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Abstract
Two recent lower bounds on the compressibility of repetitive sequences,
δ ≤ γ, have received much attention. It has been shown that a length-
n string S over an alphabet of size σ can be represented within the
optimal O(δ log n log σ

δ log n
) space, and further, that within that space one

can find all the occ occurrences in S of any length-m pattern in time
O(m logn + occ logϵ n) for any constant ϵ > 0. Instead, the near-
optimal search time O(m + (occ + 1) logϵ n) has been achieved only
within O(γ log n

γ
) space. Both results are based on considerably dif-

ferent locally consistent parsing techniques. The question of whether
the better search time could be supported within the δ-optimal space
remained open. In this paper, we prove that both techniques can indeed
be combined to obtain the best of both worlds: O(m+(occ + 1) logϵ n)
search time within O(δ log n log σ

δ log n
) space. Moreover, the number of

occurrences can be computed in O(m + log2+ϵ n) time within
O(δ log n log σ

δ log n
) space. We also show that an extra sublogarithmic factor

on top of this space enables optimal O(m + occ) search time, whereas
an extra logarithmic factor enables optimal O(m) counting time.
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1 Introduction
The amount of data we are expected to handle has been growing steadily
in the last decades [1]. The fact that much of the fastest-growing data is
composed of highly repetitive sequences has raised interest in text indexes
whose size can be bounded by some measure of repetitiveness [2] and in the
study of those repetitiveness measures [3]. Since statistical compression does
not capture repetitiveness well [4], various other measures have been proposed
for this case. Two recent ones, which have received much attention because of
their desirable properties, are the size γ of the smallest string attractor [5] and
a function δ of the substring complexity [6, 7]. Every string satisfies δ ≤ γ [6]
(with δ = o(γ) in some string families [7]), and γ asymptotically lower-bounds
many other measures sensitive to repetitiveness [5] (e.g., the size of the smallest
Lempel–Ziv parse [8]). On the other hand, any string S ∈ [0 . . σ)n can be
represented within O(δ log n log σ

δ log n ) space, and this bound is tight for the full
spectrum of parameters n, σ, and δ [7].

A more ambitious goal than merely representing S in compressed space is to
index it within that space so that, given any pattern P , one can efficiently find
all the occ occurrences of P in S. Interestingly, it has been shown that, for any
constant ϵ > 0, one can index S within the optimal O(δ log n log σ

δ log n ) space and
then report the occurrences of any length-m pattern in O(m log n+occ logϵ n)
time [7]. If one allows the higher O(γ log n

γ ) space, the search time can be
reduced to O(m+(occ+1) logϵ n) [6], which is optimal in terms of the pattern
length and near-optimal in the time per reported occurrence. Slightly more
space, O(γ log n

γ logϵ n), allows for a truly optimal search time, O(m+ occ).1
The challenge of obtaining the near-optimal O(m+(occ+ 1) logϵ n) search

time within optimal O(δ log n log σ
δ log n ) space was posed [6, 7], and this is what we

settle on the affirmative in this paper. Both previous results build convenient
context-free grammars on S and then adapt a classical grammar-based index
on it [9, 10]. The index based on attractors [6] constructs a grammar from a
locally consistent parsing [11] of S that forms blocks in S ending at every local
minimum with respect to a randomized ordering of the alphabet, collapsing
every block into a nonterminal and iterating. The smaller grammar based
on substring complexity [7] uses another locally consistent parsing obtained
by recompression [12], which randomly divides the alphabet into “left” and
“right” symbols and combines every left-right pair into a nonterminal, also
iterating. The key to obtaining δ-bounded space is to pause the pairing on
symbols whose expansions become too long for the iteration where they were
formed [7]. We show that the pausing idea can be applied to the first kind of
locally consistent grammar as well so that it yields the desired time and space
complexities. The next theorem summarizes our first result.

1In this work, we assume that P [1..m] is represented in O(m) space. For small alphabets, the
packed setting, where P occupies O(⌈m log σ

log n ⌉) space, could also be considered; see [3, Sec. 2.2].
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Theorem 1.1. For every constant ϵ > 0, given a string S ∈ [0 . . σ)n

with measure δ, one can build in O(n) expected time a data structure using
O(δ log n log σ

δ logn ) words of space such that, later, given a pattern P [1 . .m], one
can find all of its occ occurrences in S in O(m+logϵ δ+occ logϵ(δ log n log σ

δ log n )) ⊆
O(m+ (occ+ 1) logϵ n) time.

Apart from this near-optimal search time within optimal space, we can
obtain optimal search time within near-optimal space, increasing the space by
only a sublogarithmic factor.

Theorem 1.2. For every constant ϵ > 0, given a string S ∈ [0 . . σ)n with
measure δ, one can build in O(n + δ log n log σ

δ logn log n) expected time a data
structure using O(δ log n log σ

δ log n logϵ(δ log n log σ
δ log n )) ⊆ O(δ log n log σ

δ log n logϵ n) words
of space such that, later, given a pattern P [1 . .m], one can find all of its occ
occurrences in S in optimal time O(m+ occ).

Finally, we show how to efficiently count the number of occurrences of a
pattern in S within δ-bounded space, while matching the times of the previous
γ-bounded space structure.

Theorem 1.3. For every constant ϵ > 0, given a string S ∈ [0 . . σ)n

with measure δ, one can build in O(n log n) expected time a data struc-
ture using O(δ log n log σ

δ log n ) words of space such that, later, given a pattern
P [1 . .m], one can compute the number occ of its occurrences in S in time
O(m+ log2+ϵ n). We can also build, in O(n log n) expected time, a data struc-
ture using O(δ log n log σ

δ log n log(δ log n log σ
δ log n )) ⊆ O(δ log n log σ

δ logn log n) words of space
that computes occ in optimal time O(m).

Our algorithms are designed for the (standard) RAM model of computation
with machine words of w = Θ(log n) bits each. By default, we measure the
space in words, which means that O(x) space comprises O(x log n) bits.

A conference version of this paper appeared in Proc. LATIN 2022 [13].
The current version provides more refined space results, which incorporate the
alphabet size σ and reach optimality for every n, δ, and σ [7]. It also includes
the results on counting the number of occurrences and achieves optimal search
times within near-optimal space.

2 Notation and Basic Concepts
A string is a sequence S[1 . . n] = S[1] · S[2] · · ·S[n] of symbols, where each
symbol belongs to an alphabet Σ = [0 . . σ) = {0, . . . , σ − 1}. We denote as
Σ(S) the subset of Σ consisting of symbols that occur in S. The length of S
is denoted |S| = n. The only string of length zero is denoted ε, so |ε| = 0. We
assume that the alphabet size is a polynomial function of n, that is, σ = nO(1).
The concatenation of strings S and S′ is denoted S · S′ = SS′. A string S′ is
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a substring of S if S′ = S(i . . j] = S[i + 1] · · ·S[j] for some 0 ≤ i ≤ j ≤ n; in
particular S(i . . j] = ε if j = i. With the term fragment, we refer to a particular
occurrence S(i . . j] of a substring in S (not just the substring content). We
also use other combinations of round and square brackets to denote fragments:
S(i . . j) = S(i . . j − 1], S[i . . j] = S(i− 1 . . j], and S[i . . j) = S(i− 1 . . j − 1].
We use Srev to denote the reverse of S, that is, Srev = S[n] · S[n− 1] · · ·S[1].

A straight line program (SLP) is a context-free grammar where each
nonterminal appears once at the left-hand side of a rule, and where the non-
terminals can be sorted so that the right-hand sides refer to terminals and
preceding nonterminals. Such an SLP generates a single string. Furthermore,
we refer to a run-length straight line program (RLSLP) as an SLP that, in
addition, allows rules of the form A → As

1, where A,A1 are nonterminals and
s ∈ Z≥2, which means that the right-hand side of the rule defining A can be
obtained by concatenating s copies of A1.

A parsing is a way to decompose a string S into non-overlapping blocks,
S = S1 · S2 · · ·Sk. A locally consistent parsing (LCP) [14] is a parsing where,
if two positions i, i′ have long enough matching contexts S[i − α . . i + β] =
S[i′−α . . i′+β] and there is a block boundary after S[i], then there is also one
after S[i′]. The meaning of “long enough” depends on the LCP type [6, 14, 15].

3 A New δ-bounded RLSLP
The measure δ was implicitly used in a stringology context already in [16],
but it was formally defined later [6] (as a way to construct an RLSLP of
size O(γ log n

γ ) without knowing γ) and thoroughly studied in [7]. For a given
string S and integer k ≥ 0, let dk(S) be the number of distinct length-k
substrings in S. The sequence of all values dk(S) is known as the substring
complexity of S. Then, δ is defined as

δ = max
{

dk(S)
k : k ∈ Z≥1

}
.

The bounds of [7], including γ = O(δ log n log σ
δ log n ), implicitly utilize the following:

Fact 3.1. Every string S ∈ [0 . . σ)n of measure δ satisfies

∞∑
p=0

d2p (S)
2p ≤ 5δ + δ log n log σ

δ log n = O(δ log n log σ
δ log n ).

