
Algorithms 2013, 2, 1-x manuscripts; doi:10.3390/a20x000x

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Practical Compressed Suffix Trees ∗

Andrés Abeliuk1, Rodrigo Cánovas2, and Gonzalo Navarro1

1 Department of Computer Science, University of Chile, Santiago, Chile;
E-Mail: {aabeliuk,gnavarro}@dcc.uchile.cl

2 NICTA Victoria Research Laboratory, Department of Computing and Information Systems;
University of Melbourne, Victoria 3010, Australia;
E-Mail: rcanovas@student.unimelb.edu.au

Received: / Accepted: / Published:

Abstract: The suffix tree is an extremely important data structure in bioinformatics. Classical
implementations require much space, which renders them useless to handle large sequence
collections. Recent research has obtained various compressed representations for suffix trees,
with widely different space-time tradeoffs. In this paper we show how the use of range min-
max trees yields novel representations achieving practical space/time tradeoffs. In addition,
we show how those trees can be modified to index highly repetitive collections, obtaining the
first compressed suffix tree representation that effectively adapts to that scenario.

Keywords: Suffix trees; compressed data structures; repetitive sequence collections; bioin-
formatics

1. Introduction

As a result of the sharply falling costs of sequencing, large sequence databases are rapidly emerging,
and they will soon grow to thousands of genomes and more. Sequencing machines are already producing
terabytes of data per day, at a few thousand dollars per genome, and will cost less very soon‡. This raises
a number of challenges in bioinformatics, particularly because those sequence databases are meant to be
subject of various analysis processes that require sophisticated data structures built on them.

The suffix tree [3–5] is probably the most important of those data structures. Many complex sequence
analysis problems are solved through sophisticated traversals over the suffix tree [6]. However, a serious

∗Preliminary partial versions of this article appeared in Proc. SEA 2010 [1] and Proc. SPIRE 2012 [2].
‡See, e.g., www.technologyreview.com/featuredstory/511051/inside-chinas-genome-factory

Algorithms 2013, 2 2

problem of suffix trees, aggravated on large sequence collections, is that they take much space. A naive
implementation can easily require 20 bytes per character, and a very optimized one reaches 10 bytes [7].
A way to reduce this space to about 4 bytes per character is to use a simplified structure called a suffix
array [8]. However, suffix arrays do not contain sufficient information to carry out all the complex tasks
suffix trees are used for. Enhanced suffix arrays [9] extend suffix arrays so as to recover the full suffix tree
functionality, raising the space to about 6 bytes per character in practice. Other heuristic space-saving
methods [10] achieve about the same.

For example, on DNA sequences, each character could be encoded with just 2 bits, whereas the
alternatives we have considered require 32 to 160 bits per character (bpc). This is an overhead of 1600%
to 8000%! The situation is also a heresy in terms of Information Theory: whereas the information
contained in a sequence of n symbols over an alphabet of size σ is n log σ bits in the worst case, all the
alternatives above require Θ(n log n) bits. (Our logarithms are in base 2.)

A solution to the large space requirements is of course resorting to secondary memory. However,
using suffix trees on secondary memory makes them orders of magnitude slower, as most of the required
traversals are highly non-local. A more interesting research direction, which has made much progress
in recent years, is to design compressed suffix trees (CSTs). Those compressed representations of suffix
trees are able to approach not only the worst-case space of the sequence, but even its information content
(i.e., they approach the space of the compressed sequence). CSTs are composed of a compressed suffix
array (CSA) plus some extra information that encodes the suffix tree topology and longest common prefix
(LCP) information (more details later). The existing solutions can be divided into three categories:

Explicit topology. The first CST proposal was by Sadakane [11, 12]. It uses 4n + o(n) bits to rep-
resent the suffix tree topology, plus 2n + o(n) bits to represent the LCP values. In addition, it
uses Sadakane’s CSA [13], which requires nH0 + O(n log log σ) bits, where H0 is the zero-order
entropy of the sequence. This structure supports most of the tree navigation operations in constant
time (except, notably, going down to a child, which is an important operation), at the price of Θ(n)

bits of space on top of a CSA.

Sampling. A second proposal was by Russo et al. [14, 15]. It is based on sampling some suffix tree
nodes and recovering the information on any other node by moving to the nearest sample using
suffix links. It requires only o(n) bits on top of a CSA. By using an FM-index [16] as the CSA,
one achieves nHk + o(n log σ) bits of space, where Hk is the k-th order empirical entropy of the
sequence (a measure of statistical compressibility [17]), for sufficiently low k ≤ α logσ n, for any
constant 0 < α < 1. The navigation operations are supported in polylogarithmic time (at best
Θ(log n log log n) in their paper).

Intervals. Yet a third proposal was by Fischer et al. [18–20]. It avoids the explicit representation of
the tree topology by working all the time with the corresponding suffix array intervals. All the
suffix tree navigation is reduced to three primitive operations on such intervals: next/previous
smaller value and range minimum queries (more details later). The proposal achieves a space/time
tradeoff that is between the two previous ones: it reduces the Θ(n) extra bits of Sadakane to o(n),
and the superlogarithmic operation times of Russo et al. to O(logε n), for any constant 0 < ε < 1.

Algorithms 2013, 2 3

More precisely, the space is nHk(2 max(1, log(1/Hk)) + 1/ε + O(1)) + o(n log σ) bits (for the
same k ranges as above).

We remark that the space figures include the storage of the sequence itself, as all modern CSAs are
self-indexes, that is, they contain both the sequence and its suffix array.

