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1 IntrodutionThe problem of ompressed pattern mathing is, given a ompressed text T and a (pos-sibly ompressed) pattern P , to �nd all ourrenes of P in T without deompressingT (and P ). The goal is to searh faster than by using the basi sheme: deompressionfollowed by a searh.In the basi approah, we are interested in reporting only the exat ourrenes, i.e.the loations of the substrings of T that math pattern P exatly. We an loosen therequirement of exat ourrenes to approximate ourrenes by introduing a distanefuntion to measure the similarity between P and its ourrene in T . Now, we wantto �nd all the approximate ourrenes of P in T , where the distane between P and asubstring of T is at most a given error threshold k. Often a suitable distane measurebetween two strings is the edit distane, de�ned as the minimum amount of haraterinsertions, deletions and substitutions that are needed to make the two strings equal.For this distane we are interested in k < jP j errors.Many studies have been made around the subjet of ompressed pattern mathingover di�erent ompression formats, starting with the work of Amir and Benson [1℄, e.g.[2, 10, 17, 16℄. The only works addressing the approximate variant of the problem havebeen [14, 19, 22℄, on Ziv-Lempel [27℄.Our fous is approximate mathing over run-length enoded strings. In run-lengthenoding, a string that onsists of repetitions of letters is ompressed by enodingeah repetition as a pair (\letter",\length of the repetition"). For example, stringaaabbbbaab is enoded as a sequene (a; 3)(b; 4)(; 2)(a; 2)(b; 1). This tehnique iswidely used, espeially in image ompression, where repetitions of pixel values areommon. This is partiularly interesting for fax transmissions and bilevel images.Approximate mathing on images an be a useful tool to handle distortions. Even aone-dimensional ompressed approximate mathing algorithm would be useful to speedup existing two-dimensional approximate mathing algorithms, e.g. [15, 6℄.2



Exat pattern mathing over run-length enoded text an be done optimally inO(m0+n0) time, wherem0 and n0 are the ompressed sizes of the pattern and the text [1℄.Approximate pattern mathing over run-length enoded text has not been onsideredbefore this study, but there has been work on the distane alulation, namely, given twostrings of lengthm and n that are run-length ompressed to lengthsm0 and n0, alulatetheir distane using the ompressed representations of the strings. This problem was�rst posed by Bunke and Csirik [7℄. They onsidered the version of edit distane withoutthe replaement operation, whih is related to the problem of alulating the longestommon subsequene (LCS) of two strings. They gave an O(m0n0) time algorithm for aspeial ase of the problem, where all run-lengths are of equal size. Later, they gave anO(m0n+ n0m) time algorithm for the general ase [8℄. A major improvement over theprevious results was due to Apostolio, Landau, and Skiena [4℄. They �rst gave a basiO(m0n0(m0 + n0)) algorithm, and further improved it to O(m0n0 log(m0n0)). Mithell[20℄ gave an algorithm with the same time omplexity in the worst ase, but faster withsome inputs. Its time omplexity is O((p +m0 + n0) log(p +m0 + n0)), where p is theamount of pairs of ompressed haraters that math (p equals the amount of equalletter boxes, see the de�nition in Setion 2.2). All these algorithms were limited to theLCS distane, although Mithell's method [20℄ ould be applied when di�erent ostsare assigned to the insertion and deletion operations. It still remains an open question(as posed by Bunke and Csirik) whether similar improvements ould be found for amore general set of edit operations and their osts.We give an algorithm for omputing the Levenshtein distane [18℄ between twostrings. In the Levenshtein distane a unit ost is assigned to eah of the three editoperations. The algorithm is an extension of the O(m0n + n0m) algorithm of Bunkeand Csirik [8℄. We keep the same ost but generalize the algorithm to handle a moreomplex distane model. Independently from our work, Arbell, Landau, and Mithellhave found a similar algorithm [5℄. 3



We manage to extend the O(m0n+n0m) algorithm also to a weighted edit distanemodel, where the osts for the three operations an be hosen arbitrarily.We modify our algorithm to work in a ontext of approximate pattern mathing,and ahieve O(mm0n0) time for searhing a pattern of length m that is run-lengthompressed to length m0, in a run-length ompressed text of length n0.We also study the LCS alulation. First, we give a greedy algorithm for the LCSthat works in O(m0n0(m0 + n0)) time. Adapting the well known diagonal method [24℄,we are able to improve the greedy method to work in O(d2min(n0;m0)) time, where dis the edit distane between the two strings (under insertions and deletions with theunit ost model).Then we present improvements for the greedy method for the LCS, whih do nothowever a�et the worst ase, but do have an e�et on the average ase. We end uponjeturing that our improved algorithm is O(m0n0) time on average. As we are unableto prove it, we provide instead experimental evidene to support the onjeture.This paper is an extended version of a onferene paper [21℄. The weighted editdistane omputation was developed after the onferene version. Motivated by ouropen question in that paper, Crohemore, Landau, and Ziv-Ukelson [9℄ notied thattheir sub-quadrati sequene alignment algorithm for unrestrited ost matries ouldbe generalized to this problem; they obtained the same O(m0n + n0m) bound usingompletely di�erent tehniques from ours.2 Edit Distane on Run-Length Compressed Strings2.1 Edit DistaneLet � be a �nite set of symbols, alled an alphabet. A string A of length jAj = m isa sequene of symbols in �, denoted by A = A1:::m = a1a2 : : : am, where ai 2 � forevery i. If jAj = 0, then A = � is an empty string. A subsequene of A is any sequene4



ai1ai2 : : : aik , where 1 � i1 < i2 � � � < ik � m.The edit distane D(A;B) an be used to measure the similarity between two stringsA = a1a2 : : : am and B = b1b2 : : : bn by alulating the minimum ost of edit operationsthat are needed to onvert A into B [18, 26, 23℄. The usual edit operations are substitu-tion (onvert ai into bj , denoted by ai ! bj), insertion (�! bj), and deletion (ai ! �).Di�erent osts for edit operations an be given depending on the letters involved. Wede�ne a nonnegative funtion Æ that assigns a ost to eah of the above operations.The ost to onvert A into B must be a distane, whih holds whenever Æ is stritlypositive (Æ(x ! y) = 0 , x = y) symmetri (Æ(x ! y) = Æ(y ! x)) and satis�es thetriangle inequality (Æ(x! y) + Æ(y ! z) � Æ(x! z)) for every x; y; z 2 � [ f�g.For the Levenshtein distane (denoted by DL(A;B)) [18℄, we assign osts Æ(a !a) = 0, Æ(a ! b) = 1, Æ(a ! �) = 1, and Æ(� ! a) = 1, for all a; b 2 �, a 6= b. Ifsubstitutions are forbidden, i.e. Æ(a! b) =1, we get the distane DID(A;B).In general, the edit distane D(A;B) with arbitrary Æ osts an be alulated byusing dynami programming [23℄; evaluating an (m+1)�(n+1) matrix (dij), 0 � i � m,0 � j � n, using the initial value d0;0 = 0 and the reurrenedi;j = min(di�1;j + Æ(ai ! �); di;j�1 + Æ(�! bj); di�1;j�1 + Æ(ai; bj)) (1)where d is assumed to take the value 1 when aessed outside its bounds. The matrix(dij) an be evaluated row-by-row or olumn-by-olumn in O(mn) time, and the valuedmn equals D(A;B).The distane DL(A;B) is obtained as a partiular ase using reurrene:di;j = min(di�1;j + 1; di;j�1 + 1; di�1;j�1 + if ai = bj then 0 else 1): (2)The reurrene for DID(A;B) isdi;j = min(di�1;j + 1; di;j�1 + 1; di�1;j�1 + if ai = bj then 0 else 1): (3)The problem of alulating the longest ommon subsequene of strings A and B(denoted by LCS(A;B)), is related to the distane DID(A;B). It is easy to see that5