Proof Let µ := ⌊log log δ
log σ ⌋ and ν := ⌈log n

δ ⌉. For p ∈ [0 . . µ], we use a bound d2p(S) ≤
σ2p ≤ σ2µ to derive

µ∑
p=0

d2p(S)

2p
≤

µ∑
p=0

σ2µ

2p
≤ 2 · σ2µ ≤ 2 · σ

log δ
log σ = 2δ.
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For p ∈ (µ . . ν), we use a bound d2p(S) ≤ δ · 2p to derive
ν−1∑

p=µ+1

d2p(S)

2p
≤ δ · (ν − µ− 1) ≤ δ ·

(
1 + log n

δ − log log δ
log σ

)
= δ + δ log n log σ

δ log δ .

For p ≥ ν, we use a bound d2p(S) ≤ n to derive
∞∑
p=ν

d2p(S)

2p
≤

∞∑
p=ν

n

2p
≤ 2n

2ν
≤ 2δ.

Overall, we get
∑∞

p=0
d2p (S)

2p ≤ 2δ+ δ+ δ log n log σ
δ log δ +2δ = O(δ log n log σ

δ log n ), where we
note that δ log n log σ

δ log δ = O(δ log n log σ
δ log n ).2 □

An RLSLP of size O(δ log n log σ
δ log n ) was built [7] on top of the recompression

method [12]. In this section, we show that the same can be achieved on top of
the block-based LCP [11]. Unlike the previous construction, ours produces an
RLSLP with O(δ log n log σ

δ logn ) rules in O(n) deterministic time, though we still
use randomization to ensure that the total grammar size is also O(δ log n log σ

δ log n ).
We adapt the preceding construction [7], which uses the so-called restricted

recompression [17]. This technique pauses the processing for symbols whose
expansion is too long for the current stage. A similar idea was used [18, 19]
for adapting another LCP, called signature parsing [20]. We apply restriction
(the pausing technique) to the LCP of [11] that forms blocks ending at local
minima with respect to a randomized ordering of the alphabet. This LCP will
be used later to obtain near-optimal search time, extending previous work [6].
We call our parsing restricted block compression.

3.1 Restricted block compression
Given a string S ∈ Σ+, our restricted block compression builds a sequence
of strings (Sk)k≥0 over the alphabet A defined recursively to contain symbols
in Σ, pairs formed by a symbol in A and an integer m ≥ 2, and sequences of at
least two symbols in A; formally, A is the least fixed point of the expression:

A = Σ ∪ (A× Z≥2) ∪
∞∪
i=2

Ai.

In the following, we denote
∪∞

i=2 Ai with A≥2.
Symbols in A \ Σ are nonterminals, which are naturally associated with

productions (A1, . . . , As) → A1 · · ·As for (A1, . . . , As) ∈ A≥2 and (A1, s) →
As

1 for (A1, s) ∈ A×Z≥2. Setting any A ∈ A as the starting symbol yields an
RLSLP. The string generated by this RLSLP is exp(A), where exp : A → Σ+

2If δ log n ≤
√
n, then δ log n log σ

δ log δ ≤ δ log(n log σ) ≤ 2δ log(
√
n log σ) ≤ 2δ log n log σ

δ log n .
Otherwise, log δ > 1

2 logn− log log n > 1
4 logn, so δ log n log σ

δ log δ ≤ δ log 4n log σ
δ log n = δ log n log σ

δ log n +2δ.
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is the expansion function defined recursively:

exp(A) =


A if A ∈ Σ,

exp(A1) · · · exp(As) if A = (A1, . . . , As) for A1, . . . , As ∈ A,

exp(A1)
s if A = (A1, s) for A1 ∈ A and s ∈ Z≥2.

The expansion function is extended homomorphically to exp : A∗ → Σ∗, with
exp(A1 · · ·Am) = exp(A1) · · · exp(Am) for A1 · · ·Am ∈ A∗.

Starting from S0 = S, the strings (Sk)
∞
k=0 such that exp(Sk) = S are built

by the alternate applications of two functions, both of which decompose a
string T ∈ A+ into blocks (by placing block boundaries between some charac-
ters) and then collapse blocks of length s ≥ 2 into individual symbols in A.
In Definition 3.2, the blocks are maximal runs of the same symbol in a subset
B ⊆ A, and they are collapsed to symbols in A× Z≥2.

Definition 3.2 (Run-length encoding). Given T ∈ A+ and a subset of sym-
bols B ⊆ A, we define rleB(T ) ∈ A+ as the string obtained by decomposing
T into blocks and collapsing these blocks as follows:

1) For every i ∈ [1 . . |T |), place a block boundary between T [i] and T [i+ 1]
if T [i] /∈ B, T [i+ 1] /∈ B, or T [i] ̸= T [i+ 1].

2) For every block T [i . . i+s) of s ≥ 2 equal symbols A, replace T [i . . i+ s) =
As with the symbol (A, s) ∈ A.

In Definition 3.4, the block boundaries are determined by the local minima
of a function of the set Σ(T ) ⊆ A of symbols that occur in T , and the blocks
are collapsed to symbols in A≥2.

Definition 3.3 (Local minima). Given T ∈ A+, we say that a position i ∈
(1 . . |T |) is a local minimum with respect to a function π : Σ(T ) → Z if

π(T [i− 1]) > π(T [i]) and π(T [i]) < π(T [i+ 1]).

Definition 3.4 (Restricted block parsing). Given T ∈ A+, a function π :
Σ(T ) → Z, and a subset of symbols B ⊆ A, we define bcπ,B(T ) ∈ A+ as the
string obtained by decomposing T into blocks and collapsing these blocks as
follows:

1) For every i ∈ [1 . . |T |), place a block boundary between T [i] and T [i+ 1]
if T [i] /∈ B, T [i+ 1] /∈ B, or i is a local minimum with respect to π.

2) For each block T [i . . i + s) of length s ≥ 2, replace T [i . . i + s) with a
symbol (T [i], . . . , T [i+ s− 1]) ∈ A.

Note that B consists of active symbols that can be combined into larger
blocks; we say that the other symbols are paused. The idea of our restricted
block compression is to create successive strings Sk, starting from S0 = S. At
the odd levels k, we perform run-length encoding on the preceding string Sk−1.
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On the even levels k, we perform block parsing on the preceding string Sk−1.
We pause the symbols whose expansions are too long for that level.

Definition 3.5 (Restricted block compression). Given S ∈ Σ+, the strings
Sk for k ∈ Z≥0 are constructed as follows, where ℓk :=

(
4
3

)⌈k/2⌉−1, Ak :=
{A ∈ A : |exp(A)| ≤ ℓk}, and πk : Σ(Sk−1) → [1 . . |Σ(Sk−1)|] is a bijection
satisfying πk(A) < πk(B) for A ∈ Σ(Sk−1) \ Ak and B ∈ Σ(Sk−1) ∩ Ak:

• If k = 0, then Sk = S.
• If k > 0 is odd, then Sk = rleAk

(Sk−1).
• If k > 0 is even, then Sk = bcπk,Ak

(Sk−1).

3.2 Grammar size analysis
Our RLSLP will be built by performing restricted block compression as long as
|Sk| > 1. Although the resulting RLSLP formally has infinitely many symbols,
we can remove those having no occurrences in any Sk. To define the actual
symbols in the grammar, for all k ∈ Z≥0, denote Sk := {Sk[j] : j ∈ [1 . . |Sk|]}
and S :=

∪∞
k=0 Sk.

Recall that exp(Sk) = S holds for every k ∈ Z≥0. Based on this, we
associate Sk with a decomposition of S into phrases.

Definition 3.6 (Phrase boundaries). For every k ∈ Z≥0 and j ∈ [1 . . |Sk|],
we define the level-k phrases of S induced by Sk as the fragments

S(|exp(Sk[1 . . j))| . . |exp(Sk[1 . . j])|] = exp(Sk[j]).

We also define the set Bk ⊆ [0 . . n] of phrase boundaries induced by Sk:

Bk = {|exp(Sk[1 . . j])| : j ∈ [0 . . |Sk|]}.

Note that taking j = 0 and j = |Sk| yields 0 ∈ Bk and n ∈ Bk, respectively.

The following lemma captures the local consistency of restricted block
compression: the phrase boundaries are determined by a small context.

Lemma 3.7. Consider integers k,m, α ∈ Z≥0 with α ≥ ⌊8ℓk⌋ and i, i′ ∈
[m+ 2α . . n− α] such that S(i−m− 2α . . i+ α] = S(i′ −m− 2α . . i′ + α].

1) If i ∈ Bk, then i′ ∈ Bk.
2) If S(i −m. . i] is a level-k phrase, then S(i′ −m. . i′] is a level-k phrase

corresponding to the same symbol in Sk.

Proof We proceed by induction on k, with a weaker assumption α ≥ ⌊7ℓk⌋ for odd k.
In the base case of k = 0, the claim is trivial because B0 = [0 . . n] and every character
of S forms a level-0 phrase. Next, we prove that the claim holds for integers k > 0
and α > ⌊ℓk⌋ assuming that it holds for k − 1 and α − ⌊ℓk⌋. This is sufficient for
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the inductive step: If α ≥ ⌊8ℓk⌋ for even k > 0, then α − ⌊ℓk⌋ ≥ ⌊7ℓk⌋ = ⌊7ℓk−1⌋.
Similarly, if α ≥ ⌊7ℓk⌋ for odd k, then α− ⌊ℓk⌋ ≥ ⌊6ℓk⌋ = ⌊8ℓk−1⌋.