For applications, the practical performance of the above schemes is more relevant than the theoretical
figures. The solution based on explicit topology was implemented by Välimäki et al. [21]. As expected
from theory, the structure is very fast, achieving a few tens of microseconds per operation, but uses
significant space (about 25–35 bpc, close to a suffix array). This undermines its applicability. Very
recently, Gog [22] showed that this implementation can be made much more space-efficient, using about
13–17 bpc. This still puts this solution in the range of the “large” CSTs in the context of this paper.

The structure based on sampling was implemented by Russo. As expected from theory again, it
was shown to achieve very little space, around 4–6 bpc, which makes it extremely attractive when the
sequence is large compared to the available main memory. On the other hand, the structure is much
slower than the previous one: Each navigation operation takes the order of milliseconds.

In this paper we present the first implementations of the third approach, based on intervals. As
predicted by theory once again, we achieve practical implementations that lie between the two previous
extremes (too large or too slow) and offer attractive space/time tradeoffs. One variant shows to be
superior to the original implementation of Sadakane’s CST [21] in both space and time: it uses 13–16
bpc (i.e., half the space) and requires a few microseconds per operation (i.e., several times faster). A
second variant works within 8–12 bpc and requires a few hundreds of microseconds per operation, that
is, smaller than our first variant and still several times faster than Russo’s implementation. We remark
again that those space figures include the storage of the sequence, and that 8 bpc is the storage space of
a byte-based representation of the plain sequence (although 2 bpc is easily achieved on DNA).

Achieving those good practical results is not immediate, however. We show that a direct implementa-
tion of the techniques as described in the theoretical proposal [19] does not lead to the best performance.
Instead, we propose a novel solution to the previous/next smaller value and range minimum queries,
based on the range min-max tree (RMM tree), a recent data structure developed for succinct tree repre-
sentations [23, 24]. We adapt RMM trees to speed up the desired queries on sequences of LCP values.

The resulting representation not only performs better than a verbatim implementation of the theo-
retical proposal, but also has a great potential to handle highly repetitive sequence collections. Those
collections, formed by many similar strings, arise in version control systems, periodic publications, and
software repositories. They also arise naturally in bioinformatics, for example when sequencing the
genomes of many individuals of the same or related species (two human genomes share 99.9% of their
sequences, for example). It is likely that the largest genome collections that will emerge in the next years
will be highly repetitive, and taking advantage of that repetitiveness will be the key to handle them.

Repetitiveness is not captured by statistical compression methods nor frequency-based entropy defi-
nitions [17, 25] (i.e., the frequencies of symbols do not change much if we add near-copies of an initial
sequence). Rather, we need repetition aware compression methods. Although this kind of compres-
sion is well-known (e.g., grammar-based and Ziv-Lempel-based compression), only recently there have
appeared CSAs and other indexes that take advantage of repetitiveness [25–28]. Yet, those indexes do
not support the full suffix tree functionality. On the other hand, none of the existing CSTs is tailored to

Algorithms 2013, 2 4

repetitive text collections.
Our second contribution is to present the first, and the only to date, fully-functional compressed

suffix tree whose compression effectiveness is related to the repetitiveness of the text collection. While
its operations are much slower than most existing CSTs (requiring the order of milliseconds), the space
required is also much lower on repetitive collections (1.4–1.9 bpc in our mildly repetitive test collections,
and 0.6 bpc on a highly repetitive one). This can make the difference between fitting the collection in
main memory or having to resort to disk.

The paper is organized as follows. Section 2. gives the basis of suffix array and tree compression in
general and repetitive text collections, and puts our contribution in context. Section 3. compares various
LCP representations and chooses suitable ones for our CST. Section 4. proposes the novel RMM-tree
based solution for NSV/PSV/RMQ operations and shows it is superior to a verbatim implementation of
the theoretical proposal. Section 5. assembles our CST using the previous pieces, and Section 6. evaluates
and compares it with alternative implementations. Section 7. extends the RMM concept to design a
CST that adapts to repetitive collections, and Section 8. evaluates it. Finally, Section 9. concludes and
discusses various new advances [22, 29] that have been made on efficiently implementing the interval-
based approach since the conference publication of our results [1, 2].

2. Related Work and Our Contribution in Context

Our aim is to handle a collection of texts T1, T2, . . . over an alphabet Σ of size σ. This is customarily
represented as a single text T = T1$T2$. . . concatenating all the texts in the collection. The symbol “$”
is an endmarker that does not appear elsewhere. Such a representation simplifies the discussion on data
structures, which can consider that a single text is handled.

2.1. Suffix Arrays and CSAs

A suffix array over a text T [1, n] is an array A[1, n] of the positions in T , lexicographically sorted
by the suffix starting at the corresponding position of T . That is, T [A[i], n] < T [A[i + 1], n] for all
1 ≤ i < n. Note that every substring of T is the prefix of a suffix, and that all the suffixes starting
with a given pattern P appear consecutively in A, hence a pair of binary searches find the area A[sp, ep]

containing all the positions where P occurs in T .
There are several compressed suffix arrays (CSAs) [30, 31], which offer essentially the following

functionality: (1) Given a pattern P [1,m], find the interval A[sp, ep] of the suffixes starting with P ; (2)
obtain A[i] given i; (3) obtain A−1[j] given j. An important function the CSAs implement is Ψ(i) =

A−1[(A[i] mod n)+1] and its inverse, usually much faster than computing A and A−1. This function lets
us move virtually in the text, from the suffix i that points to text position j = A[i], to the one pointing to
j + 1 = A[Ψ(i)]. Function Ψ is essential to support suffix tree functionality.