2� jLCS(A;B)j = m+n�DID(A;B). Also, the sequene LCS(A;B) an be extratedusing reurrene (3) if the optimal path is stored in the matrix: In eah ell dij a link isstored to the ell that gives the minimum value in the reurrene (3). Now, LCS(A;B)is the onatenation of symbols ai (or alternatively bj) that orrespond to ells dij inthe optimal path from d00 to dmn that have diagonal-wise links. (In fat there may bemore than one optimal path yielding di�erent LCSs of the same length.)2.2 Dividing the Edit Distane Matrix into BoxesA run-length enoding of the string A = a1a2 : : : am is A0 =(a1; p1)(ap1+1; p2)(ap1+p2+1; p3) : : : (am�pm0+1; pm0) = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0),where (aik ; pk) denotes a sequene �k = aikaik : : : aik = apkik of length j�kj = pk. Wealso all (aik ; pk) a run of aik . String A is optimally run-length enoded if aik 6= aik+1for all 1 � k < m0.In the next setions, we will show how to speed up the evaluation of values dmn forboth distanes DL(A;B) and DID(A;B) when both strings A and B are run-lengthenoded. We will generalize to D(A;B) as well. In all the methods, we use the followingnotation to divide the matrix (dij) into sub-matries (see Figure 1).Let A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0) and B0 = (bj1 ; r1); (bj2 ; r2) : : : (bjn0 ; rn0) bethe run-length enoded representations of strings A and B. The rows and olumnsthat orrespond to the ends of runs in A and B divide the edit distane matrix (dij)into sub-matries. To ease the notation later on, we de�ne the sub-matries so thatthey overlap on the borders. Formally, eah pair of runs (aik ; pk); (bj` ; r`) de�nes a(pk + 1)� (r` + 1) sub-matrix (dk;`s;t ) suh thatdk;`s;t = dik+s�1;j`+t�1; 0 � s � pk; 0 � t � r`: (4)We will all sub-matries (dk;`s;t ) boxes. If a pair of runs orresponding to a boxontains equal letters (i.e. aik = bj`), then (dk;`s;t ) is alled an equal letter box. Otherwisewe all (dk;`s;t ) a di�erent letter box. Adjaent boxes an form runs of di�erent letter6
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Figure 1: A dynami programming matrix split into run-length bloks.boxes along rows and olumns. We assume that both strings are optimally run-lengthenoded, and hene runs of equal letter boxes an not our. (If the strings are notoptimally enoded, they an easily be onverted into optimally enoded in O(m0 + n0)time by joining adjaent runs of equal letters. This ost is negligible ompared to thoseof our algorithms.)3 An O(mn0+m0n) Algorithm for the Levenshtein DistaneBunke and Csirik [8℄ gave an O(mn0 + m0n) time algorithm for omputing the LCSbetween two strings of lengths n and m run-length ompressed to n0 and m0. Theypose it as an open problem extending their algorithm to the Levenshtein distane.This is what we do in this setion, without inreasing the omplexity to ompute thenew distane DL. Arbell, Landau, and Mithell [5℄ have independently found a similaralgorithm. Their solution is also based on the same idea of extending the O(mn0+m0n)LCS algorithm to the Levenshtein distane.7



Compared to the LCS-related distane DID, the Levenshtein distane DL permitsan additional harater substitution operation, at ost 1. We ompute DL(A;B) by�lling all the borders of all the boxes (dk;`s;t ) (see Figure 1). We manage to �ll eah ellin onstant time, whih adds up the promised O(mn0 +m0n) omplexity. The spaeomplexity an be made O(n+m) by proessing the matrix row-wise or olumn-wise.3.1 Basi AlgorithmWe start with two lemmas that haraterize the relationships between the border valuesin the boxes (dk;`s;t ). First, we onsider the equal letter boxes:Lemma 1 (Bunke and Csirik [8℄) The reurrenes (2) and (3) an be replaed bydk;`s;t = if s � t then dk;`0;t�s else dk;`s�t;0; (5)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in an equal letter box.Note that Lemma 1 holds for both Levenshtein and LCS distane models, beauseformulas (2) and (3) are equal when ai = bj. Sine we are omputing all the ells in theborders of the boxes, Lemma 1 permits omputing new box borders in onstant timeusing those of previous boxes.The diÆult part lies in the di�erent letter boxes.Lemma 2 The reurrene (2) an be replaed bydk;`s;t = 1 +min ( t�1 +minmax(0;s�t)�q�s dk;`q;0 ;s�1 +minmax(0;t�s)�q�t dk;`0;q ); (6)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.Proof. We use indution on s + t. If s + t = 2 then formula (6) beomes dk;`1;1 =1 +min(dk;`0;0; dk;`1;0; dk;`0;1), whih mathes reurrene (2). In the indutive ase we havedk;`s;t = 1 +min(dk;`s�1;t�1; dk;`s�1;t; dk;`s;t�1)8



by reurrene (2), and using the indution hypothesis we getdk;`s;t = 2 +min ( min ( t�2 +minmax(0;s�t)�q�s�1 dk;`q;0 ;s�2 +minmax(0;t�s)�q�t�1 dk;`0;q ) ;min ( t�1 +minmax(0;s�1�t)�q�s�1 dk;`q;0 ;s�2 +minmax(0;t�s+1)�q�t dk;`0;q ) ;min ( t�2 +minmax(0;s�t+1)�q�s dk;`q;0 ;s�1 +minmax(0;t�1�s)�q�t�1 dk;`0;q ) )dk;`s;t = 1 +min ( t�1 +minmax(0;s�t)�q�s dk;`q;0 ; s�1 +minmax(0;t�s)�q�t dk;`0;q );where we have used the property that onseutive ells in the (dij) matrix di�er atmost by 1 [25℄. Note that we have assumed s > 1 and t > 1. The partiular ases s = 1or t = 1 are easily derived as well, for example for s = 1 and t > 1 we havedk;`1;t = 1 +min(dk;`0;t�1; dk;`0;t ; dk;`1;t�1)= 1 +min�dk;`0;t�1; dk;`0;t ;1 +min�t�2 +minmax(0;2�t)�q�1 dk;`q;0;minmax(0;t�2)�q�t�1 dk;`0;q��= 1 +min�dk;`0;t�1; dk;`0;t ; t�1 +min(dk;`0;0; dk;`1;0); 1 +min(dk;`0;t�2; dk;`0;t�1)�= 1 +min�t�1 +min(dk;`0;0; dk;`1;0);min(dk;`0;t�1; dk;`0;t )� ;whih is the partiularization of formula (6) for s = 1. 2Formula (6) relates the values at the right and bottom borders of a box to its leftand top borders. Yet it is not enough to ompute the ells in onstant time. Althoughwe annot ompute one ell in O(1) time, we an ompute all the pk (or r`) ells inoverall O(pk) (or O(r`)) time.Figure 2 shows the algorithm. We use a data struture (whih in the pseudo-odeis represented just as a set M�) able to handle a multiset of elements starting with a9