We start with the first item, where we can assume m = 0 without loss of general-
ity. For a proof by contradiction, suppose that S(i− 2α . . i+α] = S(i′ − 2α . . i′ +α]
and i ∈ Bk yet i′ /∈ Bk. By the first item of the inductive assumption applied to
positions i and i′, we conclude that i ∈ Bk ⊆ Bk−1 implies i′ ∈ Bk−1. Let us
set j, j′ ∈ [1 . . |Sk−1|) so that i = |exp(Sk−1[1 . . j])| and i′ = |exp(Sk−1[1 . . j

′])|.
Since i ∈ Bk yet i′ /∈ Bk, the parsing of Sk−1 places a block boundary between
Sk−1[j] and Sk−1[j + 1], but it does not place a block boundary between Sk−1[j

′]
and Sk−1[j

′+1]. By Definitions 3.2 and 3.4, the latter yields Sk−1[j
′], Sk−1[j

′+1] ∈
Ak. Consequently, the level-(k − 1) phrases S(i′ − ℓ . . i′] := exp(Sk−1[j

′]) and
S(i′ . . i′ + r] := exp(Sk−1[j

′ + 1]) around position i′ are of length at most ⌊ℓk⌋
each. Therefore, the assumption S(i − 2α . . i + α] = S(i′ − 2α . . i′ + α] implies
S(i′− ℓ−2(α−⌊ℓk⌋) . . i′+(α−⌊ℓk⌋)] = S(i− ℓ−2(α−⌊ℓk⌋) . . i+(α−⌊ℓk⌋)] as well
as S((i′+ r)− r− 2(α−⌊ℓk⌋) . . i′+ r+(α−⌊ℓk⌋)] = S((i+ r)− r− 2(α−⌊ℓk⌋) . . i+
r+(α−⌊ℓk⌋)]. Thus, we can apply (the second item of) the inductive assumption for
the level-(k − 1) phrases S(i′ − ℓ . . i′] and S(i′ . . i′ + r], concluding that S(i− ℓ . . i]
and S(i . . i + r] are also level-(k − 1) phrases parsed into Sk−1[j] = Sk−1[j

′] and
Sk−1[j + 1] = Sk−1[j

′ + 1], respectively.
If k is odd, then a boundary between two symbols in Ak is placed if and only if the

two symbols differ. Consequently, Sk−1[j
′] = Sk−1[j

′+1] and Sk−1[j] ̸= Sk−1[j+1].
This contradicts Sk−1[j] = Sk−1[j

′] and Sk−1[j + 1] = Sk−1[j
′ + 1].

Thus, it remains to consider the case of even k. Since the block parsing placed a
boundary between Sk−1[j], Sk−1[j+1] ∈ Ak, we conclude from Definition 3.4 that j
must be a local minimum with respect to πk, i.e., πk(Sk−1[j − 1]) > πk(Sk−1[j]) <
πk(Sk−1[j+1]). Due to Sk−1[j] ∈ Ak, the condition on πk imposed in Definition 3.5
implies Sk−1[j−1] ∈ Ak. Consequently, the level-(k−1) phrase S(i− ℓ− ℓ′ . . i− ℓ] :=
exp(Sk−1[j − 1]) is of length at most ⌊ℓk⌋, and thus ℓ + ℓ′ ≤ 2⌊ℓk⌋. Therefore, the
assumption S(i−2α . . i+α] = S(i′−2α . . i′+α] implies S((i−ℓ)−ℓ′−2(α−⌊ℓk⌋) . . (i−
ℓ) + (α− ⌊ℓk⌋)] = S((i′ − ℓ)− ℓ′ − 2(α− ⌊ℓk⌋) . . (i′ − ℓ) + (α− ⌊ℓk⌋)]. Hence, we can
apply (the second item of) the inductive assumption for the level-(k−1) phrase S(i−
ℓ− ℓ′ . . i− ℓ], concluding that S(i′− ℓ− ℓ′ . . i′− ℓ] is a level-(k−1) phrase parsed into
Sk−1[j

′−1] = Sk−1[j−1]. Thus, πk(Sk−1[j
′−1]) = πk(Sk−1[j−1]) > πk(Sk−1[j

′]) =
πk(Sk−1[j]) < πk(Sk−1[j

′ + 1]) = πk(Sk−1[j + 1]), which means that j′ is a local
minimum with respect to πk and contradicts i′ /∈ Bk by Definition 3.4.

Let us proceed to the proof of the second item. Let Sk−1(j − m′ . . j] be the
block corresponding to the level-k phrase S(i−m. . i]. By the inductive assumption
applied separately to every level-(k−1) phrase contained in S(i−m. . i], the fragment
S(i′ −m. . i′] consists of level-(k − 1) phrases that, in Sk−1, are collapsed into a
fragment Sk−1(j

′ − m′ . . j′] matching Sk−1(j − m′ . . j]. Moreover, by the already
proved first item, applied to corresponding positions within [i−m. . i] and [i′−m. . i′],
the parsing of Sk−1 places block boundaries around Sk−1(j

′ − m′..j′] but nowhere
within that fragment. Hence, Sk−1(j −m′ . . j] and Sk−1(j

′ −m′ . . j′] are matching
blocks, which means that they are collapsed into matching symbols of Sk. The phrases
S(i−m. . i] and S(i′−m. . i′] are thus represented by matching symbols in Sk. □

Our next goal is to prove that the phrase boundaries are locally sparse,
that is, their number within any interval I decreases exponentially with k.
This holds because two out of any three consecutive blocks must be merged
in the even levels, unless one is already long for that level (and thus paused).
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Lemma 3.8. For every k ∈ Z≥0 and non-empty interval I ⊆ [0 . . n], we have

|Bk ∩ I| < 2 + 4|I|−4
ℓk+1

.

Proof We proceed by induction on k. For k = 0, we have |Bk∩I| = |I| < 2+4|I|−4 =

2 +
4|I|−4

ℓ1
. If k is odd, we note that ℓk+1 = ℓk and Bk ⊆ Bk−1. Consequently,

|Bk ∩ I| ≤ |Bk−1 ∩ I| < 2 +
4|I|−4

ℓk
= 2 +

4|I|−4
ℓk+1

.

If k is even, let us define
J = {j ∈ [1 . . |Sk−1|) : |exp(Sk−1[1 . . j − 1])| ∈ I and |exp(Sk−1[1 . . j + 1])| ∈ I},

J ′ = {j ∈ J : Sk−1[j] ∈ Ak and Sk−1[j + 1] ∈ Ak},
Observe that |J | = max(0, |Bk−1 ∩ I| − 2): every j ∈ J corresponds to a position
|exp(Sk−1[1 . . j])| ∈ Bk−1 ∩ I which is neither the leftmost nor the rightmost one in
Bk−1 ∩ I. If j /∈ J ′, then Sk−1[j] /∈ Ak or Sk−1[j+1] /∈ Ak. The level-(k− 1) phrase
S(p . . q] corresponding to this pausing symbol satisfies [p . . q] ⊆ I and, by definition
of Ak, it is of length q − p > ℓk. There are at most |I|−1

ℓk
phrases S(p . . q] satisfying

both conditions, and thus |J \ J ′| ≤ 2 · |I|−1
ℓk

.
Every position i ∈ Bk ∩ I, except for the leftmost and the rightmost one, corre-

sponds to a position j ∈ J such that i = |exp(Sk−1[1 . . j])| and the restricted block
parsing places a block boundary between Sk−1[j] and Sk−1[j + 1]. If j ∈ J ′, then j
must be a local minimum with respect to πk and, in particular, πk(Sk−1[j − 1]) >
πk(Sk−1[j]). By the condition on πk specified in Definition 3.5, this implies that
Sk−1[j − 1] ∈ Ak. Thus, the restricted block parsing does not place a block bound-
ary between Sk−1[j − 1] and Sk−1[j]. Since i is not the leftmost position in Bk ∩ I,
we must have j − 1 ∈ J ′. Overall, using the inductive assumption, we conclude that

|Bk ∩ I| ≤ 2 + |J \ J ′|+ 1
2 |J

′| = 2 + 1
2 |J \ J ′|+ 1

2 |J |

= 2 + 1
2 |J \ J ′|+max

(
0, 12 |Bk−1 ∩ I| − 1

)
< 2 +

|I|−1
ℓk

+
2|I|−2

ℓk
= 2 +

4|I|−4
ℓk+1

.

□

Plugging I = [0 . . n], we derive an upper bound on |Sk| = |Bk| − 1.

Corollary 3.9. For every k ∈ Z≥0, we have |Sk| < 1 + 4n
ℓk+1

. Consequently,
|Sκ| = 1 holds for κ := 2⌈log4/3(4n)⌉.

The following lemma essentially bounds the substring complexity of each
string Sk in terms of the substring complexity of S. An important detail,
however, is that we only consider substrings of Sk consisting of active symbols
(in Ak+1). This is sufficient because the pausing symbols form length-1 blocks
that are copied to Sk+1 without getting collapsed.

Lemma 3.10. For all integers k ≥ 0 and m ≥ 1, the number of dis-
tinct substrings of Sk belonging to Am

k+1 is O(m(1 + dr(S)
r )), where r =

2⌈log(50mℓk+1)⌉.
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Proof Denote α := ⌊8ℓk⌋ and ℓ := r
2 ≥ 25mℓk+1 ≥ 3α+m⌊ℓk+1⌋, and let L be the

set consisting of the trailing ℓ positions in S and all positions covered by the leftmost
occurrences of substrings of S of length at most ℓ. We first prove two auxiliary claims.

