k.
We show that our witness technique yields large improvements over the solution presented in [7].

The structure of the paper is as follows. Section 2 presents the background necessary to follow
the paper. Section 3 analyzes the classical ABNDM algorithm, because previous analyses [13, 10]
are pessimistic. Section 4 shows how BPM algorithm can be adapted to meet the requirements of
ABNDM verification. Section 5 gives the changes to BPM that are necessary for ABNDM scanning.
Section 6 gives experimental results on the improved ABNDM algorithm. Section 7 shows how the
witness technique can be used to improve the row-wise BPM algorithm. Finally, Section 8 gives
our conclusions and future work directions.

An earlier partial version of this work appeared in [10].

2 Basic Concepts

2.1 Notation

We will use the following notation on strings: |z| will be the length of string x; € will be the only
string of length zero; string positions will start at 1; substrings will be denoted as z;. j, meaning
taking from the i-th to the j-th character of x, both inclusive; x; will denote the single character
at position ¢ in z. We say that x is a prefix of zy, a suffix of yz, and a substring or a factor of yzz.

Bit-parallel algorithms will be described using C-like notation for the operations: bitwise “and”
(&), bitwise “or” (|), bitwise “xor” ("), bit complementation (~), and shifts to the left (<<) and to
the right (>>), which are assumed to enter zero bits both ways. We also perform normal arithmetic
operations (4, —, etc.) on the bit masks, which are treated as numbers in this case. Constant bit
masks are expressed as sequences of bits, the first to the right, using exponentiation to denote bit
repetition, for example 103 = 1000 has a 1 at the 4-th position.



2.2 Problem Description

The problem of approximate string matching can be stated as follows: given a (long) text T of
length n, and a (short) pattern P of length m, both being sequences of characters from an alphabet
Y of size 0, and a maximum number of differences permitted, k, find all the segments of T" whose
edit distance to P is at most k. Those segments are called “occurrences”, and it is common to
report only their start or end points.

The edit distance between two strings x and y is the minimum number of differences that would
transform x into y or vice versa. The allowed differences are deletion, insertion and substitution of
characters. The problem is non-trivial for 0 < k < m. The difference ratio is defined as o = k/m.

Formally, if ed() denotes the edit distance, we may want to report start points (i.e. {|z|, T =
xP'y, ed(P, P") < k}) or end points (i.e. {|xP’|, T = xP'y, ed(P, P") < k}) of occurrences.

2.3 Dynamic Programming

The oldest and still most flexible (albeit slowest) algorithm to solve the problem is based on dynamic
programming [18]. We first show how to compute the edit distance between two strings x and y.
To compute ed(z,y), a (Jx| +1) x (Jy| + 1) dynamic programming matrix M |4 0. |y is filled so
that eventually M;; = ed(w1.4,91.;). The desired solution is then obtained as M, |,| = ed(z,y).
Matrix M can be filled by using the well-known dynamic programming recurrence

Mi,O — i7 MO,j — ja
Mi,j «— if ((L’Z = yj) then Mi—l,j—l else 1 +min(Mi_1,j,MZ-J-_l,Mi_Lj_l),

where the formula accounts for the three allowed operations. After setting the boundary conditions
(first line of the recurrence), it is common to fill the remaining cells of M in a column-wise manner
from left to right: The columns are processed in the order j = 1...|y|, and column j is filled
from top to bottom in the order i = 1...|z| before moving to the next column j + 1. Dynamic
programming requires O(|z||y|) time to compute ed(x,y). The space can be reduced to O(m) by
storing only one column of M at a time, namely, the one corresponding to the current character of
y (going left to right means examining y sequentially).

The preceding method is easily extended to approximate searching, where x = P and y = T,
by letting the comparison between P and T start anywhere in 1. The only change is the initial
condition My ; « 0. The time is still O(|z||y|) = O(mn).

Throughout this paper we assume that M is processed in column-wise manner. Let the vector
Cy...m correspond to the values in the currently processed column of M. Then the equality C; = M; ;
holds whenever we have just processed the text character T};. Initially C; < M;o = i. When we
move on to process the next text character Tj, vector C first corresponds to column j — 1. Let C’
denote its updated version that corresponds to the values in column j. When we move to the next
column j+1, C’ becomes C, and the new C’ will correspond to the updated values in column j +1,
and so on. Following the recurrence for M, the update formula for C is

C; « if (P, =Tj) then C;j_1 else 1 + min(C;_,,C;,Ci_1)

for all i > 0. We report an occurrence ending at text position j whenever C/ < k immediately
after processing the column corresponding to 7}.
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Several properties of matrix M are discussed in [21]. The most important for us is that adjacent
cells in M differ at most by 1, that is, both M; j—M;+; j and M; ;—M; ;4 are in the set {—1,0,+1}.
AISO, Mi—l—l,j—i—l — Mz‘,j is in the set {0, 1}

Figure 1 shows examples of edit distance computation and approximate string matching.
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Figure 1: The dynamic programming algorithm. On the left, to compute the edit distance between
"survey" and "surgery". On the right, to search for "survey" in the text "surgery". The bold
entries show the cell with the edit distance (left) and the end positions of occurrences for k = 2
(right).

2.4 The Cutoff Improvement

In [22] Ukkonen observed that dynamic programming matrix values larger than k can be assumed
to be k4 1 without affecting the output of the computation. Moreover, once M; ; > k, it is known
that M;y1 j4+1 > k. Cells of C with value not exceeding k are called active. In the algorithm, the
row index ¢ of the last active cell (i.e., largest i such that C; < k) is maintained (let us assume
¢ = —1if C; > k for all 7). All the values Cyy1. ,, are assumed to be k + 1, and we know that also
the updated values C} 4o..m Will be larger than k. So C’ needs to be updated only in the range
Lot 1

The value £ has to be updated throughout the computation. Initially ¢ = k because C; =
M; o = i. The row index of the last active cell can increase by at most one when moving to the
next column. So we may first check whether C’é 41 <k, and in such a case we increment ¢. If this
is not the case, we search upwards for the new last active cell by decrementing ¢ as long as C < k.
Despite that this search can take O(m) time at a given column, we cannot work more than O(n)
overall. There are at most n increments of ¢ in the whole process, and hence there cannot be more
than n+k decrements. Thus the row index ¢ of the last active cell is maintained at O(1) amortized
cost per column.

In [4] it was shown that on average ¢ = O(k), and therefore Ukkonen’s cutoff scheme runs in
O(kn) expected time.

2.5 An Automaton View

An alternative approach is to model the search with a non-deterministic automaton (NFA) [2].
Consider the NFA for & = 2 differences shown in Figure 2. Each of the k£ + 1 rows denotes the



number of differences seen (the first row zero, the second row one, etc.). Every column represents
matching a pattern prefix. Horizontal arrows represent matching a character. All the others
increment the number of differences (i.e., move to the next row): vertical arrows insert a character
in the pattern, solid diagonal arrows substitute a character, and dashed diagonal arrows delete a
character of the pattern. The initial self-loop allows an occurrence to start anywhere in the text.
The automaton signals (the end of) a match whenever a rightmost state is active.

It is not hard to see that once a state in the automaton is active, all the states of the same
column and higher-numbered rows are active too. Moreover, at a given text position, if we collect
the smallest active rows at each column, we obtain the vector C of the dynamic programming (in
this case [0,1,2,3,3,3,2], compare to the last column of the right table in Figure 1).
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Figure 2: An NFA for approximate string matching of the pattern "survey" with two differences.
The shaded states are those active after reading the text "surgery".

Note that the NFA can be used to compute edit distance by simply removing the self-loop,
although it cannot distinguish among different values larger than k.