single element, adding and deleting elements, and delivering its minimum value at anytime. It will be used to maintain and update the minima minmax(0;s�t)�q�s dk;`q;0 andminmax(0;t�s)�q�t dk;`0;q, used in formula (6). We see later that in our partiular ase allthose operations an be performed in onstant time.In the ode we use drk;`s = dk;`s;r` for the rightmost olumn and dbk;`t = dk;`pk;t for thebottom row. Their update formulas are derived from formula (6):drk;`s = 1 +min( r` � 1 +minmax(0;s�r`)�q�s drk;`�1q ;s� 1 +minmax(0;r`�s)�q�r` dbk�1;`q );dbk;`t = 1 +min( t� 1 +minmax(0;pk�t)�q�pk drk;`�1q ;pk � 1 +minmax(0;t�pk)�q�t dbk�1;`q ):The whole algorithm an be made O(n+m) spae by noting that in a olumn-wisetraversal we need, when omputing ell (kl), to store only drk�1;` and dbk;`�1, so thespae is that for storing one omplete olumn (m) and a row whose width is one box (atmost n). Our multiset data struture does not inrease this spae omplexity. Henewe haveTheorem 3 Given strings A and B of lengths m and n that are run-length enoded tolengths m0 and n0, there is an algorithm to alulate DL(A;B) in O(m0n+ n0m) timeand O(m+ n) spae in the worst ase.This is a good point to give some intuition on the method. Figure 3 illustrates threedi�erent points along our omputation of a di�erent letter box. In priniple, to �ll theell (s; t), we would need to onsider all the ells (0 : : : s; t) and (s; 0 : : : t). However,we have shown in Lemma 2 that some of these ells annot inuene the �nal valueof the ell (s; t). The reason is as follows. The ells in the grayed areas need to reahell (s; t) through a path of vertial, horizontal and diagonal moves, whih orrespondto insertions, deletions and substitutions. Every suh move osts 1, so the �nal ost10



Levenshtein (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We fill the topmost row and leftmost olumn first */2. dr0;00  0, db0;00  03. for k 2 1 : : :m0 do4. for s 2 0 : : : pk do drk;0s  drk�1;0pk�1 + s5. dbk;00  drk;0pk6. for ` 2 0 : : : n0 do7. for t 2 0 : : : r` do db0;`t  db0;`�1r`�1 + t8. dr0;`0  db0;`r`9. /* now we fill the rest of the matrix */10. for ` 2 1 : : :m0 do /* olumn-wise traversal */11. for k 2 1 : : : n0 do12. if ak = b` then /* equal letter box */13. for s 2 1 : : : pk do14. if s � r` then drk;`s  dbk�1;`r`�s else drk;`s  drk;`�1s�r`15. for t 2 1 : : : r` do16. if t � pk then dbk;`t  drk;`�1pk�t else dbk;`t  dbk�1;`t�pk17. else /* different letter box */18. Ml  fdrk;`�10 g, Mt  fdbk�1;`r` g19. drk;`0  drk�1;`pk�120. for s 2 1 : : : pk do21. Ml  Ml [ fdrk;`�1s g22. if s > r` then Ml  Ml � fdrk;`�1s�r`�1g23. if r` � s then Mt  Mt [ fdbk�1;`r`�s g24. drk;`s  1 +min(r` � 1 +min(Ml); s� 1 +min(Mt))25. Ml  fdrk;`�1pk g, Mt  fdbk�1;`0 g26. dbk;`0  dbk;`�1r`�127. for t 2 1 : : : r` do28. Mt  Mt [ fdbk�1;`t g29. if t > pk then Mt  Mt � fdbk�1;`t�pk�1g30. if pk � t then Ml  Ml [ fdrk;`�1pk�t g31. dbk;`t  1 +min(t� 1 +min(Ml); pk � 1 +min(Mt))32. return drm0n0pm0 /* or dbm0n0rn0 */
Figure 2: The O(m0n + n0m) time algorithm to ompute the Levenshtein distanebetween A and B, oded as run-length sequenes of pairs (letter; run length).11



is s� 1 for every ell in the top grayed area and t� 1 for every ell in the left grayedarea. These osts are added to the original osts of the grayed ells. Note that theoptimal paths use the diagonal moves as muh as possible. The reason that permitsnot onsidering some of the top and left ells is that their shortest paths to (s; t) arelonger than those of grayed ells, by an amount that equals their distane to the losestgrayed ell. Sine neighboring ells di�er by at most 1, a non-grayed area an neverompensate its farther distane to (s; t) with a smaller ell value. Finally, those grayedareas grow by one ell at a time and we manage to maintain their minimum value inonstant time.
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(s,t)Figure 3: Di�erent ases along the omputation of a di�erent letter box.3.2 Multiset Data StrutureWhat is left is to desribe our data struture to handle a multiset of natural numbers.We exploit the fat that onseutive ells in (dij) di�er by at most 1 [25℄. Our datastruture represents the multiset S as a triple (min(S);max(S); Vmin(S):::max(S) ! N).That is, we store the minimum and maximum value of the multiset and a vetor ofounters V , whih stores at Vi the number of elements equal to i in S. Given theproperty that onseutive ells di�er by at most 1, we have that no value Vi is equal tozero. This is proved in the following lemma.12



Lemma 4 No value Vi for min(S) � i � max(S) is equal to zero when S is a set ofonseutive values in (dij) (i.e., S ontains a ontiguous part of a row or a olumn ofthe matrix (dij)).Proof. The lemma is trivially true for the extremes i = min(S) and i = max(S). Letus assume that the value min(S) is ahieved at ell di;j and that the value max(S) isahieved at ell di0;j0. Sine all the intermediate ell values are also in S by hypothesis,and onseutive ells di�er by at most 1, it follows that any value x between min(S)and max(S) exists in a path that goes from di;j to di0;j0. Hene Vx > 0. 2Figure 4 shows the detailed algorithms. When we initialize the data struture withthe single element S = fxg we represent the situation as (x; x; Vx = 1). When we haveto add an element y to S, we hek whether y is outside the range min(S) : : : max(S),and in that ase we extend the range. In any ase we inrement Vy. Note that thedomain is never extended by more than one ell, as there annot appear empty ellsin between by Lemma 4. When we have to remove an element z from S we simplyderement Vz. If Vz beomes zero, Lemma 4 implies that this is beause z is either theminimum or the maximum of the set. So we redue the domain of V by one. Finally,obtaining min(S) is trivial as we have it already preomputed.It is easy to see that all the operations take onstant time. As a pratial matter,we note that it is a good idea to keep V in a irular array so that it an grow andshrink by any extreme. Its maximum size orresponds to pk (for Ml) or r` (for Mt),whih are known at the time of Create.4 Extending the Algorithm to Weighted Edit DistaneIn this setion we show that the algorithm of Setion 3 an be extended to handle anarbitrary ost funtion Æ so that the algorithm stays in O(mn0 +m0n) time.The key fat is that, inside a given box (k; `), the letters in A and B are the same13



