
Binary Searching with Non-uniform Costsand Its Application to Text Retrieval1Gonzalo Navarro2Eduardo Fernandes Barbosa3Ricardo Baeza-Yates2Walter Cunto4Nivio Ziviani3AbstractWe study the problem of minimizing the expected cost of binary searching for datawhere the access cost is not �xed and depends on the last accessed element, such as datastored in magnetic or optical disk. We present an optimal algorithm for this problem that�nds the optimal search strategy in O(n3) time, which is the same time complexity of thesimpler classical problem of �xed costs. Next, we present two practical linear expectedtime algorithms, under the assumption that the access cost of an element is independentof its physical position. Both practical algorithms are online, that is, they �nd the nextelement to access as the search proceeds. The �rst one is an approximate algorithm whichminimizes the access cost disregarding the goodness of the problem partitioning. Thesecond one is a heuristic algorithm, whose quality depends on its ability to estimate the�nal search cost, and therefore it can be tuned by recording statistics of previous runs.We present an application for our algorithms related to text retrieval. When a textcollection is large it demands specialized indexing techniques for e�cient access. Oneimportant type of index is the su�x array, where data access is provided through anindirect binary search on the text stored in magnetic disk or optical disk. Under thiscost model we prove that the optimal algorithm cannot perform better than
(1= logn)times the standard binary search. We also prove that the approximate strategy cannot,on average, perform worse than 39% over the optimal one. We con�rm the analyticalresults with simulations, showing improvements between 34% (optimal) and 60% (online)over standard binary search for both magnetic and optical disks.Key words: Optimized binary search, non-uniform costs, text retrieval, secondary memory.1 IntroductionThe problem of searching with non-uniform access costs arises in many di�erent areas: distrib-uted systems, databases, robotics, text retrieval and geographic information systems, amongothers. Searching with non-uniform access costs means that each element of the set has anarbitrary access cost, which in the most general case may depend on the full access historyof the search, for example if each access modi�es all the subsequent costs in some way.1The authors wish to acknowledge the �nancial support from the Brazilian CNPq - Conselho Nacionalde Desenvolvimento Cient���co e Tecnol�ogico Grant No. 520916/94-8, Project pronex, Fondecyt Grant No.95-0622, Programa de Cooperaci�on Cient���ca Chile-Brasil de Fundaci�on Andes, and Project ritos/cyted.2Departamento de Ciencias de la Computaci�on, Universidad de Chile, Santiago, Chile3Departamento de Ciência da Computa�c~ao, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil4Departamento de Computaci�on, Universidad Sim�on Bol��var. Caracas, Venezuela1

The simple case where each element has a �xed access cost (not modi�ed by the searchprocess) is considered in [1, 12]. In particular, [12] shows an O(n3) algorithm to build theoptimal search strategy. A related problem in which the elements have the same access costbut di�erent access probability is considered in [7]. They present an O(n3) time solution tobuild the optimal search strategy. In [13], an O(n2) solution is devised for the same problem.In [11, 13], under the further restriction that all searches are unsuccessful, an O(n logn)algorithm is presented. Moreover, it is easy to combine [12] and [7] to obtain an O(n3)algorithm for di�erent access costs and probabilities, or for the worst case optimal strategy.It is also easy to �nd counterexamples showing that the techniques of [11, 13] do not workfor di�erent access costs.In this paper we study a particular case of the full access history case, namely when weperform a binary search on an array, and the cost to access each element depends on theprevious element accessed. This is the case of binary searching an array on disk, since thelast element accessed determines the position of the disk head, which alters the access costof every element. We present an O(n3) algorithm to �nd the optimal search strategy for thisproblem. This is the same complexity as in the case of �xed costs, which makes the algorithman important contribution. We prove that for a �xed cost model, the optimal algorithmcannot improve over the standard binary search by a factor higher than
(logn). This holdsunder an independence assumption: the access cost and the positions of the elements in thearray are independent.We also develop two practical algorithms for the same problem. Those algorithms do notnecessarily yield the optimal solution but they give a reasonably good approximation at muchless cpu cost (O(n) in total, under the independence assumption). Both algorithms are online,i.e. they �nd the next element to access as the search proceeds. By only solving the necessarysubproblems a lot of time is saved, at the expense of a non-optimal search strategy. The �rstone is an approximate algorithm, which disregards the goodness of the partition and considersonly the access cost of the elements. The other algorithm is a heuristic, whose quality dependson its ability to estimate the �nal search cost, and therefore it can be improved over the timeby storing the results of previous runs.We also present an application for our algorithms related to text retrieval. When a textcollection is large it is necessary to build an index for e�cient retrieval. An important typeof index is the pat array [8, 9] or su�x array [14], which is an array of pointers to the textwhich are lexicographically sorted. Data access using pat arrays is provided through anindirect binary search on the text which is usually stored in magnetic disk or optical disk.The independence assumption holds in this application.We prove that the strategy delivered by the approximate algorithm does not cost on av-erage more than 39% over that of the optimal algorithm. That is, our approximate algorithmis 1.39-optimal, where the optimality is measured over the average cost of the search treesdelivered. We also prove that the optimal search strategy cannot cost less than
(1= logn)times the binary search cost, on average.We also present simulation results on both optimal and practical algorithms. For onegigabyte of text stored in magnetic disks the performance of the optimal strategy is 35% ofstandard binary search, while the approximate and heuristic algorithms give solutions whichcost 64% and 54%, respectively, of standard binary search. Similarly, for 256 megabytes oftext stored in cd-rom disks the optimal strategy is 34% of standard binary search, while theapproximate and heuristic algorithm obtain 69% and 65%, respectively. Some of the resultsof this paper were presented in [6]. 2

The outline of this paper follows. In Section 2 we formally describe the problem. InSection 3 we present and analyze an algorithm to �nd the optimal search strategy. In Section 4we develop cheaper practical algorithms for the same problem. In Section 5 we analyze theoptimality of the techniques. In Section 6 we show an application related to text retrieval.In Section 7 we draw some simulation results related to the application. Finally, in Section 8we present our conclusions and future work directions.2 Problem DescriptionLet A[1::n] be a sorted array. Without loss of generality, we assume ascending order. Wede�ne a cost function w : [1::n]� [1::n] �! Rwhere w(i; j) is the cost of accessing A[j] given that the last accessed element was A[i]. Thismodels the fact that the cost depends on the last element accessed.In the same way we model the access frequency of the array. There are two closely relatedvariants of the problem: successful and unsuccessful search. In the successful case we �ndthe searched element in the array, while in the unsuccessful case the element is not found,and the search ends between two adjacent elements of the array where the searched elementshould be. More generally, we model the access frequency with two probability functionsp : [1::n] �! Rand q : [1::n+ 1] �! Rwhere p(i) is the probability that the i-th element of the array is searched and q(j) is theprobability that the search is unsuccessful and ends between the elements j � 1 and j of thearray. The elements 1 and n+1 stand for the searches that lie outside the range of the arrayelements. We also de�neP (i; j) = q(i) + p(i) + q(i+ 1) + p(i+ 1) + ::::+ q(j) + p(j) + q(j + 1)which stands for the probability that the search lies between the elements i and j in the array(including the surrounding unsuccessful searches between i� 1::i and j::j + 1).A search path on A is any sequence of positions i0; i1; ::; i`. The cost of such a search pathis de�ned as w(i0; i1) + w(i1; i2) + :::+ w(i`�1; i`)Standard binary searching (i.e. access the middle of the array, then the middle of theremaining portion, and so on) involves tracing a search path driven by the comparisonsbetween the searched element and the elements of the array. If we draw the balanced searchtree for A, every path from the root to a leaf (the leaves representing inter-elements positions,with no data) is a possible search path for an unsuccessful search. A successful search isrepresented by a path from the root to an internal node. In this sense, the tree representsthe search plan, accounting for every possible result obtained from the comparisons.However, any binary search tree over A is valid. Our problem is how to devise a searchplan whose total cost is minimized. That is, to build a binary search tree where either the3