2.6 A Bit-Parallel Automaton Simulation (BPA)

The idea of BPA [24] is to simulate the NFA of Figure 2 using bit-parallelism, so that each row i of
the automaton fits in a computer word R; (each state is represented by a bit). For each new text
character, all the transitions of the automaton are simulated using bit operations among the k + 1
computer words.

The update formula to obtain the new R] values at text position j from the current R; values
is as follows:

Ry « ((Ro<<1)]|0™) & B[Tj],
i1 = (R <<1)&B[T) | R | (Ri<<1) | (Rj<<1),

where Blc] is a precomputed table of o entries such that the first bit of B[c| is always set and the
(r + 1)-th bit is set whenever P, = c¢. We start the search with R; = 0™ ¢1*1, In the formula for
R}, | are expressed, in that order, horizontal, vertical, diagonal and dashed diagonal arrows.

If m +1 > w, we need [m/w] computer words to simulate every R; mask' and have to update

1With slightly more complicated formulas, the simulation can be done using m bits, instead of m + 1.



them one by one. The cost of this simulation is thus O(k[m/w]|n). The algorithm is flexible. For
example the initial self-loop can be removed by changing the update formula into:

Ry « (Ro<<1)& BIT)),
= (R <<D&BT) | B | (Ri<<1) | (B <<1).

2.7 Myers’ Bit-Parallel Matrix Simulation (BPM)

A better way to parallelize the computation [12] is to represent the differences between consecutive
rows or columns of the dynamic programming matrix instead of the NFA states. Let us call

Ay o= M;j;— M1 € {-1,0,+1},
Avij = M;—M;i; € {-1,0,+1},
Adij = Mij— M1 € {0,1},

the horizontal, vertical, and diagonal differences among consecutive cells. Their range of values
come from the properties of the dynamic programming matrix [21].

We present a version [9] that differs slightly from that of [12]: Although both perform the
same number of operations per text character, the one we present is easier to understand and more
convenient for our purposes.

Let us introduce the following boolean variables. The first four refer to horizontal /vertical
positive /negative differences and the last to the diagonal difference being zero:

VPZ:] = A,UZ,_] — +1, VNZ,] = AUZ,] = —1’
HP;; = Ah@j = +1, HN;; = Ahm» =1,

Note that A’UZ'J' = VPZ'J' — VNZ'J', Ahi,j = HPZ'J' — HNZ'J', and Adi,j =1- DOZ-,]-. It is clear that
these values completely define M; ; = > ._; ,; Mv, ;.

The boolean matrices HN, VN, HP, VP, and D0 can be seen as vectors indexed by ¢, which
change their value for each new text position j, as we traverse the text. These vectors are kept in
bit masks with the same name. Hence, for example, the i-th bit of the bit mask H N will correspond
to the value HN; ;. The index j — 1 refers to the previous value of the bit mask (before processing
Tj), whereas j refers to the new value, after processing 7. By noticing some dependencies among
the five variables [9, 17], one can arrive to identities that permit computing their new values (at j)
from their old values (at j — 1) fast.

Figure 3 gives the pseudo-code. The value diff stores C,, = M,, ; explicitly and is updated
using HP,, ; and HN,, ;.

This algorithm uses the bits of the computer word better than previous bit-parallel algorithms,
with a worst case of O([m/w]|n) time. However, the algorithm is more difficult to adapt to other
related problems, and this has prevented it from being used as an internal tool of other algorithms.



BPM (Pi._yn, Ti..n, k)

1. Preprocessing

2. For c € ¥ Do Bc| — 0™

3. For i € 1...m Do B[P,] — B[P}] | 0m~10""!

4. VP — 1" VN « (0™

5. diff —m

6. Searching

7. For je1...n Do

8. X <« B[T;] | VN

9. DO— (VP+ (X &VP)MNVP)| X

10. HN —~ VP & DO

11. HP —VN | ~ (VP | D0)

12. X—HP<<1

13. VN «— X & DO

14. VP — (HN <<1)| ~ (X | D0)

15. If HP & 10m~! £ 0™ Then diff « diff + 1
16. If HN & 10m~! #£ 0™ Then diff «— diff — 1
17. If diff < k Then report an occurrence at j

Figure 3: BPM bit-parallel simulation of the dynamic programming matrix.

2.8 The ABNDM Algorithm

Given a pattern P, a suffiz automaton is an automaton that recognizes every suffix of P. This
is used in [6] to design a simple exact pattern matching algorithm called BDM, which is optimal
on average (O(nlog, m/m) time). To search for a pattern P in a text T, the suffix automaton of
P" = P,Py,_1... P (ie. the pattern read backwards) is built. A window of length m is slid along
the text, from left to right. The algorithm scans the window backwards, using the suffix automaton
to recognize a factor of P. During this scan, if a final state is reached that does not correspond
to the entire pattern P, the window position is recorded in a variable last. This corresponds to
finding a prefiz of the pattern starting at position last inside the window and ending at the end of
the window, because the suffixes of P" are the reverse prefixes of P. This backward search ends in
two possible forms:

1. We fail to recognize a factor, that is, we reach a letter a that does not correspond to a
transition in the suffix automaton (Figure 4). In this case we shift the window to the right
so as to align its starting position to the position last.

2. We reach the beginning of the window, and hence recognize P and report the occurrence.
Then, we shift the window exactly as in case 1 (to the previous last value).

In BNDM [16] this scheme is combined with bit-parallelism so as to replace the construction
of the deterministic suffix automaton by the bit-parallel simulation of a nondeterministic one. The
scheme turns out to be flexible and powerful, and permits other types of search, in particular
approximate search. The resulting algorithm is ABNDM.
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Figure 4: BDM search scheme.

Safe shift

We modify the NFA of Figure 2 so that it recognizes not only the whole pattern but also any
suffix thereof, allowing up to k differences. Figure 5 illustrates the modified NFA. Note that we
have removed the initial self-loop, so it does not search for the pattern but recognizes strings at
edit distance k or less from the pattern. Moreover, we have built it on the reverse pattern. We
have also added an initial state “I”, with e-transitions leaving it. These allow the automaton to
recognize, with up to k differences, any suffix of the pattern.
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Figure 5: An NFA to recognize suffixes of the pattern "survey" reversed.

In the case of approximate searching, the length of a pattern occurrence ranges from m — k to
m + k. To avoid missing any occurrence, we move a window of length m — k on the text, and scan
backwards the window using the NFA described above.

Each time we move the window to a new position, we start the automaton with all its states
active, which represents setting the initial state to active and letting the e-transitions propagate
this activation to all the automaton (the states in the lower-left triangle are also activated to allow
initial insertions). Then we start reading the window characters backward.

We recognize a prefix and update last whenever the final NFA state is activated. We stop the
backward scan when the NFA is out of active states.

If the automaton recognizes a pattern prefix at the initial window position, then it is possible
(but not necessary) that the window starts an occurrence. The reason is that strings of different
length match the pattern with k differences, and all we know is that we have matched a prefix of



the pattern of length m — k.

Therefore, in this case we need to verify whether there is a complete pattern occurrence starting
at the beginning of the window. For this sake, we run the traditional automaton that computes
edit distance (i.e., that of Figure 2 without initial self-loop) from the initial window position in the
text. After reading at most m + k characters, we have either found a match starting at the window
position (that is, the final state becomes active) or determined that no match starts at the window
beginning (that is, the automaton runs out of active states).

So we need two different automata in this algorithm. The first one makes the backward scanning,
recognizing suffixes of P". The second one makes the forward scanning, recognizing P.