Most CSAs are self-indexes, meaning that they can also extract any substring of T and thus T does
not need to be stored separately. Generally, one can extract any T [i, i+ `] using s+ ` applications of Ψ,
where s is a sampling parameter that involves spending O((n/s) log n) extra bits of space.

Algorithms 2013, 2 5

a d

bar
$

_

l

a

labar

_

l

l

a

2 1

4 1 69

1 27

_

$

2 0

bar
_

1 1 8

d_

1 53

r

d_

1 75

d_

1 31

1 9

d la r

d_

1 86

bar_

1 0

d_

1 42

T : a l a b a r _ a _ l a _ a l a b a r d a $

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 SA 21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

LCP 0 0 2 1 0 1 2 1 4 1 6 1 2 0 3 0 0 2 5 0 1

Figure 1. The suffix tree of the text “alabar a la alabarda$”, where the “$” is a terminator symbol. The
white space is written as an underscore for clarity, and it is lexicographically smaller than the characters
“a”-“z”.

2.2. Suffix Trees and CSTs

A suffix trie is a trie (or digital tree) storing all the suffixes of T . This is a labeled tree where each text
suffix is read in a root-to-leaf path, and the edges toward the children of a node are labeled by different
characters. The concatenation of the string labels from the root up to a node v is called the path-label
of v, π(v). A suffix tree is obtained by “compacting” unary paths in a suffix trie, which means they
are converted into a single edge labeled by the string that concatenates the involved character labels.
Furthermore, a node v is converted into a leaf (and the rest of its descending unary path is eliminated) as
soon as π(v) becomes unique. Such leaf is annotated with the starting position i of the only occurrence
of π(v) in T , that is, suffix T [i, n] starts with π(v). If the children of each suffix tree node are ordered
lexicographically by their string label, then the sequence of leaf annotations of the suffix tree is precisely
the suffix array of T . Figure 1 illustrates a suffix tree and suffix array. Several navigation operations over
the nodes and leaves of the suffix tree are of interest. Table 1 lists the most common ones.

The suffix array alone is insufficient to efficiently emulate all the relevant suffix tree operations. To
recover the full suffix tree functionality, we need two extra pieces of information: (1) the tree topology;
(2) the longest common prefix (LCP) information, that is, LCP[i] is the length of the longest common
prefix between T [A[i − 1], n] and T [A[i], n] for i > 1 and LCP[1] = 0 (or, seen another way, LCP[i] is

Algorithms 2013, 2 6

Operation Description

Root() the root of the suffix tree.
Locate(v) position i such that π(v) starts at T [i], for a leaf v.
Ancestor(v, w) true if v is an ancestor of w.
SDepth(v) string-depth of v, i.e., |π(v)|.
TDepth(v) tree-depth of v, i.e., depth of node v in the suffix tree.
Count(v) number of leaves in the subtree rooted at v.
Parent(v) parent node of v.
FChild(v) alphabetically first child of v.
NSibling(v) alphabetically next sibling of v.
SLink(v) suffix-link of v, i.e., the node w s.th. π(w) = β if π(v) = aβ for a ∈ Σ.
SLinki(v) iterated suffix-link, i.e., the node w s.th. π(w) = β if π(v) = αβ for α ∈ Σi.
LCA(v, w) lowest common ancestor of v and w.
Child(v, a) node w s.th. the first letter on edge (v, w) is a ∈ Σ.
Letter(v, i) ith letter of v’s path-label, π(v)[i].
LAQS(v, d) the highest ancestor of v with string-depth ≥ d.
LAQT (v, d) the ancestor of v with tree-depth d.

Table 1. Main operations over the nodes and leaves of the suffix tree.

the length of the string labeling the path from the root to the lowest common ancestor node of the ith and
(i − 1)th suffix tree leaves). Indeed, the suffix tree topology can be implicit if we identify each suffix
tree node with the suffix array interval containing the leaves that descend from it. This range uniquely
identifies the node because there are no unary nodes in a suffix tree.

Consequently, a compressed suffix tree (CST) is obtained by enriching the CSA with some extra data.
Sadakane [12] added the topology of the tree (using 4n extra bits) and the LCP data. The LCP data was
compressed to 2n bits by noticing that, if sorted by text order rather than suffix array order, the LCP
numbers decrease by at most 1: Let PLCP be the permuted LCP array, then PLCP[j+1] ≥ PLCP[j]−1.
Thus the numbers can be differentially encoded, h[j + 1] = PLCP[j + 1]− PLCP[j] + 1 ≥ 0, and then
represented in unary over a bitmap H[1, 2n] = 0h[1]10h[2] . . . 10h[n]1. Then, to obtain LCP[i], we look
for PLCP[A[i]], and this is extracted from H via rank/select operations. Here rankb(H, i) counts the
number of bits b in H[1, i] and selectb(H, i) is the position of the i-th b in H . Both can be answered
in constant time using o(n) extra bits of space [32]. Then PLCP[j] = select1(H, j) − 2j, assuming
PLCP[0] = 0.

Russo et al. [15] get rid of the parentheses, by instead identifying suffix tree nodes with their cor-
responding suffix array interval. By sampling some suffix tree nodes, most operations can be carried
out by moving, using suffix links, towards a sampled node, finding the information stored in there, and
transforming it as we move back to the original node. The suffix link operation, defined in Table 1, can
be computed using Ψ and the lowest common ancestor operation [12].