average or the worst case cost over all the search paths is minimized (the trees to minimizethe average and the worst case are not necessarily equal).It is clear that a balanced search tree is optimal on average for uniform costs and uniformaccess probabilities. This case corresponds to w(i; j) = 1 and either p(i) = 1=n; q(j) =0 (successful case) or p(i) = 0; q(j) = 1=(n + 1) (unsuccessful case). Balanced trees arealso optimal for uniform costs and worst case (in this case the access probabilities are notimportant).We �rst show an algorithm for cost functions that depend only on the element to beaccessed. It uses a dynamic programming scheme adapted from the ideas presented in [7, 13],where the optimal tree for A[i::j] is built by previously knowing the optimal solution to allthe subintervals. The formula for the optimal worst case tree iscost(i; j) = mink2i::j fw(k) + max(cost(i; k� 1); cost(k+ 1; j))gwhere cost(i + 1; i) = 0 for all i. In the worst case, all searches are unsuccessful. In theaverage case, the successful search can terminate at an internal node, while an unsuccessfulsearch always ends in a leaf (whose inspection cost is taken as zero). The formula for theoptimal average case search tree iscost(i; j) = mink2i::j �w(k) + P (i; k � 1)P (i; j) cost(i; k� 1) + P (k + 1; j)P (i; j) cost(k + 1; j)�3 An Algorithm to Find the Optimal Search StrategySince we are binary searching in the array, the key idea to solve the problem for the morecomplex cost function w(i; j) that depends on the last position visited comes from noticingthat if we have to solve the problem A[i::j], it is because we have just accessed either A[i� 1]or A[j + 1]. Thus, we proceed as before, this time �lling two matrices: Lcost stores the costwhen we have just read the left extreme (i� 1) of the array and Rcost stores the cost whenwe have just read the right extreme (j + 1) of the array.The two matrices are �lled in a synchronized manner. For the worst case the two corre-sponding formulas areLcost(i; j) = mink2i::j fw(i� 1; k) + max(Rcost(i; k� 1); Lcost(k+ 1; j))gRcost(i; j) = mink2i::j fw(j + 1; k) + max(Rcost(i; k� 1); Lcost(k+ 1; j))gwhile for the average case they areLcost(i; j) = mink2i::j �w(i� 1; k) + P (i; k� 1)P (i; j) Rcost(i; k� 1) + P (k + 1; j)P (i; j) Lcost(k + 1; j)�Rcost(i; j) = mink2i::j �w(j + 1; k) + P (i; k� 1)P (i; j) Rcost(i; k� 1) + P (k + 1; j)P (i; j) Lcost(k + 1; j)�The algorithm is O(n3) time, the same cost of the simpler problem. At the top level wemay assume a �xed initial position, or solve the top level problem for every initial position.This does not a�ect the whole complexity, since the solutions to the subproblems are thesame. 4

This optimal algorithm needs to build the complete search strategy before proceedingwith the search. This is acceptable if we can build the tree beforehand and later on processa large number of queries with the already built search tree. Although we need O(n2) spaceto build the optimal tree, only O(n) space is needed to store it.On the other hand, if we are going to perform a single query, the cpu cost of building allpossible optimal paths may outweight the gains in many cases. In the next section we presenttwo good search strategies to cope with this problem.4 Two Online Practical AlgorithmsThe construction of the optimal search tree to solve a single query may be prohibitive incertain applications. We present two practical algorithms that choose a good next accesspoint at each iteration of the search process, without building all possible search paths.Both algorithms build the search path top-down, instead of the bottom-up dynamic pro-gramming strategy. In fact, the search tree is not completely built, only the path that weactually need to solve this particular query. This is why the algorithms are called \online":they are run for each query, unlike the optimal one which is run once and gives the optimalanswer for any possible future query. In this case the obtained search path is not necessarilyoptimal. We call the �rst practical algorithm an \approximate" algorithm and the second onea \heuristic", because in the �rst case we can prove an optimality bound, while the secondone depends heavily on heuristic decisions.We show that both algorithms have an average cpu cost of O(n) if some assumptionshold. This is much less than the O(n3) cost of the optimal algorithm.4.1 An Approximate AlgorithmThe optimal algorithm tries to balance, at each moment, the cost to access a given elementand the goodness of the resulting partition. Binary search can be seen as an algorithmthat simply disregards the access cost and optimizes the goodness of the partition. Ourapproximate algorithm, on the other hand, simply disregards the goodness of the partitionand optimizes the access cost.At the beginning of the search we consider the cost to access all the elements and thenselect the cheapest one. The comparison against this element will split the array in two parts(probably not equal), and the search process will discard one of the two parts. We now select,from the new subproblem (i.e. the selected partition), the element which is cheapest to access,and so on. Notice that the costs in the second iteration have no relation to those of the �rstiteration, since they depend on the last element accessed.Formally, instead of the previous Lcost and Rcost optimal cost functions, we de�ne Acostas the average cost for the approximate algorithm. Since we proceed top-down, we knowwhich is the last accessed element, and hence Acost takes a third argument, h, that indicatesthe current access point. On average, we haveAcost(i; j; h) = w(h; k) + P (i; k� 1)P (i; j) Acost(i; k� 1; k) + P (k + 1; j)P (i; j) Acost(k + 1; j; k)while to optimize the worst case we haveAcost(i; j; h) = w(h; k) + max(Acost(i; k� 1; k); Acost(k+ 1; j; k))5