Create (x)1. return (x; x; Vx = 1)Add ((minS;maxS; V ); y)2. if y < minS then3. minS  y4. add new �rst ell Vy = 05. else if y > maxS then6. maxS  y7. add new last ell Vy = 08. Vy  Vy + 19. return (minS;maxS; V )Remove ((minS;maxS; V ); z)10. Vz  Vz � 111. if Vz = 0 then12. if z = minS then13. remove �rst ell from V14. minS  minS + 115. else /* z = maxS */16. remove last ell from V17. maxS  maxS � 118. return (minS;maxS; V )Min ((minS;maxS; V ))19. return minSFigure 4: The multiset data struture implementation.
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all the time, namely aik and bj` . Hene, there are only three di�erent osts involved:(insertion) Ci = Æ(�! bj`)(deletion) Cd = Æ(aik ! �) (7)(substitution) Cs = Æ(aik ! bj`)where, sine the triangle inequality holds, Cs � Ci + Cd.Several problems have to be dealt with. We �rst onsider how to ompute the pathosts and how to determine the relevant ells, then how to update the path osts inonstant time, and �nally how to handle our multiset under a more general senario.4.1 Determining Relevant Cells and Path CostsThe following lemma shows that the path osts an still be omputed in onstant timeand that the ells that are relevant to the omputation of dk;`s;t are exatly the same asfor the Levenshtein distane.Lemma 5 If Æ is the ost funtion, then it holds thatdk;`s;t = min ( path(s� q; t) +minmax(0;s�t)�q�s dk;`q;0 ;path(s; t� q) +minmax(0;t�s)�q�t dk;`0;q ); (8)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box. The funtionpath is de�ned aspath(d; r) = Csmin(d; r) + Cdmax(d� r; 0) + Cimax(r � d; 0)where Cd, Ci and Cs are as de�ned in Eq. (7).Proof. In order to determine the ost of a path from (s0; t0) to (s; t), we observe thatthe optimal path uses as many diagonal moves as possible, so its ost is (t � t0)Cs +((s� s0)� (t� t0))Cd if s� s0 � t� t0, and (s� s0)Cs+ ((t� t0)� (s� s0))Ci otherwise.The formula for path is easily derived from this observation.15



It remains to show that the ells not onsidered in the minimization are not ne-essary. Let us �rst assume that s > t and onsider inluding the previous ell in the�rst row of the minimization formula (8). Let us all q0 = s � t the row index ofthe �rst relevant ell and q0 = s � t � 1 � 0 that of the previous ell. Beause ofthe formula to ompute the extended edit distane (1), dk;`q0;0 � dk;`q0;0 + Æ(aik ! �), sodk;`q0;0 � dk;`q0;0�Cd. On the other hand, path(s� q0; t) = Cst+Cd = path(s� q0; t) +Cd.Therefore, path(s� q0; t) + dk;`q0;0 � path(s� q0; t) + dk;`q0;0, whih means that adding theprevious ell (q0; 0) in the minimization does not hange the �nal value. The argumentan be indutively repeated with any previous ell. The ase s � t is trivial sine thereare no previous ells. This proof applies equally to the seond row of the formula (8)for the ells on the top. 24.2 Updating Path CostsIn the Levenshtein distane all the paths arriving to ell (s; t) ost the same (t � 1 ors� 1 depending on the ase). So we maintain a set of ell values, take the minimum,and add the invariant path ost to them. Under weighted edit distane, we need to addthe path ost to the ell values before looking for the minimum. Hene we will store inour multiset the ell values with the path osts added.The problem is that all the path osts hange as we move from (s; t) to (s + 1; t)or (s; t+ 1) in the algorithm of Figure 2. To avoid the need of updating all the valuesof the multiset, we will store a di�erent, invariant value that does not alter the orderrelationship between ell osts (so the minimum will be the same, and after it is hosenwe will ompute its real value in onstant time).Let us onsider the �rst row of formula (8), that is, the values stored in the multisetMl, as Mt is analogous. The area of relevant ells in the leftmost olumn is max(0; s�t) : : : s. As in the algorithm in Figure 2, we need to onsider two ases: (i) the area isextended from pk : : : pk to max(0; pk � r`) : : : pk by inreasing t from 0 to r`; (ii) the16



area is extended from 0 : : : 0 tomax(0; pk�r`) : : : pk by inreasing s from 0 to pk. Let usfous on (i). As t is inreased by 1, all the previous path osts must be inremented byCi beause they use one more horizontal move (insertion). Instead of inrementing allprevious values by Ci, we an subtrat an amount from eah new value that is inludedin the set of relevant values, so that the values in the set remain omparable. Thisamount is t � Ci for the (t + 1)-th element that is inluded in the set. Sine the newvalue that is inluded in the set uses only diagonal moves (substitutions), the absolutevalue that is stored for the (t+1)-th ell inluded in the multiset is dk;`pk�t;0+t�Cs�t�Ci.When alulating the value of ell dk;`pk;t, we an look for the minimum as before, andafter it is found, we an retrieve its original value by adding t� Ci.Let us now onsider ase (ii). As we move from s to s + 1, all the previous pathsgain one diagonal move (substitution) and lose one horizontal move (insertion), so thistime the amount to subtrat is s � (Cs � Ci) at the (s + 1)-th step. This is also thevalue to add to the minimum after it is retrieved. Again, we an see that the path ofthe new ell that is inluded uses only horizontal moves (insertions), so the absolutevalue to store for it is dk;`s;0 + (r` + s)� Ci � s� Cs.A related problem is how to determine the value of the ells that have to be removedfrom the multiset, sine we have stored it with the path ost added and the invariantvalue subtrated. This orresponds to ase (ii) only. As the amount by whih allhad been shifted at the (x+ 1)-th step was x� (Cs �Ci), and the element removed is(x; 0) := (s�r`; 0), we remove from the multiset the value dk;`x;0+(r`+x)�Ci�x�Cs =dk;`s�r`;0 + s� Ci � (s� r`)� Cs.4.3 Managing the MultisetNow we are faed with the �nal problem: how to handle the multiset operations in on-stant time. The di�erenes between onseutive ells need not be in the set f�1; 0;+1g,so the preonditions for our previous multiset implementation do not hold anymore.17