The automata can be simulated in a number of ways. In [16] they choose BPA [24] because
it is easy to adapt to the new scenario. To recognize all the suffixes, we just need to initialize
R; «— 1™%! To make it compute edit distance, we remove the self-loop as explained in Section 2.6.
The final state is active when Ry, & 10™ # 0™*!. The NFA is out of active states whenever
Ry = 0™t Other approaches were discarded: an alternative NFA simulation [3] is not practical
to compute edit distance, and BPM [12] cannot easily tell when the corresponding automaton is
out of active states, or similarly, when all the cells of the current dynamic programming column
are larger than k.

Figure 6 shows the algorithm.

ABNDM (Pi. my Th..ns k)

1 Preprocessing

2 Build forward and backward NFA simulations (fNF A and bNF A)

3 Searching

4. pos «— 0

5. While pos <n — (m — k) Do

6 j—m—k,last —m—k

7 Initialize DN F A

8 While j #0 AND bNF A has active states Do

9. Feed bNF A with Tpos+;

10. je—j—1

11. If BN F A’s final state is active Then /* prefix recognized */
12. If j > 0 Then last «— j

13. Else check with fNF A a possible occurrence starting at pos + 1
14. pos < pos + last

Figure 6: The generic ABNDM algorithm.

The algorithm is shown to be good for moderate m, low k and small o, which is an interesting
case, for example, in DNA searching. However, the use of BPA for the NFA simulation limits its
usefulness to very small k values. Our purpose in this paper is to show that BPM can be extended
for this task, so as to obtain a faster version of ABNDM that works with larger k.
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3 Average Case Analysis of ABNDM

The best previous analysis of ABNDM [10] (which improved the first one [13]) has shown that the
algorithm inspects on average O(knlog,(m)/m) text positions. We show now that those analyses
are pessimistic, and that the number of character inspections made by ABNDM is indeed the
optimal O((k + log, m)n/m), and this holds for « < 1/2 — O(1/y/c). This will be essential to
analyze the new algorithms we present in the following sections.

We analyze a simplified algorithm that can never inspect less characters than the real ABNDM
algorithm. We will show that even this simplified algorithm is optimal. The simplified algorithm
always inspects £ characters from the window (¢ will be determined later), and only then it checks
whether the string read matches inside P with k errors or less. If the string does not match, the
window is shifted by m — k — £ characters. If it matches, the whole window is verified and shifted
by one position. It is clear that this algorithm can never perform better than the original in any
possible text window. If the original algorithm stops the scanning before reading ¢ characters (and
hence shifts more than m — k — ¢ positions), the current algorithm reads ¢ characters and shifts
m — k — £ positions. Otherwise, the simplified algorithm goes to the worst possible situation: it
checks the whole window and shifts by one position.

Let us consider the n— (m—k)+1 < n text windows of length m — k. We divide them into good
and bad windows. A window is good if its last ¢ characters do not match inside P with k errors or
less, otherwise it is bad. We will consider separately the cost to process good and bad windows.

When the search encounters a good window, by definition, it inspects ¢ characters and shifts
m — k — ¢ positions. Therefore, we cannot process more than [n/(m — k — £)] good windows,
at O({) cost each. Therefore, the overall number of inspected characters inside good windows is
On/(m —k—1)).

In order to handle the bad windows, we must bound the probability of a window being bad.
In [3, 13] it is shown that the probability that a given string of length ¢ matches at a given (final)
position inside a longer string is a’/¢, where a < 1 whenever k/¢ < 1 — e//o, that is, we need
at least £ > k/(1 — e/+/0). An upper bound to the probability of the string of length ¢ matching
inside P is obtained by adding up the m possible final match positions of the string inside P, as
if the events of matching at different final positions were disjoint and the first £ 4+ k — 1 positions
did not have lower probability of finishing a match. Hence, an upper bound to the probability of
a window being bad is ma’ /.

When the window is bad, we pay at most (m — k) + (m + k) = 2m character inspections for
scanning and verifications, and then shift by one. Since there are at most n bad windows in the
text, an upper bound to the overall average number of characters inspected on bad windows is
n-ma’/l-2m = O(m?na’/¢). This upper bound is obtained by assuming that we will consider all
the text windows, and pay 2m for all the bad ones.

We choose ¢ large enough so that the cost of bad windows does not exceed O(n/m), so as to
ensure that the cost on good windows dominates. For this to hold, we need a‘/¢ < 1/m3, or more
strictly, a* < 1/m?. This is equivalent to ¢ > 3log; Ja™. Since a > 1/o [3], a sufficient condition is
> 3log, m.

Therefore, we have that the overall number of characters inspected is O(¢n/(m—k—¥)) provided
¢>Fk/(1 —e/y/o) and also ¢ > 3log, m. The complexity is O(¢n/m) provided m —k — £ > cm
for some constant 0 < ¢ < 1, that is, £ < (1 — ¢)m — k. So we have lower and upper bounds
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on ¢. The first condition we can derive from both is k/(1 —e/\/o) < (1 — ¢)m — k, that is,
a<(l-e/\o)/(2—-¢e/\o)=1/2—-0(1/\/0). Since k < m/2, (1 —c)m —k > (1/2 — ¢)m and
therefore this upper bound on ¢ does not clash, asymptotically, with the lower bound ¢ > 3log, m.

So we have that the complexity is O(¢n/m) provided a < 1/2 — O(1/y/0) and ¢ > max(k/(1 —
e/\/0),3log, m). Choosing an appropriate ¢ we obtain complexity O(max(k,log, m)n/m) = O((k+
log, m)n/m), which is optimal [5]. This shows that our pessimistic analysis is tight and that
ABNDM inspects an optimal (on average) amount of characters.

ABNDM, however, is not optimal in terms of overall complexity. The reason is that, for each
character inspected, the BPA automaton needs time O(k) to process it if m < w, and O(mk/w)
in general. This gives an overall complexity of O((k + log, m)kn/m) if m < w, and O((k +
log, m)kn/w) in general.

In this paper we manage to use BPM instead of BPA. This simulation takes O(1) per inspected
character if m < w, and O(m/w) in general. In this case the complexity would be the optimal
O((k 4 log, m)n/m) for m < w and O((k + log, m)n/w) in general. However, as we show later,
different complications make the real complexities O((k + logm)n/m) and O((k + logm)n/w).
These are optimal for constant alphabet size o.

4 Forward Scanning with the BPM Simulation

We first focus on how to adapt the BPM algorithm to perform the forward scanning required by the
ABNDM algorithm. Two modifications are necessary. The first is to make the algorithm compute
edit distance instead of performing text searching. The second is making it able to determine when
it is not possible to obtain edit distance < k by reading more characters.

4.1 Computing Edit Distance

We recall that BPM implements the dynamic programming algorithm of Section 2.3 in such a way
that differential values, rather than absolute ones, are stored. Therefore, we must consider which
is the change required in the dynamic programming matrix in order to compute edit distance. As
explained in Section 2.3, the only change is that My ; = j. In differential terms (Section 2.7), this
means A ; = 1 instead of zero.

When Ahg ; = 0, its value does not need to be explicitly present in the BPM algorithm. The
value makes a difference only when HP or HN is shifted left, which happens on lines 12 and 14 of
the algorithm (Figure 3). On these occasions the assumed bit zero enters automatically from the
right, thereby implicitly using a value Ahy; = 0. To use a value Ahg ; = 1 instead, we change line
12 of the algorithm to X « (HP << 1) | 0™~ 11.

Since we will use this technique several times from now on, we give in Figure 7 the code for a
single step of edit distance computation.