Claim 3.11. The string Sk contains at most |L ∩Bk| distinct substrings in Am
k+1.

Proof Let us fix a substring T ∈ Am
k+1 of Sk and let Sk(j −m. . j] be the leftmost

occurrence of T in Sk. Moreover, let p = |exp(Sk[1 . . j−m])| and q = |exp(Sk[1 . . j])|
so that S(p . . q] is the expansion of Sk(j−m. . j]. By Sk(j−m. . j] ∈ Am

k+1, we have
q − p ≤ m⌊ℓk+1⌋ ≤ ℓ− 3α.

Suppose that q /∈ L. Due to (0 . . ℓ]∪(n−ℓ . . n] ⊆ L, this implies that q ∈ (ℓ . . n−ℓ]
is not covered by the leftmost occurrence of any substring of length at most ℓ. In
particular, S(p − 2α . . q + α] must have an earlier occurrence S(p′ − 2α . . q′ + α]
for some p′ < p and q′ < q. Consequently, Lemma 3.7, applied to subsequent level-
k phrases comprising S(p . . q], shows that S(p′ . . q′] consists of full level-k phrases
and the corresponding fragment of Sk matches Sk(j − m. . j] = T . By q′ < q, this
contradicts the assumption that Sk(j −m. . j] is the leftmost occurrence of T in Sk.

Thus, we must have q ∈ L. A level-k phrase ends at position q, so we also have
q ∈ Bk. Since the position q uniquely determines the substring T ∈ Am

k+1, this yields
an upper bound of |L ∩Bk| on the number of choices for T . □

Claim 3.12. The set L forms O(1 +
dr(S)

r ) intervals of total length O(r + dr(S)).

Proof Each position in L ∩ (0 . . n − ℓ] is covered by the leftmost occurrence of a
length-ℓ substring of S, and thus L forms at most ⌊ 1ℓ |L|⌋ intervals of length at least ℓ
each. Hence, it suffices to prove that the total length satisfies |L| = O(r+dr(S)). For
this, note that, for each position j ∈ L∩ [ℓ . . n−ℓ], the fragment S(j−ℓ . . j+ℓ] is the
leftmost occurrence of a length-r substring of S; this because any length-ℓ fragment
covering position j is contained within S(j− ℓ . . j+ ℓ]. Consequently, |L| ≤ r+dr(S)
holds as claimed. □

By Claim 3.11, it remains to bound |L ∩ Bk|. Let I be the family of intervals
covering L. For each I ∈ I, Lemma 3.8 implies |Bk ∩ I| ≤ 1 +

4|I|
ℓk+1

. By the bounds
on I following from Claim 3.12, this yields the following result:

|Bk ∩ L| ≤ |I|+ 4
ℓk+1

∑
I∈I

|I| = O
(
1 +

dr(S)
r +

r+dr(S)
ℓk+1

)
= O

(
m

(
1 +

dr(S)
r

))
,

where the last inequality holds because r = Θ(mℓk+1). □

The following result combines Fact 3.1, Corollary 3.9, and Lemma 3.10.

Corollary 3.13. For every string S ∈ [0 . . σ)n with measure δ, we have |S| =
O(δ log n log σ

δ log n ).

Proof Note that |S| ≤ 1 +
∑κ−1

k=0 |Sk \ Sk+1|. First, we observe that Definition 3.5
guarantees Sk \Sk+1 ⊆ Sk∩Ak+1. Moreover, each symbol in Sk∩Ak+1 corresponds
to a distinct character of Sk contained in Ak+1, and thus |Sk\Sk+1| ≤ |Sk∩Ak+1| =
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O
(
1 +

drk
(S)

rk

)
holds due to Lemma 3.10 for rk := 2⌈log(50ℓk+1)⌉. Observe that, for

every p ∈ [0 . . ⌈log(50ℓκ)⌉], there are at most 6 integers k such that rk = 2p (this is
because ℓk+6 = (4/3)3ℓk > 2ℓk). Hence, Fact 3.1 and the definition of κ yield

κ−1∑
k=0

|Sk ∩ Ak+1| =
⌈log(50ℓκ)⌉∑

p=0

O
(
1 +

d2p (S)
2p

)
= O(log n+ δ log n log σ

δ logn ) = O(δ log n log σ
δ log n ).

Overall, |S| = 1 +O(δ log n log σ
δ logn ) = O(δ log n log σ

δ log n ) holds as claimed. □

Next, we show that the total expected grammar size is O(δ log n log σ
δ log n ).

Theorem 3.14. Consider the restricted block compression of a string S ∈
[0 . . σ)n with measure δ, where the functions (πk)k≥0 in Definition 3.5 are
chosen uniformly at random. Then, the expected size of the resulting RLSLP
is O(δ log n log σ

δ log n ).

Proof Although Corollary 3.13 guarantees that |S| = O(δ log n log σ
δ log n ), the remaining

problem is that the size of the resulting grammar (i.e., the sum of production sizes)
can be larger. Every symbol in Σ ∪ (A× Z≥2) contributes O(1) to the RLSLP size,
so it remains to bound the total size of productions corresponding to symbols in
A≥2. These symbols are introduced by restricted block parsing, i.e., they belong to
Sk+1 \Sk for odd k ∈ [0 . . κ). In order to estimate their contribution to the grammar
size, we shall fix π0, . . . , πk and compute the expectation with respect to the random
choice of πk+1. In this setting, we prove the following claim:

Claim 3.15. Let k > 0 be odd and T ∈ Am
k be a substring of Sk. Restricted block

parsing bcπk+1,Ak+1
(Sk) creates a block matching T with probability O(2−m).

Proof Since Sk = rleAk
(Sk−1) and Ak+1 = Ak, every two subsequent symbols of T

are distinct. Observe that if T forms a block, then there is a value t ∈ [1 . .m] such
that πk+1(T [1]) < · · · < πk+1(T [t]) > · · · > πk+1(T [m]); otherwise, there would
be a local minimum within every occurrence of T in Sk−1. In particular, denoting
h := ⌊m/2⌋, we must have πk+1(T [1]) < · · · < πk+1(T [h + 1]) (when t > h) or
πk+1(T [m−h]) > · · · > πk+1(T [m]) (when t ≤ h). However, the probability that the
values πk+1(·) for h+ 1 consecutive characters form a strictly increasing (or strictly
decreasing) sequence is at most 1

(h+1)!
: either exactly 1

(h+1)!
(if the characters are

distinct) or 0 (otherwise); this is because πk+1 shuffles Σ(Sk) ∩ Ak+1 uniformly at
random. Overall, we conclude that the probability that T forms a block does not
exceed 2

(h+1)!
≤ 2−Ω(m logm) ≤ O(2−m). □

Next, note that every symbol in Sk+1 \Sk is obtained by collapsing a block of m
active symbols created within bcπk+1,Ak+1

(Sk) (with distinct symbols obtained from

distinct blocks). By Lemma 3.10, the string Sk has O

(
m

(
1 +

drk,m
(S)

rk,m

))
distinct

substrings T ∈ Am
k+1 for rk,m := 2⌈log(50mℓk+1)⌉. By Claim 3.15, any fixed substring
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T ∈ Am
k+1 yields a symbol in Sk+1 \ Sk with probability O(2−m). Consequently, the

total contribution of symbols in Sk+1 \ Sk to the RLSLP size is, in expectation,
∞∑

m=2

O

(
m

2m

(
1 +

drk,m(S)

rk,m

))
= O(1) +

∞∑
m=2

O

(
m

2m
·
drk,m(S)

rk,m

)
.

Across all the odd levels k ∈ [0 . . κ), this sums up to at most

O(κ) +

∞∑
k=0

∞∑
m=2

O

(
m

2m
·
drk,m(S)

rk,m

)

= O(log n) +

∞∑
p=0

∞∑
m=2

∑
k∈Z≥0

rk,m=2p

O

(
m

2m
· d2

p(S)

2p

)
.

For every fixed p,m ∈ Z≥0, the number of integers k ∈ Z≥0 satisfying rk,m = 2p is
at most 6 (because ℓk+6 = (4/3)3ℓk > 2ℓk). Hence, for every p ∈ Z≥0, we have

∞∑
m=2

∑
k∈Z≥0

rk,m=2p

O

(
m

2m
· d2

p(S)

2p

)
=

∞∑
m=2

O

(
m

2m
· d2

p(S)

2p

)
= O

(
d2p(S)

2p

)
.

Consequently, Fact 3.1 implies that the total expected grammar size is

O(log n) +

∞∑
p=0

O

(
d2p(S)

2p

)
= O(log n) +O(δ log n log σ

δ log n ) = O(δ log n log σ
δ log n ). □

We are now ready to show how to build an RLSLP of size O(δ log n log σ
δ log n )

in linear expected time.

Corollary 3.16. Given a string S ∈ [0 . . σ)n with measure δ, we can build an
RLSLP of size O(δ log n log σ

δ log n ) in O(n) expected time.

Proof We apply Definition 3.5 on top of the given string S, with functions πk cho-
sen uniformly at random. It is an easy exercise to carry out this construction in
O(

∑κ
k=0 |Sk|) = O(n) worst-case time.