We show that we an still implement the multiset in onstant time per operation.Let us �rst onsider the ase where Æ gives integer values. The maximum di�erenebetween two onseutive ell values is v� = max(Ci; Cd) = O(1). Sine now we addthe path values to the ell osts before inserting them in the multiset, the di�erenebetween onseutive values an be as large as 2v�, whih is still onstant. Hene we animplement the multiset with an array V of ounters as before. Unlike the Levenshteinase, V will have zero entries, but there will never be more than 2v� � 1 onseutivezero entries. Therefore, inserting a new entry may fore us to initialize up to 2v� ells(instead of only 1 as in lines 4 and 7 of Figure 4), and removing an entry may fore usto remove up to 2v� ells before �nding the next nonzero entry (instead of only 1 as inlines 13 and 16 of Figure 4). All this osts O(v�), whih is onstant. Note also that itis not true any longer, as assumed in line 15 of Figure 4, that ells that beome zeromust neessarily lie at the limit of the multiset.If the Æ funtion delivers real values, the above solution does not work. Implementingthe set as a priority queue adds an O(logmax(m;n)) fator to the time. However, wean use min-deques [13℄ instead, whih allow handling a queue of elements by addingand removing elements from both ends, as well as taking the minimum over the queue.All these operations an be performed in O(1) worst-ase amortized time by usingsimple tehniques, and O(1) worst ase time per operation with more sophistiatedones. Hene the total time stays the same.An illustration of the algorithm is shown in Fig. 5. The example shows how toderive the values of the last row by using the values of the leftmost olumn. Note thatthe values in the �rst row should also be taken into aount, but for brevity we onlyonsider the leftmost olumn. A transition from value t = 3 to value t = 4 is shownin the example. First, value 3 is inluded in the set Ml after adding the path valuet � Cs = 4 and subtrating the value t � Ci = 8. The minimum of the set Ml is now�1, and the value t� Ci = 8 is added to get the value of X.18



Figure 5: An example of the evaluation of the weighted edit distane.5 Approximate SearhingLet us now onsider a problem related to omputing the LCS or the edit distane.Assume that string A is a short pattern and string B is a long text (so m is muhsmaller than n), and that we are given a threshold parameter k. We are interestedin reporting all the \approximate ourrenes" of A in B, that is, all the positions oftext substrings whih are at distane k or less from the pattern A. In order to ensurea linear size output, we ontent ourselves with reporting the ending positions of theourrenes (whih we all \mathes").The lassial algorithm to �nd all the mathes [23℄ omputes a matrix exatly likethose of reurrenes (3) and (2), with the only di�erene that d0;j = 0. This permits theourrenes to start at any text position. The last row of the matrix, dm;j , is examinedand every text position j suh that dm;j � k is reported as a math.Our goal now is to devise a more eÆient algorithm when pattern and text are run-length ompressed. A trivial O(m2n0+R) algorithm (where R is the size of the output)is obtained as follows. We start �lling the matrix only at beginnings of text runs, andomplete the �rst m olumns only (at O(m2) ost). The rest of the olumns of the runare equal to the m-th beause no optimal path an span more than m olumns under19



the LCS or Levenshtein models (m deletions are enough to onvert an empty substringof the text into the pattern). We later examine the last row of the matrix and reportevery text position with value � k. If the run is longer than m, then we have notprodued the whole last row but only the �rst m ells of it. In this ase we report thepositions m+ 1 : : : r` of the `-th run if and only if the position m was reported.We improve now the trivial algorithm. A �rst attempt is to apply our algorithmsdiretly using the new base value d0;j = 0. This hange does not present ompliations.Let us �rst onentrate on the Levenshtein distane. Our algorithm obtains O(m0n+n0m) time, whih may or may not be better than the trivial approah. The problemis that O(m0n) may be too muh in omparison to O(m2n0), espeially if n is muhlarger than m. We seek for an algorithm proportional to the ompressed text size. Wedivide the text runs in short (of length at most m) and long (longer than m) runs. Weapply our Levenshtein algorithm on the text runs, �lling the matrix olumn-wise. If wehave a short run (bj` ; r`), r` � m, we ompute all the m0+1 horizontal borders plus its�nal vertial border (whih beomes the initial border of the next olumn). The timeto ahieve this is O(m0r`+m). For an additional O(r`) ost we examine all the ells ofthe last row and report all the text positions j` + t suh that dm0;`pm0 ;t � k.If we have a long run (bj` ; r`), r` > m, we limit its length to m and apply the samealgorithm, at O(m0m+m+m) ost. The olumns m+1 : : : r` of that run are equal tothe m-th, so we just need to examine the last row of the m-th olumn, and report allthe text positions up to the end of the run, j` +m+ 1 : : : j` + r`, if dm0;`pm0 ;m � k.This algorithm takes O(n0m0m+R) time in the worst ase, where R is the numberof ourrenes reported. The spae requirement is that to ompute one text run limitedto length m, i.e. O(m0m). For the LCS model we have the same upper bound of m, sowe ahieve the same omplexity. Our O(m0n0(m0 + n0)) algorithm to be presented inSetion 6 does not yield a good omplexity here.Note that if we are allowed to represent the ourrenes as a sequene of runs of20



onseutive text positions (all of whih math), then the extra term R of the searhost disappears.Theorem 6 Given a pattern A and a text B of lengths m and n that are run-lengthenoded to lengths m0 and n0, there is an algorithm to �nd all the ending points of theapproximate ourrenes of A in B, either under the LCS or Levenshtein model, inO(m0mn0) time and O(m0m) spae in the worst ase.The above result generalizes easily for the ase of weighted edit distane using themethods from Setion 4. The limit between short and long runs depends in this aseon the Æ values, but it is still O(m). For integer-valued osts for the edit operations,we have the same bound as before, O(m0mn0).6 Improving a Greedy Algorithm for the LCSThe idea in our algorithm for the Levenshtein distane DL in Setion 3 was to �ll all theborders of all the boxes (dk;`s;t ). The natural way to redue the omplexity would be to�ll only the orners of the boxes (see Figure 1). For the DL distane this seems diÆultto obtain, but for the DID distane there is an obvious greedy algorithm that ahievesthis goal: in di�erent letter boxes, we an alulate the orner values in onstant time,and in equal letter boxes we an trae an optimal path to a orner in O(m0 + n0) time.Thus, we an alulate all the orner values in O(m0n0(m0 + n0)) time1.It turns out that we an improve the greedy algorithm signi�antly by fairly simplemeans. We notie that the diagonal method of [24℄ an be applied, and yields anO(d2min(n0m0)) algorithm, where d = DID(A;B). We also give other improvements1Apostolio et. al. [4℄ also gave a basi O(m0n0(m0 + n0)) algorithm for the LCS, whih they thenimproved to O(m0n0 log(m0n0)). Their basi algorithm di�ers from our greedy algorithm in that theywere using the reurrene for omputing the LCS diretly, and we are omputing the distane DID.Furthermore, they traed a spei� optimal path (whih was the property that they ould use to ahievethe O(m0n0 log(m0n0)) algorithm). 21