where in both cases k minimizes w(h; k). Notice that the algorithm takes the same decisionregardless of whether we are optimizing the worst case or the average cost, and regardless ofthe access probabilities.We analyze now the performance of this algorithm. It is important to notice that what weare analyzing is the cpu cost to obtain the search strategy, not the cost of the obtained searchstrategy. This last cost is the subject of the next section. As we will see shortly, however,both analysis are related.At each step we search the minimum cost of the current array partition. This search costsO(j� i) time. Initially j� i = n, but the next subproblems become smaller and smaller. Theadditional space requirement is O(1).In the worst case this algorithm is O(n2), since the next partition may have only oneelement less than the current one. This is the case, for instance, of the cost being an increasingfunction of the distance between the last accessed element and the current element (or just anincreasing function in case of �xed access costs). Assume for instance that we begin accessingA[1]. The next element to access will be A[2], then A[3] and so on. There will be n iterationsof the algorithm for a total cost of O(n2). However, if this fact is known beforehand we donot even need to run this algorithm to �nd the minimum for each subproblem.On the other hand, the analysis is very di�erent under an independence assumption: theaccess costs and the positions of the elements in the array are not related, i.e. the positionof the elements in the array can be considered as a random function of their access cost. Infact, this approximate algorithm only works well if this assumption holds.Under the independence assumption, picking the element with least access cost yields arandom element of the array. That is, at each iteration the array is partitioned at a randomposition (instead of the middle as in binary search). This resembles the quicksort pivotingprocess. Let T (i; j) be the average amount of work to perform for A[i::j]. We want to provethat T (i; j) � 4(j � i), and hence T (1; n) � 4n. This would prove that the total amount ofwork is linear on average.We prove it by induction on j�i. The base case is T (i; i) = 0, which satis�es the condition.For j > i we have on averageT (i; j) = (j � i) + 1j � i jXk=i�P (i; k� 1)P (i; j) T (i; k� 1) + P (k + 1; j)P (i; j) T (k + 1; j)�which by the induction hypothesis isT (i; j)� (j � i) + 4j � i jXk=i�P (i; k� 1)P (i; j) (k � i) + P (k + 1; j)P (i; j) (j � k)�which since P (k+ 1; j)=P (i; j) = 1� (p(k) + P (i; k� 1))=P (i; j) � 1� P (i; k� 1)=P (i; j),can be pessimistically rewritten asT (i; j)� (j � i) + 4j � i jXk=i(g(k) (k � i) + (1� g(k)) (j � k))where we have de�ned g(k) = P (i; k� 1)=P (i; j), which is an increasing function of k, goingfrom 0 to 1 as k goes from i to j + 1. By rewriting the above equation asT (i; j)� (j � i) + 4j � i 0@ jXk=i(j � k) + jXk=(i+j)=2 g(k)(2k� i� j)� (i+j)=2Xk=i g(k)(i+ j � 2k)1A6

it is clear that the worst that can happen is that g(k) = 0 for k < (i+ j)=2 and g(k) = 1 fork > (i+ j)=2. In this case the above sum givesT (i; j)� (j � i) + 3(j � i) = 4(j � i)which proves our claim, i.e. we work T (1; n) � 4n = O(n).Still under the independence assumption, we can consider the worst case of the search.That is, we assume that the partition will be random but select the worst search path thatcan occur under this assumption. In this case we have the formulaT (i; j) = (j � i) + 1j � i jXk=imax(T (i; k� 1); T (k+ 1; j))which yields T (1; n) � 4:58 n = O(n).Another parameter of interest is the average number of iterations to perform on average(instead of the total amount of work). In the same spirit of the above analysis, we call S(i; j)this number, which satis�es S(i; i) = 0 andS(i; j) = 1 + 1j � i jXk=i�P (i; k� 1)P (i; j) S(i; k� 1) + P (k + 1; j)P (i; j) S(k+ 1; j)�By using a similar technique as above, we can prove by induction thatS(1; n) � ln 21� ln 2 log2 n � 2:26 log2 n (1)a result that does not change if we consider the worst case under the independence assumption.This shows that the number of iterations is logarithmic and the total cost is linear if theindependence assumption holds, in the worst or average case, no matter which the accessprobabilities are.4.2 A Heuristic AlgorithmWe show now a heuristic to obtain a good next access point in O(n) time. The basic ideais to mimic the formula used by the optimal algorithm. However, since we are proceedingtop-down, the information on the cost to solve the subtrees is not available. We replace thatinformation with estimated values which depend only on the size of the subproblem. Thoseestimations can be obtained analytically or using previous runs of the same algorithm.Formally, instead of the previous Lcost and Rcost optimal cost functions, we de�ne asHcost the cost for the heuristic algorithm. For the average case we haveHcost(i; j; h) = mink2i::j �w(h; k) + P (i; k� 1)P (i; j) Ecost(k � i) + P (k + 1; j)P (i; j) Ecost(j � k)� (2)and for the worst case it holdsHcost(i; j; h) = mink2i::j fw(h; k) + max(Ecost(k � i); Ecost(j� k))gwhere Ecost(n) is the estimated cost to solve a problem of size n (using this very sameheuristic algorithm). 7

The fact that Ecost(n) depends only on the size of the problem is chosen for simplicity.That cost function can be more complex, for instance it may take into account where is locatedthe segment of size s in the whole array (i.e. de�ning Ecost(i; j)), as well as which is the lastelement accessed (i.e. de�ning L:Ecost(i; j) and R:Ecost(i; j)). However, since Ecost() isdetermined analytically or based on previous runs, it is not immediate that it will be possibleto successfully estimate a more complex version. The success of the heuristic depends heavilyon a good estimation of Ecost().We analyze now the performance of this algorithm. At each step it is O(j� i) time. As inthe previous section we have that initially j� i = n but the sizes of the problems are reducedin the subsequent iterations. The additional space requirement is also O(1).As in the previous case, this algorithm is O(n2) in the worst case. Under the indepen-dence assumption we can borrow the average result from the previous section using a simpleargument: the heuristic algorithm selects with higher probability those elements which are inthe middle of the array, while the approximate algorithm disregards the positions completely.This shows that the search tree of the heuristic algorithmmust be at least as well balanced asthat of the approximate algorithm. Since this last tree has an average leaf depth of O(logn),the same happens to the heuristic algorithm. The same can be said about the total cost ofthe algorithm, which keeps O(n) since the tree is now better balanced than before. Formally,for this argument to be true it su�ces that the probability of being selected increases as theelements are closer to the middle of the array. This happens whenever Ecost() is an increasingfunction.Interestingly, the same argument can be used to show that the optimal algorithm mustproduce a tree whose leaves are at depth O(logn). Moreover, the constant 2.26 obtained inthe previous section (Eq. (1)) is an upper bound for the heuristic and optimal trees too.If the independence assumption does not hold, we cannot prove in general a cost betterthan O(n2). However, under the �xed cost model (independent on the last element accessed)we have that for many cost functions the new subproblem of the optimal tree is of size !n onaverage, where 1=2 � ! < 1 (see, e.g. [12]). After i iterations the size of the problem is !in.The algorithm therefore performs log1=! n iterations, and the cpu cost isn 0@log1=! nXi=0 !i1A � n1� !which is O(n). If the heuristic solution is reasonably close to the optimal one, this boundapplies to the heuristic algorithm too.5 Analysis of OptimalityWe analyze in this section the competitive ratio of the cost obtained by the optimal algorithmagainst standard binary search, and the practical algorithms against the optimal one.The results of this section are rather general. We could not obtain good general results forthe case of access costs dependent on the last accessed element. However, we found interestingbounds for the optimality of our algorithms applied to a �xed cost function.We obtain more speci�c results later on, for the particular cost functions involved in thetext retrieval application. In that case we are able to prove very similar bounds for the speci�ccost function involved, which depends on the last element accessed.8