The expected size of the resulting RLSLP is at most c · δ log n log σ
δ logn for some

constant c; we can repeat the construction (with fresh randomness) until it yields an
RLSLP of size at most 2c ·δ log n log σ

δ log n . By Markov’s inequality, we succeed after O(1)

attempts in expectation. As a result, in O(n) expected time, we obtain a grammar
of total worst-case size O(δ log n log σ

δ log n ). □

Remark 3.17 (Grammar height). In the algorithm of Corollary 3.16, we can
terminate restricted block compression after λ := 2⌊log4/3 n

δ ⌋ levels and com-
plete the grammar with an initial symbol rule Aλ → Sλ[1] · · ·Sλ[|Sλ|] so that
exp(Aλ) = S. Corollary 3.9 yields |Sλ| = O(1 + ( 34 )

λ/2n) = O(δ), so the
resulting RLSLP is still of size O(δ log n log σ

δ log n ); however, the height is now
O(log n

δ ).
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4 Local Consistency Properties
We now show that the local consistency properties of our grammar enable fast
indexed searches. Previous work [6] achieves this by showing that, thanks to
the locally consistent parsing, only a set M(P ) of O(log |P |) pattern positions
need to be analyzed for searching. To use this result, we now must take into
account the pausing of symbols. Surprisingly, this modification allows for a
much simpler definition of M(P ).

Definition 4.1. For every non-empty fragment S[i . . j] of S, we define

Bk(i, j) = {p− i : p ∈ Bk ∩ [i . . j)}

and

M(i, j) =
∪
k≥0

(
Bk(i, j) \ [2αk+1 . . j − i− αk+1)

∪ {min(Bk(i, j) ∩ [2αk+1 . . j − i− αk+1))}
)
,

where αk = ⌊8ℓk⌋ and {min ∅} = ∅.

Intuitively, the set Bk(i, j) lists (the relative locations of) all level-k phrase
boundaries inside S[i . . j]. For each level k ≥ 0, we include in M(i, j) the
phrase boundaries that are close to either of the two endpoints of S[i . . j] (in
the light of Lemma 3.7, it may depend on the context of S[i . . j] which of
these phrase boundaries are preserved as level-(k + 1) boundaries) as well as
the leftmost phrase boundary within the remaining internal part of S[i . . j].

Lemma 4.2. The set M(i, j) satisfies the following properties:
1) For each k ≥ 0, if Bk(i, j) ̸= ∅, then minBk(i, j) ∈ M(i, j).
2) We have |M(i, j)| = O(log(j − i+ 2)).
3) If S[i′ . . j′] = S[i . . j], then M(i′, j′) = M(i, j).

Proof Let us express M(i, j) =
⋃

k≥0 Mk(i, j), setting

Mk(i, j) := Bk(i, j)\[2αk+1 . . j−i−αk+1)∪{min(Bk(i, j)∩[2αk+1 . . j−i−αk+1))}.

As for Item 1, it is easy to see that minBk(i, j) ∈ Mk(i, j): we consider two cases,
depending on whether minBk(i, j) belongs to [2αk+1 . . j − i− αk+1) or not.

As for Item 2, let us first argue that |Mk(i, j)| = O(1) holds for every k ≥
0. Indeed, each element q ∈ Bk(i, j) ∩ [0 . . 2αk+1) corresponds to q + i ∈ Bk ∩
[i . . i+ 2αk+1) and each element q ∈ Bk(i, j) ∩ [j − i− αk+1 . . j − i) corresponds to
q + i ∈ Bk ∩ [j − αk+1 . . j). By Lemma 3.8, we conclude that |Mk(i, j)| ≤ 1 + (2 +
8αk+1

ℓk+1
) + (2 +

4αk+1

ℓk+1
) = O(1). Moreover, if ℓk > 4(j − i), then Lemma 3.8 further

yields |Bk(i, j)| = |Bk ∩ [i . . j)| ≤ 1. Since Mk(i, j) and Bk+1(i, j) are both subsets
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of Bk(i, j), this means that
∣∣⋃

k:ℓk>4(j−i) Mk(i, j)
∣∣ ≤ 1. The number of levels k

satisfying ℓk ≤ 4(j − i) is O(log(j − i+ 2)), and thus
|M(i, j)| ≤ O(1) ·O(log(j − i+ 2)) + 1 = O(log(j − i+ 2)).

As for Item 3, we shall prove by induction on k that Mk(i, j) ⊆ M(i′, j′). This
implies M(i, j) ⊆ M(i′, j′) and, by symmetry, M(i, j) = M(i′, j′). In the base case
of k = 0, we have

M0(i, j) = ([0 . . 2α1] ∪ [j − i− α1 . . j − i)) ∩ [0 . . j − i) = M0(i
′, j′).

Now, consider k > 0 and q ∈ Mk(i, j). If q ∈ Bk(i, j) \ [2αk . . j − i − αk), then
q ∈ Mk−1(i, j), and thus q ∈ M(i′, j′) holds by the inductive assumption. As for the
remaining case, Mk(i, j) ∩ [2αk . . j − i − αk) = Mk(i

′, j′) ∩ [2αk . . j
′ − i′ − αk) is a

direct consequence of Bk(i, j)∩ [2αk . . j − i− αk) = Bk(i
′, j′)∩ [2αk . . j

′ − i′ − αk),
which follows from Lemma 3.7. □

Definition 4.3. Let P be a substring of S and let S[i . . j] be its arbitrary
occurrence. We define M(P ) := M(i, j); by Item 3 of Lemma 4.2, this does
not depend on the choice of the occurrence.

By Lemma 4.2, the set M(P ) is of size O(log |P |), yet, for every level
k ≥ 0 and every occurrence P = S[i . . j], it includes the leftmost phrase
boundary in Bk(i, j). Our index exploits the latter property for the largest k
with Bk(i, j) ̸= ∅.

5 Indexing with our Grammar
In this section, we obtain our main result by adapting the results on
attractors [6, Sec. 6] to our modified parsing.

Definition 5.1 ([6]). The parse tree of an RLSLP is a rooted tree with leaves
labeled with terminals and internal nodes labeled with nonterminals. The root
is labeled with the initial symbol of the RLSP. If a node is labeled with a
nonterminal A associated with a production A → A1 · · ·As, then it has s
children labeled with A1, . . . , As, respectively, in the left-to-right order. If,
instead, A is associated with a production A → As

1, then the node has s
children, each labeled with A1.

Definition 5.2 ([6]). The grammar tree of an RLSLP is obtained by prun-
ing its parse tree: all but the leftmost occurrences of each nonterminal are
converted into leaves and their subtrees are pruned. We treat rules A → As

1

(assumed to be of size 2) as A → A1A
[s−1]
1 , where the node labeled A

[s−1]
1 is

always a leaf (A1 is also a leaf unless it is the leftmost occurrence of A1).

Note that the grammar tree has exactly one internal node per distinct non-
terminal and the total number of nodes is equal to the grammar size plus one.
We associate each nonterminal A with the only internal grammar tree node
labeled with A. We also sometimes associate terminal symbols with grammar
tree leaves.
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The search algorithm classifies the occurrences of a pattern P in S into pri-
mary and secondary, according to the partition of S induced by the grammar
tree leaves.

Definition 5.3 ([6]). The leaves of the grammar tree induce a partition of S
into phrases. An occurrence S[t . . t +m) of P [1 . .m] is primary if the lowest
grammar tree node deriving a fragment of S that contains S[t . . t + m) is
internal (or, equivalently, the occurrence crosses the boundary between two
phrases); otherwise, the occurrence is secondary.

The general idea of the search is to find the primary occurrences by looking
for prefix-suffix partitions of P and then derive the secondary occurrences
from the primary ones [10].

5.1 Finding the primary occurrences
Let a nonterminal A be the lowest (internal) grammar tree node that covers
a primary occurrence S[t . . t +m) of P [1 . .m]. Then, if A → A1 · · ·As, there
exist i ∈ [1 . . s) and q ∈ [1 . .m) such that a suffix of exp(Ai) matches P [1 . . q]
whereas a prefix of exp(Ai+1) · · · exp(As) matches P (q . .m]. The idea is to
index all the pairs (exp(Ai)

rev, exp(Ai+1) · · · exp(As)) and find those where
the first and second component are prefixed by (P [1 . . q])rev and P (q . .m],
respectively. Note that there is exactly one such pair per border between two
consecutive phrases (or leaves in the grammar tree). On the other hand, if
A → As

1, then there exists q ∈ [1 . .m) such that a suffix of exp(A1) matches
P [1 . . q] whereas a prefix of exp(A1)

s−1 matches P (q . .m]. We will also index
the pairs (exp(A1)

rev, exp(A1)
s−1) and find those where the first and second

component are prefixed by (P [1 . . q])rev and P (q . .m], respectively.

Definition 5.4 ([6]). Let v be the lowest (internal) grammar tree node that
covers a primary occurrence S[t . . t + m) of P . Let vi be the leftmost child
of v that overlaps S[t . . t + m). We say that the node v is the parent of the
primary occurrence S[t . . t+m) of P and the node vi is its locus.