4.2 Preempting the Computation

Albeit in the forward scan we could always run the automaton through m + k text characters,
stopping only if di ff < k to signal a match, it is also possible to determine that diff will always be
larger than & in the characters to come. This happens when all the cells of the vector C; are larger
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BPMStep (Bc)

X « Be| VN

DO (VP + (X & VP) " VP)| X
HN — VP & DO

HP — VN | ~ (VP | Do)

X~ (HP<<1)|0m 11

VN — X & DO

VP — (HN << 1) | ~ (X | DO)

No Ot N e

Figure 7: The procedure used for performing the variable updates per scanned character in the
adaptation of BPM to edit distance computation. It receives the bit mask Bc of the current text
character and shares all the other variables with the calling process.

than k, because there is no way in the recurrence to introduce a value smaller than the current
ones. In the automaton view, this is the same as the NFA running out of active states (since an
active state at column i and row r would mean C; =r < k).

This is more difficult in the dynamic programming matrix simulation of BPM. The only
column value that is explicitly stored is diff = C,,. The others are implicitly represented as
Ci =3 ,-1 ;(VP. —VN,). Using this incremental representation, it is not easy to check whether
C; > k for all 1.

Our solution is inspired by the cutoff algorithm of Section 2.4. This algorithm permits knowing
all the time the largest ¢ such that Cy < k, at constant amortized time per text position. Although
designed for text searching, the technique can be applied without any change to the edit distance
computation algorithm. Clearly ¢ > 0 holds if and only if C; < k for some i. Hence we will maintain
a witness in the current column of the dynamic programming matrix that will tell which is the last
cell not exceeding k.

So we have to figure out how to maintain ¢ using BPM. Initially, since C; = M, o = i, we set
¢ «— k. Later, we have to update ¢ for each new text character read. Recall that neighboring cells
in M (and hence in C) differ by at most one. Since, by definition of ¢, Cyy; > k and Cy < k, we
have that Cy = My ;_1 = k as long as £ < m. We may assume that k < m, so the condition £ < m
holds initially. We consider now how to move from column j — 1 to column j in M.

Since ¢ can increase at most by one at the new text position, we start by effectively increasing
it. This increment is correct when My ; < k before doing the increment. Since My ; — My ;1 =
Adyiq1; € {0,1}, we have that it was correct to increase ¢ if and only if the bit DO, ; is set after
the increment. If it was not correct to increase ¢, we decrease it as much as necessary to obtain
My ; < k. In this case we know that M,; = k + 1, which enables us to obtain the cell values
My_1;=M;;—V P ;+VNgj,and so on with £ —2, £ — 3, etc. If we reach £ = 0 and still M ; > k,
then all the rows are larger than k and we stop the scanning process.

The above procedure assumed that £ < m. Note that, as soon as £ = m, we have C}, < k, and
the forward scan will terminate because we have found an occurrence.

Figure 8 shows the forward scanning algorithm. It scans from text position j and determines
whether there is an occurrence starting at j. Instead of P, the routine receives the mask table B
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already computed (see Figure 3). Note that for efficiency ¢ is maintained in unary.

BPMFwd (B, T;..n, k)

1. VP — 1" VN « 0™

2. 0 Om—F10k-1

3. While j <n Do

4. BPMStep (B[Tj])

5. P — 1 <<1

6. If DO & ¢ = 0™ Then

7. val — k+1

8. While val > k Do

9. If ¢ = 0™ '1 Then Return FALSE

10. IfVP & ¢ # 0™ Then val «— val — 1
11. IfVN & ¢ # 0™ Then val «— val + 1
12. (—L>>1

13. Else If / = 10™~! Then Return TRUE

14. jo— j+1

15. Return FALSE

Figure 8: Adaptation of BPM to perform a forward scan from text position j and return whether
there is an occurrence starting at j.

5 Backward Scanning with the BPM Simulation

In this section we address the main obstacle to use BPM instead of BPA inside algorithm ABNDM:
the backward scanning. As explained, the problem is that the backward scanning algorithm should
be able to tell, as early as possible, that the string read up to now cannot be contained in any
pattern occurrence, so as to shift the window as early as possible. Under BPA simulation it turns
out that the condition is equivalent to the simulated NFA not having any active state, and this can
be directly checked because the NFA states are explicitly represented in BPA. BPM, on the other
hand, does not simulate an automaton, but the dynamic programming matrix. In this case, the
condition is equivalent to all matrix values in the last column exceeding k. The problem is that
BPM does not store absolute matrix values, but differential ones, and this makes it difficult to tell
fast whether all cell values exceed some threshold.

We solve the problem by introducing the witness concept. A witness is a matrix cell whose
absolute value is known. Several witnesses are spread along the current matrix column. All the
witness values are maintained in a single computer word and updated in bit-parallel fashion. By
knowing the absolute values of some column cells, we can efficiently compute, bound, or deduce all
the other column values. When all the values can be proven to exceed k, we know that the current
window can be abandoned.

We first develop a naive solution, based on the forward scanning developed in Section 4. This
method uses one witness to stop the scanning, and we will show why this cannot be efficient in
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this scenario. This fact will motivate the use of several witnesses, which will be developed in depth
next.

5.1 A Naive Solution

The backward scan has the particularity that all the NFA states start active. This is equivalent to
initializing C as C; = 0 for all ¢. The place where this initialization is expressed in BPM is on line
4 of Figure 3: VP = 1™ corresponds to C; = i. We change it to V P « 0" and obtain the desired
effect. Also, like in forward scanning, Mg ; = j, so we apply to line 12 the same change as with
forward scanning in order to use the value Ahg; = 1.

With these tools at hand, we could simply apply the forward scan algorithm with B built on
P" and read the window backwards. We could use witness ¢ to determine when the NFA is out of
active states. Every time ¢ = m, we know that we have recognized a prefix and hence update last.
There are a few changes, though: (i) we start with £ = m because M, = 0; and (ii) we have to
deal with the case £ = m when updating ¢, because now we do not stop the backward scanning in
that case but just update last.

The latter problem is solved as follows. As soon as £ = m, we stop tracking ¢ and initialize
diff < k as the known value for C,,,. We keep updating di ff using H P and HN just as in Figure 3,
until di ff > k. At this moment we switch to updating ¢ again, moving it upwards as necessary.

The above scheme works correctly but is terribly slow. The reason is that ¢ starts at m,
and it has to reach zero before we can leave the window. This requires m shifting operations
¢ «— ¢ >> 1, which is a lot considering that on average one traverses O(k + log, m) characters
in the window. The O(k + n) complexity to maintain the last active cell, given in Section 2.4,
becomes here O(m + k + log, m), since now /¢ starts at m instead of k and the “text” length is
O(k +log, m). Hence, all the column cells reach a value larger than k quite soon, and ¢ goes down
to zero, correspondingly. The problem is that ¢ needs too much time to go down to zero. That is,
our witness has to traverse all the m cells to determine that all of them exceed k.

We present two solutions to determine fast that all the C; values have surpassed k. Both
solutions rely on maintaining several witnesses at the same time along the matrix column. The
general idea is to maintain a denser sample of the absolute values in order to reduce the time needed
to traverse all the non-sampled cells. In the first version we develop, it might be that we inspect
more window characters than necessary in order to determine that we can shift the window. In the
second, we will examine the minimum number of characters required, but will have to work more
per character, in order to make use of the witnesses. Both will obtain the same search complexity
by different means.