Algorithms 2013, 2 7

2.3. Re-Pair and Repetition-Aware CSAs

Re-Pair [33] is a grammar-based compression method that factors out repetitions in a sequence. It is
based on the following heuristic: (1) Find the most repeated pair ab in the sequence; (2) replace all its
occurrences by a new symbol s; (3) add a rule s → ab to a dictionary R; (4) iterate until every pair is
unique.

The result of the compression of a text T , over a alphabet Σ of size σ, is the dictionary R and the
remaining sequence C, containing new symbols (s) and symbols in Σ. Every sub-sequence of C can be
decompressed locally by the following procedure: Check if C[i] < σ; if so the symbol is original, else
look in R for rule C[i]→ ab, and recursively continue expanding with the same steps.

The dictionary R corresponds to a context-free grammar, and the sequence C to the initial symbols
of the derivation tree that represents T . The final structure can be regarded as a sequence of binary trees
with roots C[i].

González and Navarro [34] used Re-Pair to compress the differentially encoded suffix array, A′[i] =

A[i] − A[i − 1]. They showed that Re-Pair achieves |R| + |C| = O(r log n
r
) on A′, r being the number

of runs in Ψ. A run in Ψ is a maximal contiguous area where Ψ(i + 1) = Ψ(i) + 1. It was shown that
the number of runs in Ψ is r ≤ nHk + σk for any k [35]. More importantly, repetitions in T induce long
runs in Ψ, and hence a smaller r [26]. An exact bound has been elusive, but Mäkinen et al. [26] gave an
average-case upper bound for r: if T is formed by a random base sequence of length n′ � n and then
other sequences that have m random mutations (which include indels, replacements, block moves, etc.)
with respect to the base sequence, then r is at most n′ + O(m logσ n) on average.

The RLCSA [26] is a CSA where those runs in Ψ are factored out, to achieve O(r) cells of space.
More precisely, the size of the RLCSA is r(2 log(n/r) + log σ)(1 + o(1)) bits. It supports accesses to A
in time O(s log n), with O((n/s) log n) extra bits for a sampling of A.

2.4. An Interval-Based CST

Fischer et al. [19] prove that bitmap H in Sadakane’s CST is compressible as it has at most 2r runs
of 0s or 1s, where r is the number of runs in Ψ as before.

Let z1, z2, . . . , zr be the lengths of the runs of 0s and o1, o2, . . . , or be the lengths of the runs of 1s.
Fischer et al. [19] create arrays Z = 10z1−110z2−1 . . . and O = 10o1−110o2−1 . . ., with overall 2r 1s out
of 2n, and thus can be compressed to 2r log n

r
+ O(r) + o(n) bits while supporting constant-time rank

and select [36]. When r is very small it is better to use other bitmap representations (e.g., [37]) requiring
2r log n

r
+O(r) bits, even if they do not offer constant times for rank.

Their other improvement over Sadakane’s CST is to get rid of the tree topology and replace it with
suffix array ranges. Fischer et al. show that all the navigation can be simulated by means of three
operations: (1) the range minimum query RMQ(i, j) gives the position of the minimum in LCP[i, j];
(2) the previous smaller value PSV(i) finds the last value smaller than LCP[i] in LCP[1, i − 1]; and (3)
the next smaller value NSV(i) finds the first value smaller than LCP[i] in LCP[i + 1, n]. As examples,
the parent of node [i, j] can be computed as [PSV(i),NSV(i) − 1]; the LCA between nodes [i, j] and
[i′, j′] is [PSV(p),NSV(p) − 1], where p = RMQ(min(i, i′), max(j, j′)); and the suffix link of [i, j] is
[PSV(Ψ(i)),NSV(Ψ(j))− 1].

Algorithms 2013, 2 8

The three primitives could easily be solved in constant time using O(n) extra bits of space on top of
the LCP representation [19],§but Fischer et al. give sublogarithmic-time algorithms to solve them with
only o(n) extra bits.

A final observation of interest in that article [19] is that the repetitions found in a differential encoding
of the suffix array (i.e., the runs in Ψ) also show up in the differential LCP, since if A values differ by 1
in a range, the LCP areas must also differ by 1. Therefore, Re-Pair compression of the differential LCP
should perform similarly as González and Navarro’s suffix array compression [34].

2.5. Our Contribution

In this paper we design a practical and efficient CST building on the ideas of Fischer et al. [19],
and show that its space/time performance is attractive. This challenge can be divided into (1) how to
represent the LCP array efficiently in practice, and (2) how to compute efficiently RMQ, PSV, and NSV
over this LCP representation. For the first subproblem we compare various implementations, whereas
for the second we adapt a data structure called range min-max tree [23], which was designed for another
problem. We compare the resulting CST with previous ones and show that it offers relevant space/time
tradeoffs. Finally, we design a variant of the range min-max tree that is suitable for highly repetitive
collections (i.e., with low r value). This is obtained by replacing this regular tree by the (truncated)
grammar tree of the Re-Pair compression of the differential LCP array. The resulting CST is the only
one handling repetitive collections within space below 2 bpc.

3. Representing Array LCP

The following alternatives were considered to represent LCP:

Sad-Gon Encodes Sadakane’s [12] H bitmap in plain form, using the rank/select implementation of
González [38], which takes 0.1n bits on top of the 2n used by H itself. This implementation
answers rank in constant time and select in O(log n) time via binary search.

Sad-OS Like the previous one, but using the dense array implementation of Okanohara and Sadakane
[37] for H . This requires about the same space as the previous one and answers select in time
O(log4 r/ log n).