that do not a�et the worst ase, but are signi�ant in the average ase and in pratie.We end the setion onjeturing that our improved algorithm runs in O(m0n0) timeon the average. As we are unable to prove this onjeture, we provide experimentalevidene to support it.6.1 Greedy Algorithm for the LCSCalulating the orner value dk;`pk;r` in a di�erent letter box is easy, beause it an beretrieved from the values dk;`0;r` = dk�1;`pk�1;r` and dk;`pk;0 = dk;`�1pk;r`�1 , whih are alulatedearlier during the dynami programming. This follows from the lemma:Lemma 7 (Bunke and Csirik [8℄) The reurrene (3) an be replaed by the reur-rene dk;`s;t = min(dk;`s;0 + t; dk;`0;t + s); (9)where 1 � s � pk and 1 � t � r`, for values dk;`s;t in a di�erent letter box.In ontrast to the DL distane, the diÆult part in DID distane lies in equal letterboxes. As noted earlier, Lemma 1 also applies for the DID distane. From Lemma 1we an see that the orner values are retrieved along the diagonal, and those valuesmay not have been alulated earlier. However, if pk = r` in all equal letter boxes, theneah orner dk;`pk;r` an be alulated in onstant time. This gives an O(m0n0) algorithmfor a (very) speial ase, as previously noted in [7℄.What follows is an algorithm to retrieve the value dk;`pk;r` in an equal letter box inO(m0 + n0) time. The idea is to trae an optimal path to the ell dk;`pk;r`. This an bedone by using Lemmas 1 and 7 reursively. Assume that dk;`pk;r` = dk;`0;r`�pk by Lemma 1(ase dk;`pk;r` = dk;`pk�r`;0 is symmetri). If k = 1, then the value d1;`0;r`�pk orresponds to avalue in the �rst row (0) of the matrix (dij) whih is known. Otherwise, the box (dk�1;`s;t )is a di�erent letter box, and using the de�nition of overlapping boxes and Lemma 7 it22



holds dk;`0;r`�pk = dk�1;`pk�1;r`�pk = min(dk�1;`pk�1;0 + r` � pk; dk�1;`0;r`�pk + pk�1):Now, the value dk�1;`pk�1;0 is alulated during the dynami programming, so we an on-tinue traing value dk�1;`0;r`�pk using Lemmas 1 and 7 reursively until we meet a value thathas already been alulated during dynami programming (inluding the �rst row andthe �rst olumn of the matrix (dij)). The reursion never branhes, beause Lemma1 de�nes expliitly the next value to trae, and one of the two values (from whih theminimum is taken over in Lemma 7) is always known (that is beause we enter thedi�erent letter boxes at the borders, and therefore the other value is from a orner thatis alulated during the dynami programming). We all the path desribed by thereursion a traing path.Traing the value dk;`pk;r` in an equal letter box may take O(m0+n0) time, beause weare skipping one box at a time, and there are at most m0+n0 boxes in the traing path.Therefore, we get an O(m0n0(m0+n0)) algorithm to alulate DID(A;B). A worst aseexample that atually ahieves the bound is A = an and B = (ab)n=2.The spae requirement of the algorithm is O(m0n0), beause we need to store onlythe orner value in eah box, and the O(m0 + n0) spae for the stak is not neededbeause the reursion does not branh.We also ahieve the O(m0n+ n0m) bound, beause the orner values dk;`pk;r` of equalletter boxes de�ne distint traing paths, and therefore eah ell in the borders of theboxes an be visited only one. To see this observe that eah border ell reahed by atraing path uniquely determines the border ell it omes from along the traing path,and therefore no two di�erent paths an meet in a border ell. The only exeption is aorner ell, but in this ase all the traing paths end there immediately.Theorem 8 Given strings A and B of lengths m and n that are run-length enoded tolengths m0 and n0, there is an algorithm to alulate DID(A;B) in O(min(m0n0(m0 +n0);m0n+ n0m)) time and O(m0n0) spae. 23



6.2 Diagonal AlgorithmThe diagonal method [24℄ provides an O(dmin(m;n)) algorithm for alulating thedistane d = DID(A;B) (or DL as well) between strings A and B of length m and n,respetively. The idea is the following: the value dm;n = DID(A;B) in the (di;j) matrixof reurrene (3) de�nes a diagonal band, where the optimal path must lie. Thus, ifwe want to hek whether DID < k, we an limit the alulation to the diagonal bandde�ned by value k (onsisting of O(k) diagonals). Starting with k = jn�mj+1, we andouble the value k and run in eah step the reurrene (3) on the inreasing diagonalband. As soon as dm;n < k, we have found DID(A;B) = dm;n, and we an stop thedoubling. The total number of diagonals evaluated is at most 2DID(A;B), and thereare at most min(m;n) ells in eah diagonal. Therefore, the total ost of the algorithmis O(dmin(m;n)), where d = DID(A;B).We an use the diagonal method with our greedy algorithm as follows. We alulateonly the orner values that are inside the diagonal band de�ned by value k in theabove doubling algorithm. The orner values in equal letter boxes inside the diagonalband an be retrieved in O(k) time. That is beause we an limit the length of thetraing paths with the value 2k+1 (between two equal letter boxes there is a di�erentletter box that ontributes at least 1 to the value that we are traing, and we are notinterested in orner values that are greater than k). Therefore, we get the total ostO(d2min(m0; n0)), where d = DID(A;B).6.3 Faster on AverageThere are some pratial re�nements for the greedy algorithm that do not improve itsworst ase behavior, but do have an impat on its average ase.Skipping runs of di�erent letter boxes in traing paths. Consider two on-seutive di�erent letter boxes (dk;`s;t ) and (dk+1;`s;t ). By Lemma 7 it holds for the values24



1 � t � r`,dk+1;`pk+1;t = min �dk+1;`0t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`pk;t + pk+1; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk;`pk;0 + pk+1 + t; dk+1;`pk+1;0 + t�= min �dk;`0t + pk + pk+1; dk+1;`pk+1;0 + t� :The above result an be extended to the following lemma by using indution:Lemma 9 Let ((dk0;`s;t ); (dk0+1;`s;t ); : : : ; (dk;`s;t )) and ((dk;`0s;t ); (dk;`0+1s;t ); : : : ; (dk;`s;t )) be vertialand horizontal runs of di�erent letter boxes. When 1 � t � r` and 1 � s � pk, thereurrene (4) an be replaed by the reurrenesdk;`pk;t = min dk;`pk;0 + t; dk0;`0;t + kXs=k0 ps! 1 � t � r`;dk;`s;r` = min dk;`0;r` + s; dk;`0s;0 + X̀t=`0 rt! 1 � s � pk:Now it is obvious how to speed up the retrieval of values dk;`pk;r` in the equal letterboxes. During dynami programming, we an maintain pointers in eah di�erent letterbox to the last equal letter box enountered in the diretion of the row and the olumn.When we enter a di�erent letter box while traing the value of dk;`pk;r` in an equal letterbox, we an use Lemma 9 to alulate the minimum over the run of di�erent letterboxes at one, and ontinue on traing from the equal letter box preeding the run ofdi�erent letter boxes. (Note that in order to use the summations of Lemma 9 we shouldbetter store the umulative ik and j` values instead of pk and r`.) Therefore we get thefollowing result:Theorem 10 Given strings A and B of lengths m and n that are run-length enodedto lengths m0 and n0, suh that the letters of the runs are independently and uniformlydistributed over an alphabet of size j�j, there is an algorithm to alulate DID(A;B) inO(m0n0(1 + (m0 + n0)=j�j2)) time on the average.25