5.2 Bit-Parallel Witnesses

In the original BPM algorithm, the integer value diff = C,, (a witness) is explicitly maintained
in order to determine which text positions match. This is accomplished by using the m-th bit of
HP and HN to keep track of C,,. This part of the algorithm is not bit-parallel, so in principle one
cannot do the same with all the C; values and still hope to update all of them in a single operation.
However, it is possible to store several such witnesses in the same computer word MC and use
them to bound the others.
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General mechanism. Let ) denote the space, in bits, that will be reserved for a single witness.
We set up t = [m/Q] consecutive witnesses into MC. The witnesses keep track of the values
Cms Cm—q, Cm—29, ---» C’m_(t_l)Q, and the witness for C,,_,@ uses the bits m —rQ...m —
r@Q+ @ — 1 in MC. This means that we need m + Q — 1 bits for MC?. We discuss later how to
determine a suitable value (). For now we assume that such a ) has already been determined.

The witnesses can be used as follows. We note that every cell is at most |@Q/2]| positions away
from some represented witness, and it is known that the difference between consecutive cell values
is at most 1. Thus we can be sure that all the cell values of C' exceed k when all the witness values
are larger than k' =k + |Q/2].

The preceding assumption that every cell in C'is at a distance of at most [Q)/2] to a represented
cell may not be true for the first |Q/2] cells. But we know that Cp = j at the j-th iteration, and
so we may assume there is an implicit witness at row zero. Moreover, since this witness is always
incremented, it is at least as large as any other witness, and so it will surely surpass k£’ when the
other witnesses do. The initial [Q/2] cells are close enough to this implicit witness.

So the idea is to traverse the window until all the witnesses exceed k’, and then shift the window.
We will examine a few more cells than if we had controlled exactly all the C' values. We analyze
later the resulting complexity.

Figure 9 shows the pseudocode of the algorithm. The name of the algorithm owes to the fact
that the witness positions are fixed, as opposed to the next section.

Implementation. In implementing this idea we face two problems. The first one is how to
update all the witnesses in a single operation. This is not hard because each witness Cy,_.q can be
updated from its old to its new value by considering the (m — rQ)-th bits of HP and HN. That
is, we define a mask sMask = (OQ_ll)t0m+Q_l_tQ and update all witnesses in parallel by setting
MC «— MC+ (HP & sMask) — (HN & sMask) (lines 10 and 20 in Figure 9).

The second problem is how to determine that all the witnesses have exceeded k’. For this sake
we store each witness with excess b = 29~1 —1 — k/. That is, when Cim—r@ = , the corresponding
witness holds the value z + b. This way the @-th bit of a witness is activated when the cell
value it represents exceeds k’. Thus if we define eMask = (10Q_1)t0m+Q_1_tQ, then we can stop
the scanning whenever MC & eMask = eMask, that is, when all witnesses have their Q-th bits
activated (lines 11 and 18 in Figure 9).

Determining ). Let us now explain how to determine the value ) for the number of bits reserved
for each witness. Clearly @) should be as small as possible. The criteria for ) are as follows. First
of all we need that (i) b4k’ 4+ 1 = 2971 where b is the excess value. Initializing the witnesses to b
allows us to determine, from their -th bits, that a witness has exceeded k¥’ = k + |Q/2]. On the
other hand, we have to ensure that the -th bit remains set for any witness value larger than %',
and that @Q bits are still enough to represent the witness. Since the upper limit for a cell value in
the window is m — k, the preceding is guaranteed by the condition (ii) b+m — k < 29 Finally, the
excess cannot be negative, and so we need (iii) b > 0.

2If sticking to m bits is necessary we can store C,, separately in the diff variable, at the same complexity but
more cost in practice.
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ABNDMFixedWitnesses (Pi. ., T1..n, k)

1 Preprocessing

2 For ¢ € ¥ Do Bf|c] — 0™ , Bb[c] « 0™

3 Foriel...m Do

4. Bf|P;] < Bf[P] | 0m~*10!

5. Bb[P;] « Bb[P;] | 0¢-t10m 7

6 Q — [logg(m —k+1)]

7 If 2971 < max(m — 2k — [Q/2],k+ 1+ [Q/2]) Then Q «— Q + 1
8 be—29"1 k- (Q/2] -1

9

: t —[m/Q]
10. sMask « (09~11)tgm+Q-1-tQ
11. eMask « (109~ 1)tgm+Q-1-tQ
12.  Searching
13. pos «— 0
14. ‘While pos < n — (m —k) Do
15. j—m—Fk last —m—k
16. VP — 0" VN «— (0™
17. MC — [b]om+Q-1-1Q
18. While j #0 aAND MC & eMask # eMask Do
19. BPMStep (Bb[Tpos+;])
20. MC «— MC+ (HP & sMask) — (HN & sMask)
21. je—j—1
22. If MC & 10m+Q—2 £ gm+@~1 Then /* prefix recognized */
23. If 5 > 0 Then last «— j
24. Else If BPMFwd (Bf, Tpos+1..n) Then
25. Report an occurrence at pos + 1
26. pos < pos + last

Figure 9: The ABNDM algorithm using bit-parallel witnesses. The expression [b]g denotes the
number b seen as a bit mask of length (). Note that BPMFwd can share its variables with the
calling code because these are not needed any more at that point.

By replacing (i) in (ii) we get (i) b = 2971 — k' — 1 and (ii’) m — k — k¥’ < 2971, By (iii)
and (") we get (iii’) &' + 1 < 297!, Hence the solution to the new system of inequalities is
Q =1+ [logy(max(m —k — K, k' +1))], and b =291 — k' — 1.

The problem with the above solution is that ¥ = k+|Q/2], so the solution is indeed a recurrence
for Q. Fortunately, it is easy to solve. Since (X +Y)/2 < max(X,Y) < X +Y for any nonnegative
XandY,ifwecal X = m—k—k and Y = k' + 1, we have that X +Y = m —k + 1. So
Q <1+ [logg(m —k+1)], and Q > 1+ [logy((m — k +1)/2)] = [logg(m — k + 1)]. This gives a
2-integer range for the actual @ value. If Q = [logy(m — k + 1)] does not satisfy (ii’) and (iii’), we
use @ + 1 (lines 6-8 in Figure 9).

This scheme works correctly as long as X,Y > 0, that is, |Q/2] < m —2k,orm —k > K. If
this does not hold, our method is anyway useless since in that case it will have to verify every text
window.
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Example. Figure 10 shows an example of how the vector M C' is set up. All the bit masks are of
length m, except sMask, eMask and MC, which are of length m + @ — 1.

C m="7k=1,
5 = [logy(m —k+1)] =3,
j Q = [log,
sMask eMask o5 MC  K=kt|Q2=2b=290""K_1=1
L i 16 L The witness occupying the bits m —
0 0 215 1 2Q...m —@Q —1 = 1...3 represents the
T T 3 T T value Cpp—09 = C1 =6 as b+6 =7 = 111,.
L i 413 i The witness occupying the bits m —
0 0 5|2 0 Q...m—1 = 4...6 represents the value
T T 6 T T Cp-q=Cy=3asb+3=4=100,.
L i 712 L The witness occupying the bits m...m +
0 0 8 1 Q —1=7...9 represents the value C,, =
(o] (1] 9 o] Cr=2asb+2=3=011,.

Figure 10: An example of vectors sMask, eMask and MC when m = 7 and £k = 1. In this case
Q =3,k =2and b = 1. In the middle we show a possible column C' at position j, on the left
the vectors sMask and eMask, and on the right the corresponding composition of the vector MC
at column j. The curly braces point out the bit-regions of the witnesses. The only witness whose
Q-th bit is not activated corresponds to value C7 = 2 < k.

Complexity. Let us analyze the complexity of the resulting algorithm. The backward scan will
behave as if we permitted ¥’ = k + |Q/2] differences, so the number of characters inspected is
O(n(k + logm + log, m)/m) = O(n(k 4+ logm)/m). Note that we have only m/Q suffixes to test,
but this does not affect the complexity. Note also that the amount of shifting is not affected because
we have (), correctly represented.