FMN-RRR Encodes H in compressed form as in Fischer et al. [19], that is, by encoding sparse bitmaps
Z and O. We use the compressed representation by Raman et al. [36] as implemented by Claude
[39]. This costs 0.54n extra bits on top of the entropy of the two bitmaps, 2r log n

r
+ O(r).

Operation rank takes constant time and select takes O(log n) time.

FMN-OS Like the previous one, but instead of Raman et al. technique, we use the sparse array imple-
mentation by Okanohara and Sadakane [37]. This requires 2r log n

r
+ O(r) bits and solves select

in time O(log4 r/ log n).

PT Inspired in an LCP construction algorithm [40], we store a particular sampling of LCP values,
and compute the others using the sampled ones. Given a parameter v, the sampling requires

§More recently, Ohlebusch et al. [29] showed how to solve them in constant time using 3n+ o(n) bits.

Algorithms 2013, 2 9

Collection Size Description Avg LCP Max LCP Runs (r/n)

dna 100 DNA sequences from Gutenberg Project 28.1 17, 772 0.63
xml 100 XML from dblp.uni-trier.de 44.5 1, 084 0.14
proteins 100 Protein sequences from the Swissprot database 220.6 35, 246 0.59
sources 100 Source code obtained by concatenating files of the 625.1 307, 871 0.23

linux-2.6.11.6 and gcc-4.0.0 distributions

Table 2. Data files used for tests with their size in MB, plus some information on their compressibility.

n+O(n/
√
v+ v) bytes of space and computes any LCP[i] by comparing at most some T [j, j+ v]

and T [j′, j′ + v]. As we must obtain these symbols using Ψ up to 2v times, the idea is slow.

PhiSpare This is inspired in another construction [41]. For a parameter q, we store in text order an
array PLCPq with the LCP values for all text positions q · k. Now assume A[i] = qk + b, with
0 ≤ b < k. If b = 0, then LCP[i] = PLCPq[k]. Otherwise, LCP[i] is computed by comparing
at most q + PLCPq[k + 1]− PLCPq[k] symbols of the suffixes T [A[i− 1], n] and T [A[i], n]. The
space is n/q integers and the computation requires O(q) applications of Ψ on average.

DAC The directly addressable codes of Ladra et al. [42]. Most LCP values are small (O(logσ n) on
average), and thus require few bits. Yet, some can be much larger. Thus we can fix a block length
b and divide each number of ` bits, into d`/be blocks of b bits. Each block is stored using b + 1

bits, the last one telling whether the number continues in the next block or finishes in the current
one. Those blocks are then rearranged to allow for fast random access. There are two variants of
this structure, both implemented by Ladra: one with fixed b (DAC), and another using different
b values for the first, second, etc. blocks, so as to minimize the total space (DAC-Var). Note we
represent LCP and not PLCP, thus we do not need to compute A[i].

RP Re-Pair As mentioned, Re-Pair can be used to compress the differential LCP array, LCP′ [19]. To
obtain LCP[i] we store sampled absolute LCP values and decompress the nonterminals since the
last sample.

3.1. Experimental Comparison

Our computer is an Intel Core2 Duo at 3.16 GHz, with 8 GB of RAM and 6 MB cache, running Linux
version 2.6.24-24. Table 2 lists the collections used for this experiment. They were obtained from the
Pizza&Chili site¶. We also give some information on their LCP values and number of runs in Ψ, which
affects their compressibility. We tested the different LCP representations by accessing 100,000 random
positions of the LCP array. Figure 2 (left) shows the space/times achieved on the four texts. Only PT and
PhiSpare display a space/time tradeoff; in the first we use v = 4, 6, 8 and for the second q = 16, 32, 64.
Because in various cases we need to access a sequence of consecutive LCP values, we show in Figure 2
(right) the time per cell when accessing 32 consecutive cells. The plots also show solution Naive, which
stores LCP values using the number of bits required by the maximum value in the array.

¶http://pizzachili.dcc.uchile.cl

Algorithms 2013, 2 10

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, LCP

Sad-Gon
Sad-OS

FMN-RRR
FMN-OS

PT
PhiSpare

DAC
DAC-Var

RP
Naive

Figure 2. Space/time for accessing array LCP. On the left for random accesses and on the right for
sequential accesses.

Algorithms 2013, 2 11

We use Sadakane’s CSA implementation [13], available at Pizza&Chili, as our CSA, with sampling
s = 16. This is relevant because various LCP implementations need to compute A[i] from the CSA.

A first observation is that Fischer et al.’s compression techniques for bitmap H do not compress
significantly in practice (on non-repetitive collections). The value of r is not small enough to make the
compressed representations noticeable smaller (and at times their space overhead over the entropy makes
them larger, especially variant FMN-OS).

These explicit representations of H require only 2.1n bits of space and access LCP in about 10
microseconds. Technique PT is always dominated by them and PhiSpare can achieve less space, but at
the price of an unacceptable 10-fold increase in time.

The other dominant technique is DAC/DAC-Var, which requires significantly more space (6n−8n bits)
but can access LCP within 0.1–0.2 microseconds. This is because it does not need to computeA[i] to find
LCP[i]. Its time is even competitive with Naive, while using much less space. Technique RP, instead,
does not perform well, doing even worse than Naive in time and space. This shows, again, that (in
non-repetitive) collections the value r is not small enough: While the length of the Re-Pair compressed
sequence is 30%–60% of the original one, the values require more bits than in Naive because Re-Pair
creates many new symbols.

DAC, DAC-Var and Naive are the only techniques that benefit from extracting consecutive values, so
the former stay comparable with Naive in time even in this case. This owes to the better cache usage
compared to the other representations, which must access spread text positions to decode a contiguous
LCP area.