The index of [6] builds a two-dimensional grid data structure [21]. First,
two multisets of strings, X and Y, are constructed. For every nontermi-
nal A → A1 · · ·As and every i ∈ [1 . . s), the strings exp(Ai)

rev and
exp(Ai+1) · · · exp(As) are added to X and Y, respectively. For every nonter-
minal A → As

1, the strings exp(A1)
rev and exp(A1)

s−1 are added to X and
Y, respectively. For each nonterminal A → A1 · · ·As and each i ∈ [1 . . s), the
grid contains a point (x, y) such that x is the lexicographic rank of exp(Ai)

rev

in X and y is the lexicographic rank of exp(Ai+1) · · · exp(As) in Y; the point
is associated with the locus Ai. For each nonterminal A → As

1, the grid con-
tains a point (x, y) such that x is the lexicographic rank of exp(A1)

rev in X
and y is the lexicographic rank of exp(A1)

s−1 in Y; the point associated with
the locus A1.
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Note that the number of strings in X and Y, as well as the number of points
in the grid, are bounded by the grammar size, g = O(δ log n log σ

δ log n ) in our case.
Given a partition P = P [1 . . q] · P (q . .m] to look for primary occurrences,

the query algorithm searches X for the lexicographic range [x1, x2] of all the
strings that are prefixed with P [1 . . q]rev, and Y for the lexicographic range
[y1, y2] of all the strings that are prefixed with P (q . .m]. By interpreting the
lexicographic ranges as x-coordinate and y-coordinate ranges, respectively,
it follows that the grid points within the orthogonal range [x1, x2] × [y1, y2]
corresponds precisely to all the occq primary occurrences of P cut at position
q. The geometric data structure, using O(g) space, finds the points in such
range of the grid in time O((occq + 1) logϵ g), where ϵ > 0 is an arbitrary
constant fixed at construction time [21, Thm. 2.1, using B = logϵ n/ log log n].

In order to efficiently search X for all the reversed prefixes P [1 . . q]rev and
Y for all the suffixes P (q . .m], we make use of the following lemma.

Lemma 5.5 ([6, Lem. 6.5]). Let S be a set of strings augmented with a data
structure supporting:

• extraction, in time fe(ℓ), of any length-ℓ prefix of strings in S, and
• computation, in time fh(ℓ), of the Karp–Rabin signature ϕ of any length-ℓ

prefix of strings in S.
We can then build a data structure of O(|S|) words such that, later, we can
solve the following problem in O(m+ τ(fh(m)+ logm)+ fe(m)) time: given a
pattern P [1 . .m] and τ > 0 suffixes Q1, . . . , Qτ of P , find the ranges of strings
in (the lexicographically-sorted) S prefixed by Q1, . . . , Qτ .

We use this lemma for S = X and S = Y, so the extraction of a prefix of a
string in S corresponds to extracting the suffix of exp(Ai) for some nonterminal
Ai (in the case S = X ) or to extracting a prefix of exp(Ai+1) · · · exp(As) or
of exp(A1)

s−1 (in the case S = Y). In this second case, we need to extract
the complete expansion of zero or more nonterminals, and then a prefix of
the expansion of a nonterminal. It is shown in [6] that prefixes and suffixes of
the expansions of nonterminals can be extracted in linear time, which yields
fe(ℓ) = O(ℓ) in our grammar.

Lemma 5.6 ([6, Lem. 6.6]). For every RLSLP of size g, there exists a data
structure of size O(g) such that, for every nonterminal A, any prefix or suffix
of exp(A) can be obtained in time proportional to its length.

The second requirement of Lemma 5.5 is to compute the Karp–Rabin [22]
signature ϕ on prefixes of strings in S. Those are functions of the form ϕ(S) =(∑|S|

i=1 S[i] · b|S|−i
)
mod p, for some prime number p and a randomly chosen

integer b ∈ [1 . . p). To prove Lemma 5.5, the signature ϕ is chosen in [6] so
that there is no collision between substrings of S, and thus the searches for
the suffixes Qi are deterministically correct. In a followup to the conference



Springer Nature 2021 LATEX template

Near-Optimal Search Time in δ-Optimal Space 17

version of our paper, Navarro [23] showed how to obtain fh(ℓ) = O(log ℓ) in
our grammar.

Lemma 5.7 ([23, Lem. 12]). The RLSLP of Section 3 can be enhanced with
O(g) additional space so that the Karp–Rabin signature of any length-ℓ prefix
of a string in X or Y can be extracted in time fh(ℓ) = O(log ℓ).

With this result, we obtain time O(m+ τ logm) to perform all the string
searches using Lemma 5.5. Overall, if we have identified τ cuts of P that suffice
to find all of its primary occurrences in S, then we can find all the occp ≤ occ
primary occurrences of P in time O(m+ τ logm+ (occp + τ) logϵ g).

5.2 Parsing the pattern
The next step is to set a bound for τ with our parsing and show how to find
the corresponding cuts. As shown below, since only the leftmost and rightmost
O(1) phrase boundaries in each level of the parsing of P can differ from those
in the parsing of any occurrence of P in T , the leftmost phrase boundary
within every primary occurrence of P is guaranteed to belong to M(P ).

Lemma 5.8. Using our grammar of Section 3, there are only τ = O(logm)
cuts P = P [1 . . q] · P (q . .m] yielding primary occurrences of P [1 . .m]. These
positions q belong to M(P ) + 1= {r + 1 : r ∈ M(P )} (see Definition 4.3).

Proof Let A be the parent of a primary occurrence S[t . . t + m), and let k be the
round where A is formed. There are two possibilities:
(1) A → A1 · · ·As is a block-forming rule, and a suffix of exp(Ai) matches P [1 . . q],

for some i ∈ [1 . . s) and q ∈ [1 . .m). This means that q − 1 = minBk−1(t,
t+m− 1).

(2) A → As
1 is a run-length nonterminal and a suffix of exp(A1) matches P [1 . . q],

for some q ∈ [1 . .m). This means that q − 1 = minBk−1(t, t+m− 1).
In either case, q ∈ M(P ) + 1 by Lemma 4.2. Further, |M(P )| = O(logm). □

The parsing of P is performed done in O(m) time much as in previous
work [6, Sec. 6.1], with the difference that we have to care about paused
symbols. Essentially, we store the permutations πk drawn when indexing S
and use them to parse P in the same way, round by round, aiming to create
the same symbols. Actually, we parse the string P ∗ = #P$, where # and $
are two symbols that appear neither in S nor in P . We use the occurrence of
P in P ∗ to build M(P ).

As observed in the proof of Corollary 3.13, we have
∑κ

k=0 |Sk ∩ Ak+1| =
O(δ log n log σ

δ logn ). Hence, we store the values of πk+1 only for the active symbols
in Sk for every k ∈ [0 . . κ]; the values πk+1 for the remaining symbols do not
affect the placement of block boundaries in Definition 3.4: If Sk[j], Sk[j+1] ∈
Ak+1, then, due to the condition imposed on πk+1 in Definition 3.5, j may
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only be a local minimum if Sk[j − 1] ∈ Ak+1. When parsing P , we can simply
assume that πk+1(A) = 0 on the paused symbols A ∈ Sk \ Ak+1 and obtain
the same parsing of S. By storing the values of πk only for the active symbols,
we use O(δ log n log σ

δ logn ) total space.
In order to find the correct nonterminals among those used in the parsing

of S, we store two perfect hash tables [24]. In the first one, we keep all the keys
(A1, s), with associated information A, corresponding to the grammar rules
of the form A → As

1. In the second one, we keep, for each rule A → A1 · · ·As

formed in S, the key (A1 · · ·As) with associated information A. The size of
the hash tables is proportional to the size g of the grammar.

Let us describe the first two rounds of the parsing [6]. We first traverse
P ∗ = P ∗

0 left-to-right and identify the runs aℓ in O(m) time. For each such
run, we search the first hash table for the key (a, ℓ), finding its corresponding
nonterminal A, with which we replace the run (see below for the case where
the run does not appear in the hash table). The result of this pass is a new
sequence P ∗

1 . We then traverse P ∗
1 , finding the local minima according to

π1, and thus identifying the blocks. To do this in O(m) time as well, we
search the second hash table for the identified blocks, replacing them by the
corresponding nonterminals, and forming the sequence P ∗

2 .
By Corollary 3.9, the number of phrases in round k is less than 1 + 4m

ℓk+1
,

which gives us at most h = 12 + 2⌊log4/3 m⌋ = O(logm) parsing rounds and
a total of

∑h
k=0(1 +

4m
ℓk+1

) = O(m) symbols processed along the parsing of P .
Since we spend constant time per symbol along the parse the whole parsing
takes time O(m). Construction of the set M(P ) from Definitions 4.1 and 4.3
(along with the auxiliary sets Bk(i, j) and M(i, j)) also takes O(m) time.

Note that P ∗
k may contain runs and blocks that do not occur in Sk. By

Lemma 3.7, other than those overlapping the first 2α or the last α positions of
of P , where α := ⌊8ℓk⌋, any run or block formed inside P ∗ must also be formed
inside every occurrence of P in S. Consequently, if a run or a block does not
overlap those extreme positions, yet it does not appear in the hash table, we
can abandon the search because P cannot occur in S. On the other hand, by
Lemma 3.8, there can be only O(1) symbols overlapping those areas in each
level P ∗

k , and thus O(logm) in total. We can then gather those unknown runs
and blocks appearing in the extremes of P ∗ in order to consistently assign them
new nonterminals and arbitrary unused πk values. We then proceed normally
with subsequent levels of the parsing. Traversing the set linearly in order to
detect if they reappear in the parsing adds up to just O(log2 m) total time.