In case our upper bound k' = k+ [ Q/2] turns out to be too loose, we can use several interleaved
sets of witnesses, each set in its own bit-parallel mask. For example we could use two interleaved
M C masks and hence the limit would be k4| /4. In general we could use ¢ masks and have a limit
of the form k + |Q/2¢|. The cost would be O(c(k + log(m)/2¢ + log, m)n/m), which is optimized
for ¢* = logy(log(m)/(k + log, m)). Using this optimum, the complexity is O((k + log, m)c*n/m),
which means the almost optimal O((k + log, m)loglog(c)n/m) when k = O(log, m), the almost
optimal O((k + log, m)log(log(m)/k)n/m) when Q(log, m) = k = O(logm), and the optimal
O(kn/m) for k = Q(logn). Hence we are very close to optimal under this scheme. Indeed, the
algorithm is optimal if we assume that o is constant.

5.3 Bit-Parallel Cutoff

The previous technique, although simple, has the problem of inspecting more characters than
necessary. We can instead produce, using a similar approach, an algorithm that inspects the
optimal number of characters. This time the idea is to mix the bit-parallel witnesses with a bit-
parallel version of the cutoff algorithm (Section 2.4). The final complexity, however, will be the
same as for the previous technique, for reasons that will be clear soon.

General mechanism. Consider regions m—rQ —Q+1...m—rQ of length Q. Instead of having
the witnesses fixed at the end of each region (as in the previous section), we let the witnesses “float”
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inside their region. The distance between consecutive witnesses is still ), so they all float together
and all are at the same distance ¢ to the end of their regions. We use sMask and eM ask with the
same meanings as before, but they are displaced so as to be all the time aligned to the witnesses.

The invariant is that the witnesses will be as close as possible to the end of their regions, as
long as all the cells past the witnesses exceed k. That is,

§ = min{de€0...Q, Vre{0...t—1}, y€{0...d—1}, Cpurg_~ > k},

where we assume that C' yields values larger than k& when accessed at negative indexes. When 4
reaches (), this means that all the cell values are larger than k£ and we can suspend the scanning.
Prefix reporting is easy since no prefix can match unless § = 0, as otherwise C, = Cy,—0.9 > k,
and if § = 0 then the last floating witness has exactly the value C,,.

In the following we present the details of the witness processing after each text window character
is read. Figure 11 shows the pseudocode for the whole algorithm.

Implementation. The floating witnesses are a bit-parallel version of the cutoff technique, where
each witness takes care of its region. Consequently the way of moving the witnesses up and down
resembles the cutoff technique (Section 2.4). We first move down and use DO to update MC
accordingly (lines 22-23 in Figure 11). But maybe we should not have moved down. Moreover,
maybe we should move up several times. So, after having moved down, we move up as much as
necessary by using VP and VN (lines 24-26 in Figure 11). To determine whether we should move
up further, we need to know whether there is a witness that exceeds k. We proceed as in Section 5.2,
using eMask to determine whether some witness exceeds k. We also use sMask to increment and
decrement the witness values. ) is computed as in Section 5.2, except that k&’ = k and hence no
recurrence arises (lines 6-10 in Figure 11).

Note that we have to deal with the case where the witnesses are at the end of their region
and hence cannot move down further. In this case we update them using HP and HN (line 20 in
Figure 11).

Finally, it is also possible that the upmost witness goes out of bounds while shifting the wit-
nesses, which in effect results in that witness being removed. For this to happen, however, all the
area in C covered by the upmost witness must have values larger than k, and it is not possible
that a cell in this area gets a value < k later. So this witness can be safely removed from the set,
and hence we remove it from eMask as soon as it gets out of bounds for the first time (line 27
in Figure 11). Note that ignoring this fact leads to inspecting slightly more characters (an almost
negligible amount) but one instruction is saved, which in practice is convenient.

Example. Figure 12 shows an example of floating the witnesses upwards in vector MC.

Complexity. Let us consider the resulting time complexity. As for the case of a single witness, we
work O(1) amortized time per text position. More specifically, if we read u window characters then
we work O(u + @) because we have to move from § =0 to § = Q. But O(u + Q) = O(k + logm)
on average because Q = O(logm), and therefore we obtain the same complexity of Section 5.2
(without the possibility of tuning c).
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ABNDMFloatingWitnesses (P ., Th..n, k)

1 Preprocessing

2 For ¢ € ¥ Do Bf|c] — 0™, Bb[c] « 0™

3 Forie1l...m Do

4 Bf[P] — Bf[P) | 0"~101

5. Bb[P;] < Bb[P)] | 0i=t10m~¢

6 Q — 1+ [logy(max(m — 2k, k + 1))]

7 be—20"1—f—1

8 t—[m/Q]

9. sMask « (09-11)tgmte-1-t@Q

10. eMask « (109~ 1)tgm+Q-1-tQ

11. Searching

12. pos «— 0

13. ‘While pos < n — (m — k) Do

14. Jj—m—Fk, last — m—k

15. VP — 0" VN «— (0™

16. MC « [b],0m+e-1-1@

17. 00

18. While j #0 AND 6 < @ Do

19. BPMStep (Bb[Tpos+;])

20. If 6 =0 Then MC «— MC+ (HP & sMask) — (HN & sMask)
21. Else

22. d—0d—-1

23. MC «— MC + (~ (D0 << §) & sMask)

24. While § < Q AND MC & eMask = eMask Do

25. MC — MC - ((VP << 0) & sMask) + (VN << 0) & sMask)
26. b—d0+1

27. If 6 = m — (t — 1)Q Then eMask «— eMask & 1¢-1DQom+2@-1-tQ
28. je—j—1

29. If6=0 AND MC & 10m+@~2 £ 0m+Q~1 Then /* prefix recognized */
30. If j > 0 Then last «— j

31. Else If BPMFwd (Bf, Tpos+1..n) Then

32. Report an occurrence at pos + 1

33. pos «— pos + last

Figure 11: The ABNDM algorithm using bit-parallel cutoff. The same comments of Figure 9
apply. For efficiency, the witnesses are not physically shifted, but instead we shift D0, VN and
V' P by 6.
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m=38, k=2, Q= [logy(max(m —2k,k+1))]+1=3,0=29"1-k—-1=1,6=0

J /
oI5 MC eMask sMask VP VN MC
niln 0] ol ] [ 1 0]
25 L Cy = 5 encoded i L L L 2 i b+ Cy =
315 1 as b+5 = 1+5 = 0 0 0 0 3 0 1+4 =
AnNnyEs o) o [ O] s o] 5o
514 L C5 = 4 encoded i i i i 5 i b+ Cy =
6|3 0 asb+4 =1+4= 0 0 0 1 6 0 1+4 =
2] \[1]J 2= o) ol o O v o] 5=
8[3 1 0| Cs = 3 encoded 10| 1] LL] 10| 8 | 1] b+ Cr =
9 0 asb+3 =143 = 0 0 9 1 1+2 =
10 o) - nitn 10 o) J s=om

Figure 12: The left side shows a situation where the witnesses are in their original position (6 = 0),
and the equality eMask & MC = eMask indicates that all witnesses have exceeded k = 2. Now
we let the witnesses float upwards by incrementing § as long as § < @ and no witness < k has been
found. When § is incremented, the witnesses in M C get their above-neighbor values. We show the
new situation on the right. Then the new witness values are evaluated by again checking whether
eMask & MC' = eMask. In this example only one increment of § was needed, as the last witness
found the value C7; = 2 < k.