For the sequel we will keep only DAC and DAC-Var, which give the best time performance, and
FMN-RRR and Sad-Gon, which have the most robust performance at representing H .

4. Computing RMQ, PSV, and NSV

Once a representation for LCP is chosen, one must carry out operations RMQ, PSV, and NSV on top
of it (as they require to access LCP). We first implemented verbatim the theoretical proposals of Fischer
et al. [19]. For NSV, the idea is akin to the recursive findclose solution for compressed trees [43]: the
array is divided into blocks and some values are chosen as pioneers so that, if a position is not a pioneer,
then its NSV answer is in the same block of that of its preceding pioneer (and thus it can be found by
scanning that block). Pioneers are marked in a bitmap so as to map them to a reduced array of pioneers,
where the problem is recursively solved. We experimentally verified that it is convenient to continue the
recursion until the end instead of storing the explicit answers at some point. The block length L yields a
space/time tradeoff since, at each level of the recursion, we must obtain O(L) values from LCP. PSV is
symmetric, needing another similar structure.

For RMQ we apply a recent implementation [44, 45] on the LCP array, which does not need to access
LCP, yet it requires 2.44n bits. In the actual theoretical proposal [19] this space is reduced to o(n) bits,
but many accesses to LCP are necessary; we did not implement that idea verbatim as it has little chances
of being practical.

The final data structure, that we call FMN-NPR, is composed of the structure to answer NSV plus the
one for PSV plus the structure to calculate RMQ.

Algorithms 2013, 2 12

4.1. A Novel Practical Solution

We propose now a different solution, inspired in Sadakane and Navarro’s range min-max (RMM)
tree data structure [23]. We divide LCP into blocks of length L. Now we form a hierarchy of blocks,
where we store the minimum LCP value of each block i in an array m[i]. The array uses n

L
log n bits.

On top of array m, we construct a perfect L-ary tree Tm where the leaves are the elements of m and
each internal node stores the minimum of the values stored in its children. The total space for Tm is
n
L

log n(1 +O(1/L)) bits, so if L = ω(log n), the space used is o(n) bits.
To answer NSV(i), we look for the first j > i such that LCP[j] < p = LCP[i], using Tm to find it

in time O(L log(n/L)). We first search sequentially for the answer in the same block of i. If it is not
there, we go up to the leaf that represents the block and search the right siblings of this leaf. If some of
these sibling leaves contain a minimum value smaller than p, then the answer to NSV(i) is within their
block, so we go down to their block and find sequentially the leftmost position j where LCP[j] < p.
If, however, no sibling of the leaf contains a minimum smaller than p, we continue going up the tree
and considering the right siblings of the parent of the current node. At some node we find a minimum
smaller than p and start traversing down the tree as before, finding at each level the first child of the
current node with a minimum smaller than p. PSV is symmetric. As the minima in Tm are explicitly
stored, the heaviest part of the cost in practice is the O(L) accesses to LCP cells at the lowest levels.

To calculate RMQ(x, y) we use the same Tm and separate the search in three parts: (a) We calculate
sequentially the minimum value in the interval [x, Ld x

L
e − 1] and its leftmost position in the interval; (b)

we do the same for the interval [Lb y
L
c, y]; (c) we calculate RMQ(Ld x

L
e, Lb y

L
c − 1) using Tm. Finally

we compare the results obtained in (a), (b) and (c) and the answer will be the one holding the minimum
value, choosing the leftmost to break ties. For each node in Tm we also store the local position in the
children where the minimum occurs, so we do not need to scan the child blocks when we go down the
tree. The extra space incurred is just n

L
logL(1 +O(1/L)) bits. The final data structure, if L = ω(log n),

requires o(n) bits and can compute NSV, PSV and RMQ all using the same auxiliary structure. We call it
RMM-NPR.

4.2. Experimental Comparison

We tested the performance of the different NPR implementations by performing 100,000 NSV and
RMQ queries at random positions in the LCP array. Figure 3 shows the space/time achieved for each
implementation on dna and proteins (the others texts gave very similar results). We consider the
four selected LCP representations, which affect the performance because the algorithms have to access
the array. The space we plot is additional to that to store the LCP array. We obtained space/time tradeoffs
by using different block sizes L = 8, 16, 32. Note that RMQ on FMN-RMQ does not access LCP, so the
value of L does not affect it.

First, it can be seen that RMM-NPR performs well using much less space than FMN-NPR. In addition,
solving NSV (and thus PSV) with RMM-NPR structure is significantly faster than with FMN-NPR. This
holds under all the LCP representations, regardless that times are one order of magnitude higher with
representations Sad-Gon and FMN-RRR.

On the other hand, RMQ is way faster on FMN because it does not need to access LCP at all. It

Algorithms 2013, 2 13

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

dna.100MB, NPR with Sad-Gon LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

proteins.100MB, NPR with Sad-Gon LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

dna.100MB, NPR with FMN-RRR LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

proteins.100MB, NPR with FMN-RRR LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

dna.100MB, NPR with DAC LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

proteins.100MB, NPR with DAC LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

dna.100MB, NPR with DAC-Var LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 p

e
r

o
p
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

Bits per character

proteins.100MB, NPR with DAC-Var LCP

FMN NSV
FMN RMQ
RMM NSV
RMM RMQ

Figure 3. Space/time for the operations NSV and RMQ. Times for PSV are identical to those for NSV.