5.1 The Optimal AlgorithmA �rst observation is that the upper bound OptimalCost=StandardBinaryCost � 1 is tight,since when all the access costs tend to a constant the optimal strategy is the standard binarysearch.We obtain now a lower bound for OptimalCost=StandardBinaryCost for the case of�xed access costs. Say that c1; :::; cn are the costs w(i) to access the elements, where theci are arranged in increasing order. The optimal search strategy gives a tree which is notwell-balanced if it �nds that this undesirable arrangement is outweighted by a better totalsearch cost. Hence, the best that can happen to the optimal algorithm is that the balancedbinary search tree is already optimal. This happens when the element with minimum cost c1is in the middle of the array, c2 and c3 are at positions n=4 and 3n=4, c4 to c7 are at positionsn=8, 3n=8, 5n=8 and 7n=8, and so on. It is easy to obtain the average or worst-case costformula for this case. For instance, the average uniform unsuccessful search cost isOptimalCost � c1 + 12(c2 + c3) + 14(c4 + :::+ c7) + ::: � nXi=1 ci=iwhile the formula for standard binary search trees is obtained by considering that the costsare randomly placed in the tree and the search follows a complete path from the root to aleaf: StandardBinaryCost = log2 nn nXi=1 ciwhich gives a lower bound for the competitivity of the optimal search cost. For instance, ifci = �(i�), for � > 0, then OptimalCost=StandardBinaryCost =
(1= logn). The sameresult holds for exponentially increasing ci values. On the other hand, the bound is
(1) ifci = O(polylog(i)). This gives a lower bound on what can be expected from any optimizationalgorithm under the independence assumption.5.2 The Approximate AlgorithmIt is di�cult to �nd a good general bound for the competitivity of the approximate algorithm.Although under the independence assumption we know that the number of iterations willbe no more than 2:26 log2 n (Eq. (1)), and that we will access the cheapest elements, itis possible that the optimal algorithm accesses only the log2 n cheapest elements and thatthe next element accessed by the approximate algorithm is arbitrarily expensive. We needmore information about the cost function. We show later an example related to a speci�capplication where we are able to prove an upper bound.5.3 The Heuristic AlgorithmThe competitivity of the heuristic algorithm against the optimal one is di�cult to assess,since it is largely dependent on the Ecost() estimation. For instance, if we use L:Ecost()and R:Ecost() as explained in Section 4.2, we are in principle able to make those estimationsapproach the real optimal Lcost() and Rcost() values, which makes the heuristic algorithmequal to the optimal one. For instance, this can be statistically obtained after a large numberof queries where the real costs for all the intervals are recorded. The smaller intervals willconverge �rst to the correct values and the larger will follow them inductively. The cost for9

intervals of size 1 are correctly predicted from the beginning. Once all the intervals inside(i; j) are correctly computed, we will accurately compute (i; j). Moreover, we can keep trackof which cells are already computed correctly. This can be seen as truly computing thebottom-up matrix along the querying process instead of doing it before answering any query(a kind of lazy evaluation approach).On the other hand, if Ecost() is incorrectly computed the heuristic algorithm can performpoorly. Assuming that the heuristic algorithm is at least as good as the standard binarysearch, we have thatHeuristicCostOptimalCost � StandardBinaryCostOptimalCost = O(log b)6 An Application to Text RetrievalIn an information retrieval environment the user expresses his information needs by providingstrings to be matched and the information system retrieves those documents containing theuser speci�ed strings. When the text collection is large it demands specialized indexingtechniques for e�cient text retrieval. One important type of index for text retrieval is thepat array [8, 9] or su�x array [14]. A pat array is a compact representation of a digital treecalled pat tree, because it stores only the external nodes of the tree. A pat tree is a Patriciatree [15] built on all the su�xes of a text database. The pat tree, also called su�x tree, wasoriginally described in [13]. Each position of the text is called a semi-in�nite string or su�x,de�ned by its starting position and extending to the right as far as needed or to the end of thetext to guarantee uniqueness. In a pat array the data access is provided through an indirectsorted array of pointers to the data. Figure 1 illustrates the pat array or su�x array for atext example with nine text positions.28 14 38 17 11 25 6 30 11 2 3 4 5 6 7 8 9This text is an example of a textual database61 66 611 614 617 625 628 630 638Figure 1: pat array or su�x array.This array allows fast retrieval using an indirect binary search on the text. However, wemust access the text on disk to compare the query string against the su�x pointed to by agiven position of the pat array. Hence, the cost of the comparison is a�ected by the distancebetween the current disk head position and the disk position of the su�x in the text, asillustrated in Figure 2.Since the visited disk positions are random, a naive strategy using a balanced search treemay be too expensive, since a random seek involves a signi�cant cost, especially on opticaldisks. Then, it is reasonable to spend cpu time in order to save disk seek time.In [4], an indexing mechanism is proposed to perform the main part of the search in mainmemory. However, there is always a �nal part that must be searched indirectly in disk, and10

PAT

array

Text

on diskFigure 2: The physical disk model. Both the pat array and the text are on disk (although thepat block to solve is brought to main memory). The pat array points to random positionsof the text.whose cost dominates the total search time. With this scheme, the �nal part of the pat arraycan be kept in main memory too, though not the text.Only unsuccessful searches are performed in the pat array, since the search key is convertedinto two in�nite-length limiting keys, which are those actually searched. For example, a binarysearch for the key "texts" in the example of Figure 1 converts it to the limiting keys "texts"(included) to "textt" (not included). This �nds the text positions 6 and 30, correspondingto the interval from positions 7 to 8 of the pat array. Every pat array position is searchedwith the same probability in practice.In the rest of this section we adapt the general searching algorithm to this problem (whichis slightly more complicated). We �rst give a short introduction to magnetic and optical disktechnology, then model the problem of searching using pat arrays on disks, and �nally presentthe optimal and online algorithms.6.1 Disk TechnologyTo understand the cost model associated to disks, a short explanation on disk technology isneeded [10, 3, 16]. Disks are divided in concentric tracks (or cylinders in the case of multiplatedisks), which are subdivided in sectors. The sector is the minimum retrievable data unit. Thereading device is a disk head that must move to the appropriate track and wait until diskrotation places the appropriate sector under the reading head.Although the costs vary between magnetic and optical disks, in both cases there are threecomponents: seek time, latency time, and transfer time. Seek time is the time needed to movethe disk head to the desired disk track and therefore depends on the current head position.Latency time (or rotation time) is the time needed to wait for the desired sector to passunder the disk head. The average latency time is constant for magnetic disks and variable forcd-rom disks, which rotate faster reading inner tracks than reading outer tracks. Transfertime is the time needed to transfer the desired data from the disk to main memory, which isproportional to the number of blocks transferred.A simple seek cost model for magnetic disk considers the cost increasing linearly with theseek distance, in tracks. We consider a more sophisticated cost model [16], in which a singleseek is composed of: (i) a speedup time, required to accelerate the disk arm until it reacheshalf of the seek distance or a �xed maximum speed; (ii) a coast time for long seeks, where thedisk arm reachs its maximum speed; (iii) a slowdown time, needed for the disk arm to restclose to the desired track and (iv) a settle down time, where the disk head is precisely adjusted11