We also tried a different version of this algorithm, in which the witnesses are not shifted.
Instead, they are updated in a similar fashion to the algorithm of Figure 9, and when all witnesses
have a value > k, we try to shift a copy of them up until either a cell with value < k is found or
(@ — 1 consecutive shifts are made. In the latter case we can stop the search, since then we have
covered checking the whole column C. This version has a worse complexity, O(Q(k + log, m)) =
O(logm(k+log, m)) per window, as at each processed character it is possible to make O(Q) shifts.
But in practice it turned out to be very similar to our original cutoff algorithm.

6 Experimental Results

We compared our BPM-based ABNDM against the original BPA-based ABNDM, as well as those
other algorithms that, according to a recent survey [13], are the best for moderate pattern lengths.
We tested with random patterns and text over uniformly distributed alphabets. Each individual
test run consisted of searching for 100 patterns a text of size 10 Mb. We measured total elapsed
times.

The computer used in the tests was a 64-bit Alphaserver ES45 with four 1 Ghz Alpha EV68
processors, 4 GB of RAM and Tru64 UNIX 5.1A operating system. All test programs were compiled
with the DEC CC C-compiler and maximum optimization switch. There were no other active
significant processes running on the computer during the tests. All algorithms were set to use a 64
KB text buffer. The tested algorithms were:

ABNDM/BPA (regular): ABNDM implemented on BPA [24], using a generic implementation
for any k.
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ABNDM/BPA (special code): Same as above, but especially coded for each value of k to avoid
using an array of bit masks.

ABNDM/BPM(fixed): ABDNM implemented using BPM and fixed-position witnesses, without
the interleaving mentioned at the end (Section 5.2). The implementation differed slightly from
Figure 9 due to optimizations.

ABNDM/BPM(floating): ABDNM implemented using BPM and cutoff, with floating-position
witnesses (Section 5.3). The implementation differed slightly from Figure 11 due to optimiza-
tions.

BPM: The sequential BPM algorithm [12]. The implementation was by us and used the slightly
different (but practically equivalent in terms of performance) formulation from [9].

BPP: A combined heuristic using pattern partitioning, superimposition and hierarchical verifica-
tion, together with a diagonally bit-parallelized NFA [3, 15]. The implementation was by the
original authors.

EXP: Partitioning the pattern into k4 1 pieces and using hierachical verification with a diagonally
bit-parallelized NFA in the checking phase [14]. The implementation was by the original
authors.

Figure 13 shows the test results for 0 = 4, 13 and 52 and m = 30 and 55. This is only a small
part of our complete tests, which included o = 4, 13, 20,26 and 52, and m = 10, 15,20, ...,55. We
chose o = 4 because it behaves like DNA, o = 13 because it behaves like English3, and o = 52 to
show that our algorithms are useful even on large alphabets.

First of all it can be seen that ABNDM /BPM (floating) is always faster than ABNDM/BPM(fixed)
by a nonnegligible margin.

It can be seen that our ABNDM/BPM versions are often faster than ABNDM /BPA (special
code) when k = 4, and always when k£ > 4. Compared to ABNDM/BPA (regular), our version is
always faster for k > 1. We note that writing down a different procedure for every possible &k value,
as done for ABNDM/BPA (special code), is hardly a real alternative in practice.

With moderate pattern length m = 30, our ABNDM/BPM versions are competitive for low
error levels. However, BPP is better for small alphabets and EXP is better for large alphabets.
In the intermediate area ¢ = 13, we are the best for K = 4...6. This area is interesting when
searching natural language text, in particular when searching for phrases.

When m = 55, our ABNDM/BPM versions become much more competitive, being the fastest
in many cases: For k =5...9 with 0 = 4, and for £k = 4...11 both with ¢ = 13 and ¢ = 52, with
the single exception of the case o = 52 and k = 9, where EXP is faster (this seems to be a variance
problem, however).

30n biased texts, most sequential string matching algorithms behave as on random texts of size o, where 1/o
is the probability that two characters randomly chosen from the text match. On English texts this probability is
usually between 1/12 and 1/15.
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Figure 13: Comparison between algorithms, showing total elapsed time as a function of the number
of differences permitted, k. From top to bottom row we show ¢ = 4, 13 and 52. On the left we
show m = 30 and on the right m = 55.
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7 Using Bit-Parallel Cutoff in Row-wise BPM

In this section we demonstrate that the idea of using witnesses can be applied to other scenarios.
We consider a recent work [7], where the basic BPM algorithm is modified so that the dynamic
programming matrix is filled row-wise rather than column-wise. This means that the text T7.
is cut into consecutive chunks of w characters, and for each chunk Ty,11. pw+w We compute the
m rows of the corresponding part of the dynamic programming matrix, so that each row of each
chunk is computed in O(1) time using a variant of BPM.

Figure 14 illustrates the idea. The shaded area represents the real area of the dynamic pro-
gramming matrix C' that must be filled. Classical BPM fills it column-wise. If m mod w is not
small, an important amount of work is wasted. This corresponds to work that is anyway carried
out inside the bit masks. It is represented by the non-shaded area that is covered by the vertical
rectangles. If the same matrix is filled row-wise, we need much less rectangles (bit-parallel steps)
to cover the same matrix.

T | |

Classical BPM
Column-wise
filling

C

Row-wise

Figure 14: Column-wise versus row-wise bit-parallel filling of dynamic programming matrix C.

Modifying BPM to work by rows instead of by columns is rather easy because the rules to
compute C' are symmetric, so the formula for the transposed matrix is exactly the same. The only
difference is that now the first row must start with all zeros, while the first value of row ¢ is 1.
The changes are simple and have already been done in this paper for other purposes (the first to
recognize any suffix of P, the second to compute edit distance using BPM). The really challenging
part is how to preprocess the characters of the current text chunk efficiently, because the B table of
a text chunk will be used just for m bit-parallel steps, unlike the pattern preprocessing of column-
wise filling, that is used for all the n steps. The details are given in [7]. In particular, it is shown
there how to build the B table efficiently in the case of searching DNA.

To take much more advantage of row-wise tiling, the cutoff technique is used in [7], so that only
the necessary rows of each chunk are filled. For this sake, it is necessary to determine whether all
the current row values exceed k, so that no more rows need to be evaluated in the current chunk.
The approach of [7] is to use precomputed tables Sum(q) and Min(q) that are two-dimensional
and of size 29 x 29, where the parameter ¢ is chosen so that the word size w is a multiple of q.
Let I be a length-q vector in which a set bit denotes an increment by one at that position, and in
similar fashion let D be a length-g vector in which a set bit denotes a decrement by one. The value
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Sum(q)1,p gives the combined increment of I and D, that is, Sum(q)r,p = 32,1 _,(I[i]—D[i]). The
value Min(q)r p gives the minimum combined increment between equally long prefixes of I and D,
that is, Min(q);,p = min(},_ ,(I[i] — D[i]) | 1 <h < g). In the case of using BPM in row-wise
manner, the roles of the vertical and the horizontal difference bit masks are reversed. Consider
a situation where the length-w vertical bit masks VP and VN encode the horizontal differences
Ah; i1, Ahijio, ..., Ah; jq and the cell value M; ; of the dynamic programming matrix is known.
Let the superscript h denote the hth length-g segment of a length-w bit mask. Now for example
VP = VPL... VP4 and VP" contains the bits V Phg—g+1---V Prg. The definition of Sum(q)
means that M; j 4, = M; j+Sum(q)y p1 yn1. From the definition of Min(q) we have that M; ;1. < k
for some 1 < 2 < ¢ if and only if M; ; + Min(q)ypr yn1 < k. Repeating the preceding w/q times is
enough to check whether the whole region M; ;1 ... M; i, contains a cell value not greater than k:
First check the segment M; ;i1 ... M; ;. by using the value M; ; + Min(q)y p1 yy1. Then compute
the value M; j, = M; ; + Sum(q)y pr yn1. After checking the hth segment, the (h + 1)th segment
M; hg1 -+ M; j1(hg1)q can be checked by using the value M; jipq + Min(q)y pr+1 yyn+1, and one
can also compute the value M; ;i (41)g = Mi jyng + Sum(q)y prt1 yyntr for subsequent use in the
checking process.