Algorithms 2013, 2 14

is 2–3 times faster than RMM using DAC or DAC-Var and two orders of magnitude faster than RMM
using Sad-Gon or FMN-RRR. This operation, however, is far less common than NSV and PSV when
implementing the CST operations, so its impact is not so high. Another reason to prefer RMM-NPR is
that it can support a generalized version of NSV and PSV, which allows us to solve operation LAQT on
suffix trees without adding more memory, as opposed to FMN-NPR. In the next section we show how a
fully-functional CST can be implemented on top of the RMM-NPR representation.

5. Our Compressed Suffix Tree

Our CST implementation applies our RMM-NPR algorithms of Section 4. on top of some LCP repre-
sentation from those chosen in Section 3.. This solves most of the tree traversal operations by using the
formulas provided by Fischer et al. [19], which we do not repeat here. In some cases, however, we have
deviated from the theoretical algorithms for practical considerations.

TDepth: We proceed by brute force using Parent, as there is no practical solution in the theoretical
proposal.

NSibling: There is a bug in the original formula [19] in the case v is the next-to-last child of its parent.
According to them, NSibling([vl, vr]) first obtains its parent [wl, wr], then checks whether vr = wr

(in which case there is no next sibling), then checks whether wr = vr + 1 (in which case the next
sibling is leaf [wr, wr]), and finally answers [vr+1, z−1], where z = RMQ(vr+2, wr). This RMQ
is aimed at finding the end of the next sibling of the next sibling, but it fails if we are near the end.
Instead, we replace it by the faster z = NSV′(vr + 1,LCP[vr + 1]). NSV′(i, d) generalizes NSV by
finding the next value smaller or equal to d, and is implemented almost like NSV using Tm.

Child: The children are ordered by letter. We need to extract the children sequentially using FChild
and NSibling, to find the one descending by the correct letter, yet extracting the Letter of each is
expensive. Thus we first find all the children sequentially and then binary search the correct letter
among them, thus reducing the use of Letter as much as possible.

LAQS(v, d): Instead of the slow complex formula given in the original paper, we use NSV′ (and PSV′):
LAQS([vl, vr], d) = [PSV′(vl + 1, d),NSV′(vr, d)− 1]. This is a complex operation we are support-
ing with extreme simplicity.

LAQT (v, d): There is no practical solution in the original proposal. We proceed as follows to achieve
the cost of d Parent operations, plus some LAQS ones, all of which are reasonably cheap. Since
SDepth(v) ≥ TDepth(v), we first try v′ = LAQS(v, d), which is an ancestor of our answer; let
d′ = TDepth(v′). If d′ = d we are done; else d′ < d and we try v′′ = LAQS(v, d + (d − d′)). We
compute d′′ = TDepth(v′′) (which is measured by using d′′ − d′ Parent operations until reaching
v′) and iterate until finding the right node.

Table 3 gives a space breakdown for our CST. We give the space in bpc of Sadakane’s CSA, the 4
alternatives we consider for the LCP representation, and the space of our RMM tree (using L = 32 for
a “slow” variant and L = 16 for a “fast” variant). The last column gives the total bpc considering the

Algorithms 2013, 2 15

Collection CSA bpc LCP bpc RMM bpc Total bpc
Sad-Gon FMN-RRR DAC DAC-Var Slow Fast Slow Fast

dna 5.88 2.10 3.06 6.29 5.79 1.23 2.47 9.21 14.14

xml 4.47 2.10 2.03 9.30 7.77 1.23 2.47 7.73 14.71

proteins 7.91 2.10 2.59 7.43 6.97 1.23 2.47 11.24 17.35

sources 5.20 2.10 2.29 8.23 7.50 1.23 2.47 8.53 15.17

Table 3. Space breakdown of our compressed suffix tree.

smallest “slow” (using Sad-Gon or FMN-RRR for LCP) and the smallest “fast” (using DAC or DAC-Var)
alternatives.

6. Comparing the CST Implementations

We compare the following CST implementations: Välimäki et al.’s [21] implementation of Sadakane’s
compressed suffix tree [12] (CST-Sadakane); Russo’s implementation of Russo et al.’s “fully-compressed”
suffix tree [15] (FCST); and our best variants. These are called Our CST in the plots. Depending on their
LCP representation, they are suffixed with Sad-Gon, FMN-RRR, DAC, and DAC-Var. We do not com-
pare some operations like Root and Ancestor because they are trivial in all the implementations; Locate
and Count because they depend only on the underlying CSA (which is mostly orthogonal, thus Letter
is sufficient to study it); SLinki because it is usually better to do SLink i times; and LAQS and LAQT

because they are not implemented in the alternative CSTs (these two are shown only for ours).
We typically show space/time tradeoffs for all the structures, where the space is measured in bpc

(recall that these CSTs replace the text, so this is the overall space required). The times are averaged
over a number of queries on random nodes. We use four types of node samplings, which make sense
in different typical suffix tree traversal scenarios: (a) Collecting the nodes visited over 10,000 traversals
from a random leaf to the root (used for Parent, SDepth, and Child operations); (b) same but keeping
only nodes with at least 5 children (for Letter); (c) collecting the nodes visited over 10,000 traversals
from the parent of a random leaf towards the root via suffix links (used for SLink and TDepth); and (d)
taking 10,000 random leaf pairs (for LCA). The standard deviation divided by the average is in the range
[0.21,2.56] for CST-Sadakane, [0.97,2.68] for FCST, [0.65,1.78] for Our CST Sad-Gon, [0.64,2.50] for
Our CST FMN-RRR, [0.59,0.75] for Our CST DAC, and [0.63,0.91] for Our CST DAC-Var. The standard
deviation of the estimator is thus at most 1/100th of that.