5.3 Secondary occurrences and short patterns
Thus far, we have obtained the loci of the primary occurrences, but not yet
their positions in S. Further, we must find the secondary occurrences that
derive from the primary ones. In order to find those, we use a technique that
works for any arbitrary RLSLP and within O(g) space [6, Sec. 6.4]. For each
grammar tree node v labeled A, we store (i) u = v.anc, the nearest ancestor
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of v, labeled B, such that u is the root or B labels more than one node in the
grammar tree; (ii) v.offs, the offset at which v (i.e., exp(A)) starts inside u (i.e.,
exp(B)); and (iii) v.next , the next node in preorder traversal of the grammar
tree labeled A, or null if v is the last node labeled A. The first two fields are
undefined for the nodes labeled A[s−1] that we create in the grammar tree
(these nodes do not exist in the parse tree), whereas these nodes participate
in the v.next list of label A.

For each primary occurrence found with the partition P = P [1 . . q] ·
P (q . .m], the point we found in the grid gives us its locus v in the grammar
tree. Say v is labeled Ai, and its parent u is labeled A, with A → A1 · · ·As.
For each such node v, we store |exp(A1 · · ·Ai)|, so the offset of P within
exp(A) is o := |exp(A1 · · ·Ai)| − q + 1. To find the offset within S of the pri-
mary occurrence, we repeatedly traverse pointers from u to u.anc and update
o := o + u.offs, until reaching the root. At this point, we can report an
occurrence S[o . . o+m) of P .

In our upwards way to the root, we will also report secondary occurrences.
For every node u we visit in an upward path, we recursively continue not only
by u.anc but also by u.next ; the offset o is retained in this second case. The
tree of recursive calls is binary and reports a different occurrence of P in S
at each leaf reaching the initial symbol. Therefore, the positions of all the
occurrences, primary and secondary, are reported in constant amortized time
each.3

The case where i = 1 and the parent u of v is labeled A → As
1 is special.

We compute o := |exp(A1)| − q + 1 and report occurrences in u with offsets
o+i · |exp(A1)| for i = 0, 1, . . . as long as o+i · |exp(A1)|+m−1 ≤ s · |exp(A1)|,
apart from the call to v.next .next . On the other hand, the nodes u labeled
A

[s−1]
1 reached by pointers next along the recursive calls are treated exactly as

s− 1 copies of A1, triggering s− 1 calls to u.anc with offsets o+ i · |exp(A1)|
for i ∈ [1 . . s), and also one call to u.next with offset o.

Plugged with the preceding results, the total space of our index is
O(δ log n log σ

δ logn ) and its search time is O(m + τ(logϵ g + logm) + occ logϵ g) =

O(m + (logm + occ) logϵ g). This bound exceeds O(m + (occ+ 1) logϵ g)
only when m = O(logϵ g log log g). In that case, however, O(logm logϵ g) =
O(log log g·logϵ g), which becomes O(logϵ g) again if we infinitesimally adjust ϵ.
Our complexity then becomes O(m+ logϵ g + occ logϵ g).

The final touch is to reduce that complexity to O(m+ logϵ δ + occ logϵ g).
This is relevant only when occ = 0, so we need a way to detect in time
O(m+ logϵ δ) that P does not occur in S. We already do this in time O(m+
logϵ g) by parsing P and searching for its cuts in the geometric data structure.
To reduce the time, we note that logϵ g ≤ logϵ δ + logϵ g

δ , so it suffices to
detect in O(m) time the patterns of length m ≤ ℓ := logϵ g

δ that do not
occur in S. By definition of δ, there are at most δℓ2 substrings of length at
most ℓ in S, so we can store them all in an (uncompressed) trie using total

3The unproductive tests u.next = null are charged to the primary occurrence v if the label of u
is A, or to the first secondary occurrence of u, which exists by the definition of u.anc, otherwise.
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space O(δℓ2) = O(δ log2ϵ g
δ ) = O(g) = O(δ log n log σ

δ log n ). By implementing the
trie children with perfect hashing [24], we can verify in O(m) time whether a
pattern of length m ≤ ℓ occurs in S. We then obtain Theorem 1.1.

5.4 Optimal search time
We now show how to obtain optimal search time, O(m + occ), by slightly
increasing the size of our δ-bounded index. As in previous work [6, Sec. 6.7],
we use a larger geometric structure, of size O(g logϵ g) for some constant ϵ > 0,
which reports in O(log log g) time per query and O(1) per result. This structure
is constructed in O(g log g) expected time using O(g logϵ g) working space [25,
Thm. 2].

With the enhanced geometric structure, the query time automatically
drops to O(m+ logm log log g + occ). This can be written as O(m+ ℓ+ occ),
with ℓ = log log g log log log g [6, Sec. 6.7], because the middle term dominates
only if m ≤ logm log log g.

In order to achieve the optimal search time, we need only to care about
patterns of length up to ℓ that occur less than ℓ times, since otherwise the
term occ absorbs ℓ. To do this, we store all the text substrings of length up to
ℓ in an uncompressed trie C. This trie stores the number of times each of its
nodes occurs in the text, and stores in its leaves at depth ℓ the actual list of
those occurrences, in case there are at most ℓ. By definition of δ, there are at
most δℓ distinct substrings of length ℓ, so the trie contains at most δℓ2 nodes.
Moreover, across all the leaves, we store at most δℓ2 occurrences. The total
space for C is then O(δℓ2) ⊆ O(δ logϵ g) for any constant ϵ > 0.

To search for a pattern P of length up to ℓ, we first search for it in C
and verify if its trie node indicates that it occurs more than ℓ times. If so, we
use the normal search, as described above, which on the enhanced grid takes
time O(m + ℓ + occ) = O(m + occ). Otherwise, its occurrences are collected
from all the leaves descending from its trie node, also in time O(m + occ).
Instead, if the pattern length exceeds ℓ, it is also searched normally, in time
O(m+ ℓ+ occ) = O(m+ occ).

To build C, we slide a window of length ℓ through the whole text S,
maintaining a Karp–Rabin fingerprint ϕ for the current window. We store the
distinct signatures ϕ found in a hash table H, with a counter of its corre-
sponding length-ℓ substring in S. When a new ϕ value appears, the underlying
string is inserted in C, a pointer from H is set to point to the corresponding
trie leaf, and the list of the occurrences of the substring is initialized in the
corresponding leaf, with its first position just found. Every new occurrence
found is added in its trie leaf, until the length of its list exceeds ℓ, in which
case the list is deleted and not maintained anymore.

Per the Karp–Rabin formula given above, it takes O(1) time to compute
ϕ(S · b) from ϕ(a · S); thus, it takes O(n) time to compute the fingerprints for
all the length-ℓ windows of S. It takes O(n) expected time to maintain H (also
considering collisions) and collect the occurrences, plus O(δℓ2) time to insert
strings in C. We can propagate the number of occurrences of each leaf upwards
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in the trie, in O(δℓ) additional time. Added to the O(g log g) expected time
to build the enhanced grid, the expected construction time is O(n+ g log g) ⊆
O(n+ δ log n log σ

δ log n log n). This completes the proof of Theorem 1.2.

6 Counting pattern occurrences
In this section, we show how to efficiently count pattern occurrences within
δ-bounded space by adapting previous results [6, Sec. 7] to our parsing.

6.1 Near-optimal counting time
Christiansen et al. [6] build an RLSLP of size O(γ log n

γ ) on S[1 . . n] to count
how many times a pattern P [1 . .m] occurs in S in the near-optimal time
O(m+ log2+ϵ n), for any constant ϵ > 0. The idea is that, instead of tracking
all the secondary occurrences that are reached from each point of the grid
that lies in the appropriate ranges (recall Section 5.3), the number of those
occurrences is stored with the corresponding grid point, so they just need to
sum up those numbers. The only problem is with the run-length rules, as in
those cases the number of occurrences is not a function of the points only.
This case is handled using properties of their particular parsing.

Except for the problem of the run-length rules, the idea works on any gram-
mar. As seen in Section 5, using our grammar of size g = O(δ log n log σ

δ logn ), there
are O(logm) cutting positions that must be tried when searching for P . We
need O(m) time to identify the O(logm) relevant two-dimensional ranges, and
then count the number of occurrences in each such range in time O(log2+ϵ g),
using the same geometric data structure as in previous work [6]. Our count-
ing time is then O(m + logm log2+ϵ g). If m ≤ logm log2+ϵ g, then we have
logm log2+ϵ g ∈ O(log2+ϵ g log log g). In that case, infinitesimally adjusting ϵ,
we have logm log2+ϵ g ∈ O(log2+ϵ g); thus, our counting time can be written
as O(m+ log2+ϵ g).

All that is needed is then to handle the problem of the run-length rules
in our particular grammar. Just as in previous work [6], we will rely on a
property of the shortest period of the expansion of the string generated by a
run-length rule. In our grammar, we must take care of the paused symbols.

Definition 6.1. A string P [1 . .m] has a period p if P consists of ⌊m/p⌋
consecutive copies of P [1 . . p] plus a (possible empty) prefix of P [1 . . p].

The only property required for the mechanism designed for run-length
rules [6] is the one we prove in the following lemma.