to the desired track. Very short seeks (� 4 tracks) are dominated by the settle down time(� 1{3 milliseconds), while short seeks (� 200{400 tracks) are dominated by the accelerationphase and the time is proportional to the square root of the seek distance plus the settle downtime. Long seeks spend most of the time moving at a constant speed over a large number oftracks and the time is proportional to the seek distance plus a constant overhead.The following de�nitions are used for the exact calculation of seek time. Let h be thecurrent track, t the next track to access, Dlim the distance (in tracks) that bounds a shortseek, Cshort(long) a constant overhead for short (long) seeks in milliseconds, �short(long) aproportionality factor for short (long) seeks in milliseconds/track. For jh� tj � Dlim, a shortseek is Seek(h; t) = Cshort + �short � (jh� tj)1=2and for (jh� tj) > Dlim, a long seek isSeek(h; t) = Clong + �long � jh� tjLet Access(h; t; ns) (access cost function) be the time needed to read ns sectors from trackt, with the reading mechanism being currently on track h and Stt the sector transfer time.Thus Access(h; t; ns) = Seek(h; t) + Latency + ns � SttLet � be the sum of the latency and transfer time in the magnetic disk. Hence, the totalcost to read a sector in a track t, being on track h, isAccess(h; t; 1) = � + Seek(h; t)Let T be the number of tracks occupied by a text �le. For our purposes it is better forthe �le to be contiguously allocated on the disk to reduce seek time. That also means thatit should use as few cylinders as possible, so it should �ll cylinders as completely as possible(we discuss other situations in [6]).Let b be the size of the current pat block. Making the simplifying assumption of contiguousallocation, the average cost of naive binary search is�� + Seek�0; T3 �� log2(b+ 1)since the average distance between two random text positions is T=3.In cd-rom disks the cost function is highly dependent on disk position and on the amountof the displacement of the access mechanism. An important feature to be considered is thespan size capability Q, since inside the span the disk head is not physically displaced, andhence seek costs are negligible. The data access located within span boundaries requires aseek time of only 1 millisecond per additional track, while the access of tracks outside thespan size may require 160 to 400 milliseconds.Let � and � be the growing rate of the seek time as a function of the displacement of theaccess mechanism (in tracks) inside and outside the span, respectively. Let t0 be the constantfactor added when a track outside the span is accessed.The total access cost to read a sector at track t with the head anchored at track h isAccess(h; t; 1) = (� + �jh� tj if jh� tj � Q=2� + t0 + �jh� tj if jh� tj > Q=212

This model is a simpli�cation. The rotational latency is directly proportional to theposition of the data on the disk, due to the constant linear velocity (clv) physical format.We are using an average value. The seek time is linearized, although it also depends on theposition on the disk.Assuming contiguous allocation (quite realistic on optical disks) the naive search cost is�� + t0 + T3 �� log2(b+ 1)In Section 7 we give values to all the parameters of both cases.6.2 Modeling the ProblemWe explain now how the general problem of building the optimal search tree is adapted tothis application.When binary searching on pat arrays the cost of the comparisons is a�ected by the distancebetween the current disk head position (which depends on the last position visited) and thedisk position of the su�x (which is determined by the pat array position to visit). This canbe modeled with our cost function, namelyw(i; j) = Access(PAT[i];PAT[j]; 1)As explained, only unsuccessful searches are performed and every place is equally probable.This corresponds to the uniform unsuccessful case, i.e.P (i; k� 1)P (i; j) = k � i+ 1j � i+ 2 P (k + 1; j)P (i; j) = j � k + 1j � i+ 2Finally, since the pat array is in practice a random permutation of the text su�xes, theindependence assumption holds in this application.We need now the following de�nitions. Let b be the size of the current pat block. Notethat b is reduced at each iteration in the algorithms. Let track(i) be the disk track where theposition i of the pat block points to. We say that track(i) \owns" position i. Let a usefulsector be a sector that owns at least one position in the current pat block. Let useful(t)be the number of useful sectors in a track t. Let newsize(t) be the expected size of the patblock at the next iteration, after reading track t.Given the high cost to access a track compared to the transfer time, once we are in positionto read one track, we read it completely. Hence, by accessing one element in the array weare in position to perform more than one comparison at the same cost. The search is notbinary anymore, but multi-way. When we read a track, we compare the query against allthe elements pointing to that track, cutting the array in many segments. Only one segmentquali�es for the next iteration.Because we use a uniform model, the probability that a given segment is selected for thenext iteration is proportional to its size. More formally, suppose the positions of a pat blockof size b are numbered 1..b, and that positions p1; p2; :::pk of the pat block point to track t(i.e. track t \owns" positions p1:::pk). After reading track t we can compare the search keywith the text strings and only one of the segments quali�es as the next subproblem. Figure 3shows an instance of a partition of the pat block containing 8 segments generated by the textstrings of a track t. 13

p0 p8 = b� � � � � � �p1 p2 p3 p4 p5 p6 p7Figure 3: A pat block partition generated by all text keys of a track t.Thus newsize(t) = k+1Xi=1 (Length of segment i)� (Prob: of i being selected)that is newsize(t) = k+1Xi=1 (pi � pi�1 � 1)2b (3)where p0 = 0 and pk+1 = b.6.3 The Optimal AlgorithmWe need to adapt the optimal algorithm to this case, since the search is not binary anymore.A comparison may have more than two outputs. More speci�cally, for a given position i, iftrack(i) owns k positions then there are k+ 1 possible outcomes after reading all the text ontrack(i).We de�ne the costs as before, adapted to this problem and with more algorithmic detail.Observe that, except for the �rst and the last segments, the other segments must have Lcost =Rcost, since the same track owns their previous and next positions, and hence their costs arethe same regardless of from where are we getting into them.Thus, we �ll two matrices:� Lcost[x; y] is the optimal time to solve the problem from positions x to y, when thedisk head is on track(x� 1) (unde�ned if x = 1).� Rcost[x; y] is the optimal time to solve the problem from positions x to y, when thedisk head is on track(y + 1) (unde�ned if y = b).The matrices are �lled diagonally for increasing values of y � x. Each matrix cell storesthe minimum cost to solve the block [x; y], starting either from the left track(x� 1) positionor from the right track(y + 1) position of the block:� Initially, Lcost [x; x� 1] = Rcost [x; x� 1] = 0.� Then, Lcost [x; y] = mint=track(j);j2x::y (Access(track(x� 1); t; useful(t)) +p1 � p0 � 1y � x+ 1 Rcost [p0 + 1; p1 � 1] +k+1Xi=2 pi � pi�1 � 1y � x+ 1 Lcost [pi�1 + 1; pi � 1])14

and the same for Rcost, replacing x � 1 by y + 1 inside Access(:::). Notice that, fori 2 2::k, Lcost = Rcost inside the sum.In the top level, we may compute the optimal cost assuming we start at a speci�c track,or for all possible tracks. We must also store the track t selected at each position, to be ableto build the optimum search tree. The time cost of this algorithm is O(b3), which makes itimpractical for use at query time if b is large, since calculations could demand more time thanthe savings produced by the smart search strategy.However, the scheme may be useful at indexing time. Although the matrix needs O(b2)space, the optimum search tree needs only O(b) space, and it can be stored together witheach block in the index. At query time, we just use the optimal precomputed tree to drivethe search.Stated that way, the scheme duplicates the space requirements of the index, but this canbe greatly reduced by observing that the easiest part of the tree to compute is that needingmore space: the leaves. That is, we do not store the leaves of the tree but recompute theneeded leaves at query time. Leaves correspond to size-1 problems. This saves at least halfof the space (it can be more, since the tree may not be binary).In general, we can store all the tree except the last ` levels, then using at most 1=2`additional space, and having to work O((2`)3) = O(8`) time and use O(4`) space to rebuildthat part of the index at the needed point. For instance, we may pay for 1=32 (3%) additionalindex space and perform near 30,000 cpu operations on 1Kb space at index time, which isnegligible. This is a very attractive trade-o� to achieve optimality.Next we present two alternatives to avoid the precomputation of the optimal search treewhen this is not possible. We can apply a practical algorithm until obtaining a pat blocksize small enough to be tractable with the O(b3) optimal strategy mentioned in the previoussection. However, it has been found experimentally that this is not necessary, because all thealgorithms behave quite similarly for small b.6.4 The Approximate AlgorithmThe general online approximate algorithm presented in Section 4.1 can be used in the morecomplex scheme with almost no changes. The corresponding formula isAcost(i; j; h) = Access(h; t; useful(t)) + Ecost(newsize(t))where t = track(k) for k 2 i::j which minimizes Access(h; t; useful(t)).Figure 4 presents the approximate algorithm. Observe that we can simply traverse thepat block from left to right, keeping the cheapest track to access. This is O(b) in the worstand average case. The total space requirement is O(1).For the access cost functions that we are considering, this algorithm behaves in a verysimple way. If started on an extreme of the text, it will make a single sequential pass overthe text, reading in its way any su�x which is still inside the current pat block partition. Asthe search proceeds, less and less su�xes will be of interest.The analysis is very similar to that of the general approximate algorithm of Section 4.1.However, we can improve the constants now. In our application, a track may own manypositions, which makes it able to generate a new partition much smaller than b=2. Forsimplicity we assume in this analysis that a track owns just one position (which is pessimistic).15