Proof. The �rst part of the ost, O(m0n0) omes from the onstant time omputationof all the di�erent letter boxes.On the other hand, there are on the average O(m0n0=j�j) equal letter boxes. Thisan be seen as follows: Consider the box model of Figure 1. The equal letter boxes ina row of the matrix orrespond to the same harater, say � 2 �. Let Xj be a randomvariable to denote the amount of di�erent letter boxes between the jth and (j � 1)thequal letter box in a row (without the lak of generality, we may assume that a rowstarts and ends with an equal letter box). It is an easy exerise to see that the expetedvalue of eah Xj is j�j � 1. We an use this to estimate the number of equal letterboxes in a row, denoted by �, beause we an write�Xj=1Xj + 1 < n0: (10)We are interested in the �rst value of � suh that (10) does not hold. Using a resultfrom renewal theory, the expeted value of suh a � is O(n0=j�j) (see p. 359 in [11℄;the result requires that the variables Xj are independent, whih is our ase). Using thelinearity of expetation, the expeted number of equal letter boxes in the whole matrixis just the sum of the equal letter boxes in all rows, that is O(m0n0=j�j).To get the laimed bound O(m0n0(1 + (m0+ n0)=j�j2)), it remains to show that theexpeted amount of alulation in an equal letter box is O((m0 + n0)=j�j). This is theamount of equal letter boxes visited by a traing path. We an use a similar argumentas when alulating the amount of equal letter boxes in a row. Let Xj be a randomvariable to denote the amount of di�erent letter boxes between jth and (j� 1)th equalletter box in a traing path (again, we may assume that a traing path starts andends with an equal letter box). Notie that the string that is the onatenation of theharaters in a traing path has similar distribution as the strings A and B. Thus theexpeted value of eah Xj is j�j � 1. As a traing path an visit at most m0+n0 boxes,
26



we an write �Xj=1Xj + 1 < m0 + n0; (11)where � is the number of equal letter boxes in a traing path. As previously, theexpeted value of the �rst � suh that (11) does not hold is O((n0 +m0)=j�j). 2Using bridges to prune traing paths. The seond improvement to the greedyalgorithm is to limit the length of the traing paths. In the greedy algorithm the tra-ing is ontinued until a value is reahed that has been alulated during the dynamiprogramming. However, there are more known values than those that have been ex-pliitly alulated. Consider value dk;`pk;t, 1 � t � r` (or symmetrially dk;`s;r`, 1 � s � pk)in the border of a di�erent letter box. If dk;`pk;r` = dk;`pk;0 + r` then it must hold thatdk;`pk;t = dk;`pk;0 + t, otherwise we get a ontradition: dk;`pk;r` < dk;`pk;0 + r`.We all the above situation a horizontal (vertial) bridge. Note that from Lemma7 it follows that there is either a vertial or a horizontal bridge in eah di�erent letterbox. When we enter a di�erent letter box in the reursion, we an hek whetherthe bridge property holds at the border we entered, using the orner values that arealulated during the dynami programming. Thus, we an stop the reursion at the�rst bridge enountered. To ombine this improvement with the algorithm that skipsruns of di�erent letter boxes, we need Lemma 11 below that states that the bridgespropagate along runs of di�erent letter boxes. Therefore we only need to hek whetherthe last di�erent letter box has a bridge to deide whether we have to skip to the nextequal letter box. The resulting algorithm is given in pseudo-ode in Figure 6. Anillustration of the algorithm is shown in Figure 7.Lemma 11 Let ((dk0;`s;t ); (dk0+1;`s;t ); : : : ; (dk;`s;t )) be a vertial run of di�erent letter boxes.If there is a horizontal bridge dk0;`pk0 ;r` = dk0;`pk0 ;0 + r` then there is a horizontal bridgedk00;`pk00 ;r` = dk00;`pk00 ;0+ r` for all k0 < k00 � k. The symmetri result holds for horizontal runsof di�erent letter boxes. 27



Proof. We use the ounter-argument that dk00;`pk00 ;r` = dk00;`pk00 ;0 + r` does not hold for somek0 < k00 � k. Then by Lemma 9 and by the bridge assumption it holdsdk00;`pk00 ;r` = dk0+1;`0;r` + k00Xs=k0+1 ps = dk0+1;l0;0 + r` + k00Xs=k0+1 ps:On the other hand, using the ounter-argument and the fat that onseutive ells inthe (dij) matrix di�er at most by 1 [25℄, we getdk00;`pk00 ;r` < dk00;`pk00 ;0 + r` � dk0+1;`0;0 + k00Xs=k0+1 ps!+ r`;whih is a ontradition and so the original proposition holds. 2Lemma 11 has a orollary: if the last di�erent letter box in a run does not have ahorizontal (vertial) bridge, then none of the boxes in the same run have a horizontal(vertial) bridge and, on the other hand, all the boxes in the same run must have avertial (horizontal) bridge.Now, if two traing paths ross inside a box (or run thereof), then one of themneessarily meets a bridge. In the average ase, there are a lot of rossings of thetraing paths and the total ost for traing the values in equal letter boxes dereasessigni�antly.Another way to onsider the average length of a traing path is to think that everytime a traing path enters a di�erent letter box, it has some probability to hit a bridge.If the bridges were plaed randomly in the di�erent letter boxes, then the probabilityto hit a bridge would be 12 . This would give immediately a onstant expeted lengthfor a traing path. However, the plaing of the bridges depends on the omputation ofreurrene (3), and this makes the probabilisti reasoning muh more omplex. We arestill on�dent that the following onjeture holds, although we have not been able toprove it.Conjeture 12 Let A and B be strings that are run-length enoded to lengths m0 andn0, suh that the lengths of the runs are equally distributed in both strings. Under these28