Lemma 6.2 (cf. [6, Lemma 7.2]). For every run-length rule A → As
1 in our

grammar, the shortest period of exp(A) is |A1| := |exp(A1)|.
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Proof Let exp(A) = S(i . . j]. Since exp(A) consists of s consecutive copies of exp(A1),
then |A1| is a period of exp(A). From the Periodicity Lemma [26], we know that the
shortest period p of exp(A) satisfies p = gcd (p, |A1|); thus, d := |A1|/p is an integer.
Let v be the node labeled A in the parse tree of the grammar, and let r+1 denote the
level of the run represented by v, so A is a symbol in Sr+1 and A1 is a symbol in Sr.

Claim 6.3. For every k ≤ r, there are ds identical fragments in Sk that expand to
the (identical) fragments S(i . . i+ p], S(i+ p . . i+ 2p], . . . , S(j − p . . j].

Proof Since p is a period of S(i . . j] = S0(i . . j], we have S0(i . . i + p] = · · · =
S0(j − p . . j]. Hence, the claim holds trivially for k = 0. For k > 0, the inductive
assumption yields ds identical fragments Sk−1(ik . . ik + pk], . . . , Sk−1(jk − pk . . jk]
that expand to S(i . . i + p], . . . , S(j − p . . j], respectively. Since i, i + dp, j are all
level-r phrase boundaries, they are also level-k phrase boundaries. Consequently,
there is a block boundary after Sk−1[ik], Sk−1[ik+dpk], and Sk−1[jk]. In particular,
Sk−1(ik . . jk] is parsed into full blocks, which are collapsed to Sk(ik+1 . . jk+1]. We
shall prove that, for every δ ∈ [0 . . pk) and t ∈ [0 . . ds), there is a block boundary
after Sk−1[ik + tpk + δ] if and only if there is one after Sk−1[ik + dpk + δ]. For this,
we consider several cases.

• If tpk+δ = 0, there are block boundaries after both Sk−1[ik] and Sk−1[ik+dpk].
• If k is odd and tpk + δ ≥ 1, then

Sk−1[ik + tpk + δ . . ik + tpk + δ + 1] = Sk−1[ik + dpk + δ . . ik + dpk + δ + 1].

Since run-length encoding places a block boundary after Sk−1[ℓ] solely based on
Sk−1[ℓ . . ℓ+1], we conclude that there is a block boundary after Sk−1[ik+tpk+δ]
if and only if there is one after Sk−1[ik + dpk + δ].

• If k is even, tpk + δ ≥ 2, and pk ≥ 2, then
Sk−1[ik+tpk+δ−1 . . ik+tpk+δ+1] = Sk−1[ik+dpk+δ−1 . . ik+dpk+δ+1].

Since the restricted block parsing places a block boundary after Sk−1[ℓ] solely
based on Sk−1[ℓ− 1 . . ℓ+ 1], we conclude that there is a block boundary after
Sk−1[ik + tpk + δ] if and only if there is one after Sk−1[ik + dpk + δ].

• If k is even, tpk + δ = 1, and pk ≥ 2, then we need to consider several pos-
sibilities. If either Sk−1[ik + 1] /∈ Ak or Sk−1[ik + 2] /∈ Ak, then, due to
Sk−1[ik+1 . . ik+2] = Sk−1[ik+dpk+1 . . ik+dpk+2], restricted block parsing
places block boundaries both after Sk−1[ik+1] and Sk−1[ik+dpk+1]. Thus, we
can assume that both Sk−1[ik+1] ∈ Ak and Sk−1[ik+2] ∈ Ak. Since there is a
block boundary after Sk−1[ik], then ik = 0 or πk(Sk−1[ik]) < πk(Sk−1[ik+1]);
the latter holds even if Sk−1[ik] /∈ Ak because πk assigns larger values to sym-
bols in Ak than to symbols outside Ak (see Definition 3.5). In either case,
this means that πk(Sk−1[ik + 1]) is not a local minimum, so restricted block
parsing does not place a block boundary after Sk−1[ik + 1]. Similarly, since
there is a block boundary after Sk−1[ik + dpk], then πk(Sk−1[ik + dpk]) <
πk(Sk−1[ik + dpk +1]), so there is no block boundary after Sk−1[ik + dpk +1].

• If k is even and pk = 1, then all the symbols of Sk−1(ik . . jk] are equal. The
run they constitute has not collapsed at level k − 1, so the underlying symbol
does not belong to Ak−1 = Ak. Consequently, all symbols of Sk−1(ik . . jk] form
length-1 blocks. In particular, there are block boundaries after both Sk−1[ik+t]
and Sk−1[ik + d].
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All in all, we have proved that all fragments Sk−1(ik+ tpk . . ik+(t+1)pk] consist of
full blocks and that they are parsed identically. Hence, each of them gets collapsed
to an identical fragment of Sk that expands to S(i+ tp . . i+ (t+ 1)p]. □

Applying Claim 6.3 to k = r, we conclude that i, i+ p, i+ 2p, . . . , j are all level-
r phrase boundaries. In particular, S(i . . j] consists of at least ds level-r phrases.
However, S(i . . j] constitutes exactly one level-(r + 1) phrase corresponding to A.
Since A → As

1, we conclude that ds = s, i.e., p = |A1| holds as claimed. □

By Lemma 6.2, we can safely use the original method [6] to handle the
run-length rules. Thus, using O(δ log n log σ

δ log n ) space, we can build in O(n log n)
expected time a data structure that can count the occurrences of a pattern
P [1 . .m] within S[1 . . n] in near-optimal time O(m + log2+ϵ n). This proves
the first part of Theorem 1.3.

6.2 Optimal counting time
We now show how to reduce the counting time offered by our index to the
optimal O(m), at the cost of increasing the space consumption by a factor of
O(log n). If log g ≥ n log σ

δ log n , then we can simply use a compact index [27], which
takes O(n log σ

log n ) ⊆ O(δ log g) = O(δ log(δ log n log σ
δ log n )) space, can be constructed

in O(n) expected time, and answers counting queries in O(m) time. Thus, we
henceforth assume that log g < n log σ

δ log n .
In the same way as done in previous work [6, Sec. 7.1], we use a larger

geometric structure that speeds up counting time. This structure [25, Thm. 3]
supports orthogonal range counting queries in O(log g) time using O(g log g)
space, and is built in O(g log2 g) expected time. The counting time of our index
then becomes O(m+ logm log g).

Using a compact trie similar to the one described in Section 5.4, we index
all the substrings of length at most ℓ = ⌈log g log log g⌉. The only difference
with the trie we used before is that the trie we use now is compact (i.e.,
internal nodes with one child are not stored explicitly) and that we do not
store the list of occurrences but just the number of occurrences at each node.
Since there are δℓ substrings of length exactly ℓ, the space consumption of the
compact trie is O(δℓ) = O(δ log g log log g).

Our counting time O(m+logm log g) is in O(m) when m > ℓ because then
log g = O( ℓ

log ℓ ) ⊆ O( m
logm ). If we answer queries of length up to ℓ using the

compact trie and any other query using the geometric structure, our counting
time is always O(m).

The space consumption of our data structure is then O(g log g +
δ log g log log g). The first term is O(δ log n log σ

δ log n log(δ log n log σ
δ logn )) because g =

O(δ log n log σ
δ logn ). Due to our assumption log g < n log σ

δ log n , the second term is
O(δ log g log log g) ⊆ O(δ log n log σ

δ log n log g) ⊆ O(δ log n log σ
δ log n log(δ log n log σ

δ log n )).
The total expected construction time is O(n log n) [6]. This completes the
proof of Theorem 1.3.
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7 Conclusions and Future Work
We have obtained the best of two worlds [6, 7] in repetitive text indexing:
an index of asymptotically optimal size, O(δ log n log σ

δ logn ), with nearly-optimal
search time, O(m+(occ+1) logϵ n), where n is the text size, δ its repetitiveness
measure, m is the pattern length, occ is the number of times the pattern occurs
in the text, and ϵ > 0 is any constant. This closes a question open in those
previous works. We also manage to search in optimal O(m+ occ) time within
near-optimal space, O(δ log n log σ

δ log n logϵ(δ log n log σ
δ log n )). Finally, we show how to

count the occurrences of the pattern in the text without enumerating them:
we can do this in O(m + log2+ϵ n) time and optimal O(δ log n log σ

δ log n ) space, or
in optimal O(m) time and O(δ log n log σ

δ log n log(δ log n log σ
δ log n )) space.

An important open question is whether this final gap can be closed: can we
search or count in optimal time within δ-optimal space, O(δ log n log σ

δ logn )? With
our best results, space or time must be multiplied by O(logϵ n) or O(log n).
Further improvements of the search time could also be possible in the packed
setting, where the pattern can be read in O(⌈m log σ

log n ⌉) time.
Further research goes in the direction of providing more complex search

functionality within δ-bounded space. For example, a recent article [23] shows
how to efficiently find the maximal exact matches (MEMs) of a pattern in the
text, within O(δ log n

δ ) space. The way towards a final goal like providing suffix
tree functionality in δ-bounded space has several intermediate problems like
this one, which is of relevance in bioinformatics applications. The very recent δ-
SA [28], developed after the submission of this work, supports polylogarithmic-
time suffix array and inverse suffix array queries in O(δ log n log σ

δ log n ) space, and
thus constitutes a major step in that direction.
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