Search (bPAT, head)while (size of bPAT > 0){ compute S = set of useful tracks (which own a position of bPAT)t = s in S which minimizes Access(head,s,useful(s))move to t and read all keys from useful sectorsbPAT = appropriate new partition (after search key comparison with keys read)head = t} Figure 4: Online approximate algorithm.In this application, there is no relationship between the cost of an element and its positionin the array, i.e. the independence assumption holds. As explained, this algorithms optimizesthe access cost with no regard to the goodness of the partition, and therefore its access patternto the array is truly random. In our application we are interested in unsuccessful searcheswhere any leaf is equally probable (i.e. p(i) = 0; q(j) = 1=(n+1)). Let T (b) the total amountof work to perform on a block of size b, then T (0) = 0 andT (b) = b+ 1b nXi=1� ib+ 1 T (i� 1) + b� i+ 1b+ 1 T (n� i)�whose solution is S(b) = 3b� 4Hb+1 + 2 = O(b). That is, the constant is not 4 but 3 in ourcase. On the other hand, let S(b) be the average number of iterations to perform for an arrayof b elements. Then S(0) = 0 andS(b) = 1 + 1b bXi=1� ib+ 1 T (i� 1) + b� i+ 1b+ 1 T (b� i)� (4)whose solution is S(b) = 2(Hb � 1 + 1=(b+ 1)) = 2 lnb + O(1), which is O(log b), and moreprecisely 39% over standard binary search (instead of our general result of 126% over standardbinary search of Eq. (1)). This also proves that the average leaf depth in the optimal tree isO(log b), and that the average number of iterations of the approximate algorithm is O(log b).Moreover, there are at most 39% more iterations over standard binary search (on average).6.5 The Heuristic AlgorithmThe general online heuristic algorithm presented in Section 4.2 can also be used in the morecomplex scheme, although there are some complications. The corresponding formula isHcost(i; j; h) = mint=track(k);k2i::j (Access(h; t; useful(t)) +Ecost(newsize(t)))where Ecost(b) is the average estimate of the cost of the algorithm for a pat block of size b.The estimation can be done by storing times of previous runs or by analytical or experimentaldata about the performance of the algorithm. We show later simulation results to estimateEcost. Figure 5 presents the heuristic algorithm.Observe that we can traverse the pat block from left to right, computing the set of usefultracks. At the same time we can compute the sum of squares of the segments of the partition16

Search (bPAT, head)while (size of bPAT > 0){ compute S = set of useful tracks (which own a position of bPAT)compute newsize(s), for each s in S (recall Eq. (2))t = s in S which minimizes Access(head,s,useful(s)) + Ecost(newsize(s))move to t and read all keys from useful sectorsbPAT = appropriate new partition (after search key comparison with keys read)head = t} Figure 5: Online heuristic algorithm.that each track produces in the pat block using Eq. (3), since it determines the average sizeof the subproblem generated by that track (newsize). If the pat block is traversed from leftto right, it is easy to accumulate the sum of squares, by recording the previous node ownedby each track, together with the current sum of squares. Therefore, both S and newsize canbe computed in one pass.We analyze this algorithm now. In the average case, this algorithm is O(b) per iteration(note that b decreases at each step), since at most b tracks may be useful and they may bestored in a hash table to achieve constant search cost (when searching for a track in S). Inthe worst case, the algorithm is O(b logb) per iteration. The total space requirement is O(b).Since, as explained, this heuristic tries to balance the goodness of the partition with theaccess cost, we can pessimistically borrow the average results of the previous section. Thisshows that we work at most 3b = O(b) on average and perform at most 1:39 log2 n iterations.On the other hand, we work O(b2 log b) in the worst case.6.6 Analysis of OptimalityWe resume in this section the general analysis of optimality of Section 5, this time focusedon our particular search cost. We consider here a cost function which depends on the lastelement accessed. Our aim is to show that for this applicationOptimalCostStandardBinaryCost =
� 1log b�from where it follows that, assuming HeuristicCost � StandardBinaryCost,HeuristicCostOptimalCost = O(log b)where we recall that b is the size of the array and n is the text size. We also prove thatApproximateCostOptimalCost � 1:39which shows that our approximate algorithm cannot deliver a solution whose average cost ismore than 39% over the optimal one. That is, our approximate algorithm is 1.39-optimal,where the optimality is measured over the average cost of the solutions (i.e. search trees)delivered. 17

For simplicity we explain the case of a binary search, since the case of multiway searchingdoes not a�ect the order of the solution. We use a simpli�ed access cost function, namelyw(i; j) = X + Y jPAT[i]� PAT[j]jwhich in both disk models is correct for long seeks. The details for shorter seeks do not a�ectthe order of the solution.Imagine that we are at the beginning of the text on disk. On average, the text su�xescorresponding to the PAT block are uniformly spread in the text. The best that can happenat this point is that the cheapest element to access (the �rst su�x of this block) divides thearray in two (i.e. PAT[b=2] is the �rst text su�x of this block). The best next thing thatcan happen is that the next two su�xes correspond to PAT[b=4] and PAT[3b=4], and so on.If all this happens, we complete any binary search with a single pass over the text on disk.Following this scheme, the leaves of the tree are in the second half of the text, and hencethe unsuccessful search ends somewhere in that second half. Hence, this optimistic optimalsearch cost is OptimalCost � MinOptimalCost = X log2 b + Y 3n=4while the standard binary search cost isStandardBinaryCost = (X + Y n=3) log2 b(since n=3 is the average distance between two random positions in the interval (1; n)). Thisshows that the competitive ratio OptimalCost=StandardBinaryCost is
(1= logb). That is,we cannot improve the binary search by a factor larger than O(log b). The smaller the patblock, the closer the binary search to the optimal strategy.We consider now the approximate algorithm. Since it ignores the goodness of the partitionand looks only to the cheapest access cost, if we start at the beginning of the text it will passsequentially over the text (never going back), reading any su�x that is inside the currentpartition. Since the array is partitioned at random positions in this process, the analysis ofthe previous section applies to the number of accesses (Eq (4)). Since we never go back inthe text, we at most read it completely. Hence,ApproximateCost � X � 1:39 log2 b + Y nwhich divided by MinOptimalCost gives the upper boundApproximateCost � 1:39�MinOptimalCost � 1:39�OptimalCostSince the strategy delivered by the approximate algorithm is possible, the optimal strategycannot be worse. Hence, since OptimalCost � ApproximateCost, we haveMinOptimalCost � OptimalCost � 1:39�MinOptimalCostIt is interesting to compare this result against previous work. In [12], it is proven that theoptimal search cost on an array where w(i) = ip is O(np logn). This is similar to our casewhen p = 1, although there is no advantage in accessing nearby positions. In this case, theoptimal search cost is a constant fraction of the standard binary search cost.18