LCS (A0 = (ai1 ; p1)(ai2 ; p2) : : : (aim0 ; pm0); B0 = (bj1 ; r1)(bj2 ; r2) : : : (bjn0 ; rn0))1. /* We use struture dk;` to denote a box (dk;`s;t ) as follows: */2. /* dk;`:orner := dk;`pk ;r` */3. /* dk;`:jumptop := loation of the next equal letter box above */4. /* dk;`:jumpleft := loation of the next equal letter box in the left */5. /* dk;`:sumtop := if aik 6= bj` then Pkt=dk;`:jumptop+1 pt */6. /* dk;`:sumleft := if aik 6= bj` then Pt̀=dk;`:jumpleft+1 rt */7. /* Initialize �rst row and olumn (let ai0 = bj0 = �; p0 = r0 = 1) */8. d00:orner  09. for k 2 1 : : : n0 do dk;0:orner  dk�1;0:orner + rk�110. for ` 2 1 : : :m0 do d0;`:orner  d0;`�1:orner + p`�111. ompute all the values dk;`:(jumptop; jumpleft; sumtop; sumleft)12. /* now we fill the rest of the orner values */13. for k 2 1 : : :m0 do14. for ` 2 1 : : : n0 do15. (bridge; k0; `0; p; r; sum; dk;`:orner)  (false; k; `; pk; r`; 0;1)16. if aik 6= bj` then /* different letter box */17. dk;`:orner  min(dk�1;`:orner + aik ; dk;`�1:orner + bj`)18. else while bridge = false do19. /* equal letter box, trae dk;`:orner */20. if p = r then /* straight from the diagonal */21. dk;`:orner  min(dk;`:orner; sum+ dk0�1;`0�1:orner)22. bridge true23. else if p < r then /* diagonal up */24. (r; k0)  (r � p; k0 � 1)25. dk;`:orner  min(dk;`:orner; sum+ dk0;`0�1:orner + r)26. if dk0;`0 :orner = dk0;`0�1:orner + r`0 then bridge true27. else /* jump to the next equal letter box */28. (sum; k0)  (sum+ dk0;`0 :sumtop; dk0;`0 :jumptop)29. p  pk030. if k0 = 0 then /* first row */31. dk;`:orner  min(dk;`:orner;sum+ dk0;`0�1:orner + r)32. bridge true33. else : : : /* diagonal left similarly*/34. return (m+ n� dm0;n0 :orner)=2 /* return the length of the LCS */Figure 6: The improved greedy algorithm for omputing the LCS between A and B,oded as run-length sequenes of pairs (letter; run length).29



Figure 7: Evaluating the LCS between strings A = aaabbbbaaaa and B =aaaaabbbbaa using the algorithm in Figure 6. The gray values denote the bridges,thus these values are not expliitly omputed, but they an be dedued from the ornervalues.
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assumptions the expeted running time of the algorithm in Figure 6 for alulatingDID(A;B) is O(m0n0).6.4 Experimental ResultsTo test Conjeture 12, we ran the algorithm in Figure 6 with the following settings:1. m0 = n0 = 2000, j�j = 2, runs in [1; x℄,x 2 f1; 10; 100; 1000; 10000; 100000; 1000000g.2. m0 = 2000; n0 2 f1; 50; 100; 500; 1000; 1500; 2000g; j�j = 2, runs in [1; 1000℄.3. m0 = n0 = 2000; j�j 2 f2; 4; 8; 16; 32; 64; 128; 256g, runs in [1; 1000℄.4. String A was as in item 1 with runs in [1; 1000℄. String B wasgenerated by applying k random insertions/deletions on A, where k 2f0; 1; 10; 100; 1000; 10000; 100000g.5. Real data: three di�erent blak/white images (printed lines from a book draft(187� 591), tehnial drawing (160� 555), and a signature (141� 362)). We ranthe LCS algorithm on all pairs of lines in eah image.Table 1 shows the results. Di�erent parameter hoies are listed in the order theyappear in the above listing (e.g. setting 1 in test 1 orresponds to x = 1, setting 2orresponds to x = 10, et.).The average length L of a traing path (i.e. the amount of equal letter boxes visitedby a traing path) was smaller than 2 in tests 1-4 (slightly greater in test 5). Thatis, the running time was in pratie O(m0n0) with a very small onstant fator. Test 1showed that when the mean length of the runs inreases, then L also inreases, but notexeeding 2 (L 2 [1; 1:99℄). In test 2, the worst situation was with n0 = m0 (L = 1:98).We tested the e�et of the alphabet in test 3, and the worst was j�j = 2 (L = 1:99)and the best was j�j = 256 (L = 1:13). Test 4 was used to simulate a typial situation,31



Table 1: The average length and the maximum length of a traing path was measuredin di�erent test settings. The values of tests 1-4 are averages over 10-10,000 trials (e.g.on small values of n0 in test 2, more trials were needed beause of high variane, whereasotherwise the variane was small). Test 5 was deterministi (i.e. the values are fromone trial).Average length of a traing path (maximum length)test X setting 1, setting 2, ...test 1 1 (1), 1.71 (18), 1.96 (28), 1.98 (27), 1.98 (32), 1.99 (29), 1.98 (25)test 2 1.73 (5), 1.77 (10), 1.74 (13), 1.80 (21), 1.90 (30), 1.97 (35), 1.98 (38)test 3 1.99 (30), 1.77 (20), 1.60 (14), 1.45 (14), 1.33 (9), 1.24 (7), 1.17 (6), 1.13 (6)test 4 1.71 (9), 1.71 (8), 1.71 (7), 1.71 (10), 1.72 (9), 1.72 (10), 1.72 (12)test 5 2.00 (35), 2.34 (146), 2.32 (31)in whih the distane between the strings is small. The amount of errors did not havemuh inuene (L 2 [1:71; 1:72℄). In real data (test 5), there were pairs lose to theworst ase (A = an; B = (ab)n=2), and therefore the results were slightly worse thanwith randomly generated data: L 2 f2:00; 2:34; 2:31g with the three images. Of oursereal data does not need to �t the hypothesis of our onjeture.7 ConlusionsWe have presented new algorithms for approximate mathing of run-length ompressedstrings. The previous algorithms [8, 4℄ permit omputing their LCS. We have presenteda new LCS algorithm with improved average omplexity. We have also extended anLCS algorithm [8℄ to a more general weighted edit distane model (in partiular to theLevenshtein distane) without inreasing its omplexity. Finally, we have presented32



an algorithm with nontrivial omplexity for approximate searhing of a run-lengthompressed pattern on a run-length ompressed text under either model.A possible appliation for the edit distane would be the omparison of images.Several models to ompare images permitting not only di�erenes in the pixel valuesbut also distortions have been proposed [15, 6℄. When onsidering olor images, anatural hoie is that the ost to hange one pixel by another has a ost related tothe absolute di�erene of their olors. One a suitable ost for insertions and deletionsof pixels is hosen, the problem is how to ompute the best alignment between twoimages or �nd the plaes in a large image where a small image pattern aligns best. Thealgorithms depited in [15, 6℄ need O(n4) time to ompare two n�n images. They alsogive fast �ltration methods to searh for patterns inside large images. In several ases,these algorithms resort to one-dimensional weighted edit distane or one-dimensionalapproximate searhing algorithms. These ould be signi�antly improved if the imageswere run-length ompressed prior to the omputation and our algorithms were used forthose subproblems. Some reent algorithms searhing for rotated image patterns insidea large image [12℄ ould be extended as well: their mathing model does not permitinsertions or deletions of pixels, so they ould be integrated with other approahes suhas [6℄. Again, it would be possible to speed up the omparison proess by run-lengthompressing the image and the pattern, the latter at several rotations.With respet to the original models, an interesting question is whether an algorithman be obtained whose ost is just the produt of the ompressed lengths. Indeed, thisseems possible in the average ase, as demonstrated by the experiments with our im-proved algorithm for the LCS. Finally, a ombination of a two-dimensional approximatepattern mathing algorithm with two-dimensional run-length ompression [15, 6, 1, 3℄seems interesting.
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