Consider filling the chunk of rows that corresponds to T)j11. j4+u. Our proposal is to use bit-
parallel witnesses (Section 5.3) in implementing the cut-off in row-wise BPM. This is quite straight-
forward as the case of filling a single chunk of rows in row-wise BPM is very similar to the case
of backward scanning in ABNDM. The only differences are that the roles of the text chunk and
the pattern are reversed, the boundary values Ahg; depend on the previous chunk of rows, the
“window-length” is m instead of m — k, and the witness size @) is determined so that the maximum
value a witness needs to be able to hold is min(m, k + w) instead of m — k. The last part comes
from the fact that the minimum value within a row that needs to be computed is at most k + 1,
and thus the maximum value within a length-w chunk is at most k+ 1+ (w — 1) = k + w.

We have tested modifying row-wise BPM to use the variant of our bit-parallel cutoff that was
fastest in the previous section. The modification was built on the original code from [7] that builds
the B table efficiently in the case of DNA searching. A prerequisite for this is that the DNA text
has to be packed in a special way. The packed DNA takes 2 bits per character (see [7] for details
of the packing scheme). We used the roughly 10MB genome of baker’s yeast as the text, and the
patterns were selected from the text in random fashion. The tested pattern lengths were m =
16, 32 and 64, and for each combination of m and k& we measured the average over searching 100
different patterns. The computer used in this test was a Sparc Ultra 2 without other significant
processes running during the tests. The computer was setup in 64-bit mode and thus the chunks
were of length w = 64.

We compared our modified version against the original, and for each version we measured both
the elapsed run time and the average number of rows filled within the chunks. As mentioned in
[7], the original row-wise BPM used a cut-off that requires the cell values to be larger than £+ 1 in
order for them to become irrelevant. This way was claimed to be more convenient and also faster
in practice. Our modified version uses the strict limit k.

The test included also row-wise BPM without cutoff and the regular BPM. The latter was an
optimized version taking 75% of the time needed by the original version [12]. The former also used
our bit-parallel witnesses to check fast whether row m in the current chunk contains a cell with
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a value less than k, that is, whether we need to process the lowest row in the chunk cell-by-cell
in order to report the pattern occurrences that end inside it. Note that this type of occurrence
checking is extra work in comparison to the regular BPM. To take into account the possible gain
from less I/O cost when the text is packed, we modified the regular BPM to search in a packed
DNA where each character is encoded by two successive bits. Even though the size of the packed
text is the same, this simple way of packing is not the same that the row-wise methods use.

Fig. 15 shows the results. It can be seen that row-wise BPM with our bit-parallel cutoff is
considerably faster than the original row-wise method. This is true even if we compare our method
with k& 4+ 1 against the original with k£ to have a comparable number of filled rows due to the
difference in the cutoff strategies. The plots also show that, when m = 64, the run time graphs of
the two algorithms meet when & = 21. In that situation our row-wise BPM computes on average
roughly 52 rows per chunk, and the time for checking/reporting occurrences is not a large factor.
The original row-wise method starts being worse than plain BPM already from & = 8. With lower
values of m the meeting point is before k = 21. This is because in those cases the row-wise methods
begin to suffer from the cost of reporting occurrences at lower k values. This effect is also evident
in how the graphs for row-wise BPM without cutoff have a distinctive step. The comparison among
our two row-wise variants shows that the burden of using the cutoff is reasonably small: the version
without cutoff is never much faster even when the cutoff method has to compute all or almost all
of the m rows in each chunk.

Note that it is not possible to directly compare these results against those of Section 6, because
here we use packed text and there we use standard text encoding. Packed text is necessary for the
success of the algorithms of this section, while it is very cumbersome to handle by ABNDM. Yet,
regular BPM can be used as a comparison ground between both algorithms. It can be seen that,
on DNA text, this method is beaten by ABNDM variants only on m = 64 for rather low k values
(which, however, are rather common in some applications).

8 Conclusions

The most successful approaches to approximate string matching are bit-parallelism and filtering.
A promising algorithm combining both is ABNDM [16]. However, the original ABNDM uses a
slow O(k[m/w]n) time bit-parallel algorithm (BPA [24]) for its internal working because of its
straightforward flexibility. In this paper we have shown how to extend BPM [12] to replace BPA.
Since BPM is O([m/w]n) time, we obtain a much faster version of ABNDM.

For this sake, BPM was extended to permit backward scanning of the window and forward
verification. The extensions involved making it compute edit distance, making it able to recognize
any suffix of the pattern with k differences, and, the most complicated, being able to tell in advance
that a match cannot occur ahead, both for backward and forward scanning. We presented two
alternatives for the backward scanning: a simple one that may read more characters than necessary,
and a more complicated (and more costly per processed character) that reads exactly the required
characters.

The main challenge faced was that we needed to act upon absolute values of the matrix cells,
while BPM stores the information differentially. Our solution relies on a new concept called a
witness. A witness is a matrix cell whose absolute value is known. Together with the differential
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column shows the average time for searching for a pattern from baker’s yeast, and the right column
shows the corresponding average number of rows filled during the computation.
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values, we update one or more witness values in parallel. Those witnesses are used to deduce,
bound or compute all the other matrix values.

We present an improved average analysis of ABNDM that shows that it inspects the optimal
number of characters, O((k + log, m)n/m). While the original ABNDM [16] is far from this opti-
mality when its overall complexity is considered (not only inspected characters), our new ABNDM
versions are much closer to the optimum, reaching average complexity O((k +logm)n/m). Indeed,
this is optimal if we regard o as a constant.

The experimental results show that our new algorithm beats the original ABNDM, even when
BPA is especially coded with a different procedure for every possible k value, often for £ = 4 and
always for k > 4, and that it beats a general BPA implementation for k¥ > 2. Moreover it was
seen that our version of ABNDM becomes the fastest algorithm for many cases with moderately
long pattern and fairly low error level, provided the witnesses fit in a single computer word. This
includes several interesting cases in searching DNA, natural language text, protein sequences, etc.

To demonstrate that the concept of witness can be applied to other scenarios, we apply it to
a recent work that improves upon BPM by filling the matrix row-wise instead of column-wise [7].
A key part of the improved algorithm is the ability to stop when all the matrix cells exceed some
value. We show that the use of witnesses provides a much faster solution than the original in [7].

Finally, we notice that the witness concept helps to solve the main problem that arises when
trying to compute local score matrices [23] in a bit-parallel fashion. The formula to compute score
permits increments and decrements in the score, but it is never let to run below zero. A reasonable
simplification, useful for bit-parallel computation, is as follows

Mo — 0, Mo; — 0,
Mi,j — lf ({L’Z = yj) then Mi—l,j—l + 1 else Hla,X(O, Mi—l,j — ]-7Mi,j—1 — ]-7Mi—l,j—1 — ].)

An important obstacle preventing the bit-parallel computation of M is that we have to know
when a cell value has become negative in order to make it zero. Therefore, we need to know the
absolute cell values, a scenario where witnesses are the ideal solution. We are currently pursuing
this idea.
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