On the other hand, in [1, 2] a di�erent model is introduced, called \hierarchical modelwith block transfer", where once position j is accessed, the neighbor elements can be alsoaccessed at low cost. This resembles (though it is not equal to) the disk cost model. Perhapsnot surprisingly, they show that for w(i) = i� for real � > 0, the optimal binary search costis O(n�), which is �(1= logn) times the cost of standard binary search. This corresponds toour competitive ratio (in our case � = 1).7 Simulation ResultsWe developed a simulation program to perform the actions of the optimal, approximateand heuristic algorithms. We did not perform real experiments because they depend on thescheduling algorithm for moving the disk arm and the placement algorithm for storing �lesin the disk. Moreover, normal operating systems do not give a time pro�le for each diskoperation nor separate them from other internal tasks. Therefore, from real experiments itis not possible to extract, from the overall time, how much corresponds to each task whensearching, and it is not possible to assume that the �le is stored contiguously in the disk. Infact, the results of our simulation show that managing the disk as we propose for our particularapplication pays o�, and this could make worthwhile to modify the operating system code forthis application.The simulator maps the text �le on the disk sectors and tracks, either magnetic or optical,and computes the time needed to access and read any disk position. For a text with n indexpoints and a pat block with b elements, the simulator generates b random pointers in therange 1::n. These pointers represent a set of random disk text positions which are stored ina table with b entries. The track number corresponding to each entry is also computed andstored in the table. By de�nition, all text index points associated to pat array entries are inlexicographic order. We use this property to associate an integer (in ascending order from leftto right) to each pat block entry as a text representation. This approach has been validatedexperimentally in [5].The parameters of interest in the simulation are: the text size, the pat block size, b (usuallyranging from 32 to 512 elements [4]), and the access time function for the disk and readingdevices, either magnetic or optical, as shown in Section 6.1. We consider an average wordlength of 6 characters. We assume that all �les are contiguously stored in the disk startingat track 1. In our experiments we used texts ranging from 256 megabytes to 1 gigabyte formagnetic disks and ranging from 64 megabytes to 256 megabytes for cd-rom disks.For each iteration of the heuristic algorithm the simulator scans the current pat block andcomputes the sum of squares as described in Eq. (3). Then, a next track is selected accordingto the cost minimization criteria of the heuristic algorithm and a new partition in the currentpat block is obtained, until the search key is found.To implement the heuristic algorithm it is necessary to have a de�nition for Ecost(s) ofEq. (2), the expected cost to solve a problem of size s. The de�nition of this cost formula isimportant for the performance of the heuristic algorithm. We tested a number of di�erentapproach for the cost formula.The simplest choice is to assume that the algorithm behaves as the naive binary search,where Ecost(n) = StandardBinaryCost(n)One approach that presented good results is the following: the selected track t is the one19

that minimizes the sum of the access cost for track t from track h and the average size of thenew partition problem, both normalized to the range [0 . . . 1], i.e.Cost(h; t)MaxCost(h; t) + NewSize(t)MaxNewSize(t)where MaxCost(h; t) and MaxNewSize(t) are the largest values for the two components inthe current block. This approach to estimate Ecost(s) presented results up to 15% betterthan the naive binary search approach.An alternative approach to estimate Ecost(s) is to record statistics on previous runs ofthe algorithm, using them to estimate the costs in the future. This scheme does not need anytheoretical assumption, and can adapt to cost changes that may happen along time (e.g. thetext �le becomes more fragmented on disk).We now describe the simulation of the approximate algorithm. For a text with n indexpoints, a pat block with b pointers is obtained using the same procedure given in the beginningof this section. The text positions (disk tracks) are sorted in ascending order in an auxiliaryarray, together with their original position (from 1 : : : b) in the pat block, that is, the index ofeach text pointer in the original block. The search starts by reading the �rst text position inthe sorted array. The text su�x pointed to by this position is compared with the search keyand a new left or right bound for the next subproblem is found. Next, a new block partitionis selected and the algorithm can now decide if a given text position in the current block isworth reading or not. During the next iterations, the algorithm proceeds by reading only theinteresting text positions of the current block, until the key is found.Table 1 presents the parameters used for magnetic and cd-rom disks simulations, forboth approximate and optimal algorithms [5, 16].Magnetic disk Optical diskParameters HP97560 cd-romDisk capacity (MB) 1,370 600Sector length (bytes) 512 2,048Track capacity (sectors) 72 9{21 (variable)Number of heads (tracks/cylinder) 19 1Number of cylinders 1,962 22,500Transfer rate (MB/second) 2.4 1.2Sector transfer time (Stt, millisecs) 0.2 1.6Average latency (tr, millisecs) 7.5 61.0Short seek overhead (Cshort, millisecs) 3.24 1.0Long seek overhead (Clong , t0, millisecs) 8.00 160.0Short seek boundary (Dlim , tracks) 383 20{40 (span size)Short seek factor (�short, millisecs/track) 0.400 {Long seek factor (�long , millisecs/track) 0.008 {Short seek rate (�, millisecs/track) { 1.0 (inside span)Long seek rate (�, millisecs/track) { 0.01 (outside span)Table 1: Parameters used for magnetic and cd-rom disks simulations.As our model is based on unsuccessful search, we ran a set of 200 unsuccessful randomsearches for each text and pat block size, both for optical and magnetic disks. For comparison20

32 64 128 256 512Block size (b)0.00.20.4
0.60.81.0RelativecostMagnetic disk (Text size = 1 gigabyte)

ApproximateHeuristicOptimal
Standard binary cost = 1:0

Figure 6: Relative cost for the optimal, approximate and heuristic algorithms for data storedin magnetic disks.purposes, the same set of random pointers and search key for each simulation run were used byall the algorithms (optimal, heuristic, approximate and the standard binary search algorithm).The simulations were repeated for successful searches, for comparison purposes. We foundthat the analytical results for unsuccessful searches are very close to our simulation results,while the simulated successful searches are 10 to 15% faster than the unsuccessful ones. Forexample, using the magnetic disk speci�cations presented in Table 1, the analytical cost(unsuccessful) for a naive binary search on 512 megabytes of text with a block size of 256pointers is 116 milliseconds. Our simulator gives 109 milliseconds for an unsuccessful searchand 96 milliseconds for a successful search.The results for the optimal, approximate and heuristic algorithms are shown in Figure 6for magnetic disks, for 1 gigabyte text �les. Figure 7 shows the results for cd-rom disks,for 256 megabytes text �les. The values in both plots represent the relative cost, having thestandard binary search as reference (StandardBinaryCost = 1). The average values used inthe plots for the approximate and heuristic algorithms are 95% con�dent within the intervalof at most �0:16 for magnetic disks and at most �0:20 for cd-rom disks.In the following paragraphs we present some comments derived from the simulation results.The simulation results have shown that each disk parameter in the cost function havedi�erent signi�cance in the overall retrieval cost, depending on how much the �le is spread onthe disk tracks. Thus, a non-monotonic variation of the relative cost can be observed for theapproximate and heuristic algorithms, depending on �le size, �le layout and disk geometry.Small �les occupy few tracks in the disk and each track owns many positions of the patblock, which makes the savings on latency larger than the savings on seek costs. Large �les,distributed in many tracks on the disk, give more margin for savings on seek costs. We veri�edexperimentally this conclusion, by cancelling separately the inuence of the seek costs andlatency costs in the simulator. The relative cost is monotonic on both �le size and b whenwe consider only the latency cost (with seek cost null), and non-monotonic on �le size andconstant on b when we consider only seek cost (with latency cost null).21

32 64 128 256 512Block size (b)0.00.20.4
0.60.81.0Relativecostcd-rom disk (Text size = 256 megabytes)

ApproximateHeuristicOptimal
Standard binary cost = 1:0

Figure 7: Relative cost for the optimal, approximate and heuristic algorithms for data storedin cd-rom disks.The experimental average head displacement, in tracks, using the standard binary searchis 0:31T � AverageHeadDisp � 0:37T (recall that T is the number of tracks occupied by atext �le). The same measure for the heuristic algorithm presents no signi�cant di�erence forsmall �les: for instance, a 10 megabytes �le has an experimental average head displacementof 0:35T . However, for large �les the heuristic algorithm beats the standard binary search:for instance, for �les larger than 250 megabytes we obtained an average head displacementsmaller than 0:1T . This result con�rms that the savings on seek costs have more weight forlarger �les.The simulations for the approximate algorithm con�rmed that most of the savings rely onthe reduction of the average seek distance. For this algorithm, the experiments have shownthat the average number of seeks are very close to O(log2 b), which is the expected cost ofthe standard binary search. We also observed that the non-linearity of the disk cost functionimposes a penalty on the performance gain of both approximate and heuristic algorithm, dueto: (i) in the magnetic disk, the convex function (square root for short seeks) makes the sumof a large number of short seeks larger than one long seek comprising the same space; (ii) inthe cd-rom disk, the double slope cost function exhibits a much higher slope for short seeks,producing a similar distance-cost trade-o� problem. We run a set of simulations using a purelylinear cost function and we obtained a much higher performance gain of both the approximateand heuristic algorithms. Thus, if the storage device exhibits linear cost function, the newpractical algorithms present higher performance gains for similar searching problems.The analytical upper bound ApproximateCost=OptimalCost � 1:39 could not be veri-�ed with the experiments, for large values of b, due to the distance-cost trade-o� problem.However, it was veri�ed when we used a linear cost function. As the optimal algorithm givesmore weight to the goodness of the partition, its behavior is almost independent of the costfunction.Finally, the simulation results for the optimal algorithm show that a performance gaincan be achieved over the approximate and heuristic algorithms. However, we emphasize thatthe optimal strategy cannot be directly used at search time because of its higher complexity22

(although it can be used at indexing time). In practical terms, this means going from therange of milliseconds to several minutes in actual execution time. On the other hand, bothalgorithms perform quite similarly for small blocks. For example, for b = 32 and a text �leof 1 gigabyte stored in a magnetic disk, the optimal strategy costs 75 milliseconds, whilethe approximated algorithm costs 79 milliseconds. Thus, it is not worth to switch from thepractical to the optimal algorithm, when the value of b is small with large texts.8 ConclusionsWe addressed the problem of searching with di�erent access costs, when they depend notonly on the element to be accessed, but also on the last element visited. We have shown anoptimal tree construction algorithm whose complexity is the same as the classical solution tothe simpler problem of costs depending only on the element to be accessed. We also presentedtwo practical online algorithms that compute only the part of the tree that is needed, at amuch smaller cost. The algorithms perform quite well, and are suitable for practical cases inwhich a costly preprocessing cannot be a�orded. We also present bounds on the competitiveratios.We presented a case study to which the algorithms can be adapted, related to the di�erentaccess costs of indirect search on disks. This application is a real problem brought fromthe text retrieval �eld. We described the cost model, enhanced the general algorithm toaccount for the real world added complications and presented simulation results regarding theperformance gains over magnetic and optical disks. We also proved bounds on the competitiveratio of the optimal and practical algorithms tailored to this application.The problem of searching with di�erent access costs is quite general, and di�erent com-plications appear for particular cases. Our treatment of the more complex case in which thecost depends on the last element visited is a step toward more general solutions. For example,the cost could be dependent on a longer previous set of accesses, or on the full history of thesearch. It is easy to solve the problem of dependence on k previous accesses in O(nk+2) time,but good solutions to those problems are still to be devised. We believe that dependence onthe full history is NP-Complete.AcknowledgementsThe authors would like to thank the anonymous referees for their valuable suggestions. Wewish to acknowledge the helpful comments of Chris Perleberg and Jayme Swarcz�ter.References[1] A. Aggarwal, B. Alpern, K. Chandra and M. Snir. A model for hierarchical memory.Proceedings of the 19th Annual ACM Symposium of the Theory of Computing, 1987,305-314.[2] A. Aggarwal, K. Chandra and M. Snir. Hierarchical memory with block transfer. Pro-ceedings of the 28th Annual Symposium on Foundations of Computer Science, 1987,204-216. 23

[3] M. Andrews, M. A. Bender and L. Zhang. New algorithms for the disk schedulingproblem. Proceedings of the 28th Annual ACM Symposium of the Theory of Computing,1996, 550{559.[4] R. Baeza-Yates, E.F. Barbosa and N. Ziviani. Hierarchies of indices for text searching.Information Systems 21 (6) (1996), 497{514.[5] E. F. Barbosa. E�cient text searching methods for secondary memory. Ph.D. thesis,Technical Report 017/95, Department of Computer Science, Universidade Federal deMinas Gerais, Brazil, 1995.[6] E. F. Barbosa, G. Navarro, R. Baeza-Yates, C. Perleberg and N. Ziviani. Optimizedbinary search and text retrieval. In Paul Spirakis, editor, Proceedings of the 3rd An-nual European Symposium on Algorithms (ESA'95), Springer-Verlag Lecture Notes inComputer Science, v. 979, 1995, 311-326.[7] E. Gilbert and E. Moore. Variable length encodings. Bell System Technical Journal 38(4) (1959), 933{968.[8] G. H. Gonnet. Pat 3.1: an e�cient text searching system. Center for the New OxfordEnglish Dictionary. University of Waterloo, Waterloo, Canada, 1987.[9] G. H. Gonnet, R. Baeza-Yates and T. Snider. New indices for text: Pat trees andPat arrays. In W. B. Frakes and R. Baeza-Yates, editors, Information Retrieval DataStructures and Algorithms, Prentice-Hall, Englewoods Cli�, N.J., 1992, 66{82.[10] J. L. Hennesy and D. A. Patterson. Computer Architecture. A Quantitative Approach.Morgan Kaufmann Publishers, Inc., second edition, 1995.[11] T. C. Hu and A. C. Tucker. Optimal computer-search trees and variable-length alphabeticcodes. SIAM Journal on Applied Math., 21 (1971), 514-532.[12] W. J. Knight. Search in an ordered array having variable probe cost. SIAM Journal onComputing 17 (6) (1988), 1203-1214.[13] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.Addison-Wesley, Reading, Massachusetts, 1973.[14] U. Manber and G. Myers. Su�x arrays: a new method for online string searches. Pro-ceedings of the ACM-SIAM Symposium on Discrete Algorithms, 1990, 319{327.[15] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in al-phanumeric. Journal of the ACM 15 (4) (1968), 514{534.[16] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer27 (3) (1994), 17{29. 24