Parent and TDepth. Figure 4 shows the performance of operations Parent and TDepth. As can be
seen, CST-Sadakane is about 5 to 10 times faster than our best results for Parent and 100 times faster
for TDepth. This is not surprising given that CST-Sadakane stores the topology explicitly and thus these
operations are among the easiest ones. In addition, our implementation computes TDepth by brute force.
Note, on the other hand, that FCST is about 10 times slower than our slowest implementation.

SLink, LCA, and SDepth. Figure 5 shows the performance of operations SLink and LCA, which are
the ones most specific of suffix trees. Figure 6 (left) shows operation SDepth. Those operations happen

Algorithms 2013, 2 16

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, Parent

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, TDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, Parent

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, TDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, Parent

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, TDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, Parent

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, TDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

Figure 4. Space/time trade-off performance for operations Parent and TDepth. Note the logscale.

Algorithms 2013, 2 17

to be among the most natural ones in Russo’s FCST, which displays a better performance compared to
the previous ones. CST-Sadakane, instead, is not anymore the fastest. Indeed, our implementations based
on DAC and DAC-Var are by far the fastest ones for these operations, 10 times faster than CST-Sadakane
and 100 to 1000 times faster than FCST. Even our slower implementations are way faster than FCST and
close to CST-Sadakane times.

Child. Figure 6 (right) shows operation Child, where we descend by a random child from the current
node. Our times are significantly higher than for other operations, as expected, and the same happens to
CST-Sadakane, which becomes comparable with our “large and fast” variants. FCST, on the other hand,
is not much affected and becomes comparable with our “small and slow” variant. We note that, unlike
other operations, the differences in performance depend markedly on the type of text.

Letter. Figure 7 (left) shows operation Letter(v, i), as a function of i. This operation depends only on
the CSA structure, and requires either applying i− 1 times Ψ, or applying once A and A−1. The former
choice is preferred for FCST and the latter in CST-Sadakane. For our CST, using Ψ iteratively was better
for these i values, as the alternative takes around 70 microseconds (recall we use Sadakane’s CSA [13]).

A full traversal. Figure 7 (right) shows a basic suffix tree traversal algorithm: the classical one to
detect the longest repetition in a text. This traverses all of the internal nodes using FChild and NSibling
and reports the maximum SDepth. Although CST-Sadakane takes advantage of locality, our “large and
fast” variants are better while using half the space. Our “small and slow” variant, instead, requires a few
hundred microseconds, as expected, yet FCST has a special implementation for full traversals and it is
competitive with our slow variant.

LAQS and LAQT . Figure 8 shows the performance of the operations LAQS(v, d) and LAQT (v, d). The
times are presented as a function of parameter d, where we use d = 4, 8, 16, 32, 64. We query the nodes
visited over 10,000 traversals from a random leaf to the root (excluding the root). As expected, the
performance of LAQS is similar to that of Parent, and the performance of LAQT is close to that of doing
Parent d times. Note that, as we increase the value of d, the times tend to a constant. This is because, as
we increase d, a greater number of queried nodes are themselves the answer to LAQS or LAQT queries.

Discussion. The general conclusion is that our CST implementation does offer a relevant tradeoff
between the two rather extreme existing variants. Our CSTs can operate within 8–12 bpc (that is, at
most 50% larger than the plain byte-based representation of the text, and replacing it) while requiring a
few hundred microseconds for most operations (the “small and slow” variants Sad-Gon and FMN-RRR);
or within 13–16 bpc and carrying out most operations within a few microseconds (the “large and fast”
variants DAC/DAC-Var). In contrast, FCST requires only 4–6 bpc (which is, remarkably, as little as half
the space required by the plain text representation), but takes the order of milliseconds per operation; and
CST-Sadakane takes usually a few tens of microseconds per operation but requires 25–35 bpc, which is
close to uncompressed suffix arrays (not to uncompressed suffix trees, though).

Algorithms 2013, 2 18

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, SLink

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, LCA

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, SLink

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, LCA

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, SLink

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, LCA

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, SLink

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, LCA

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

Figure 5. Space/time trade-off performance for operations SLink and LCA. Note the logscale.

Algorithms 2013, 2 19

 0.1

 1

 10

 100

 1000

 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, SDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, Child

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, SDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, Child

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, SDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, Child

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, SDepth

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30 35

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, Child

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

Figure 6. Space/time trade-off performance for operations SDepth and Child. Note the logscale.

Algorithms 2013, 2 20

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter i

dna.100MB, Letter(i)

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5 10 15 20 25

T
im

e
pe

r
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

dna.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter i

xml.100MB, Letter(i)

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

T
im

e
pe

r
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

xml.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter i

proteins.100MB, Letter(i)

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

T
im

e
pe

r
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

proteins.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter i

sources.100MB, Letter(i)

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35

T
im

e
pe

r
no

de
 (

m
ic

ro
se

co
nd

s)

Bits per character

sources.100MB, full traversal

CST-Sadakane
Our CST with Sad-Gon

Our CST with FMN-RRR
Our CST with DAC

Our CST with DAC-Var
FCST

Figure 7. Space/time trade-off performance for operation Letter and for a full tree traversal. Note the
logscale.

Algorithms 2013, 2 21

 0.1

 1

 10

 100

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

dna.100MB, LAQs(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 1000

 10000

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

dna.100MB, LAQt(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

xml.100MB, LAQs(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 1000

 10000

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

xml.100MB, LAQt(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

proteins.100MB, LAQs(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 1000

 10000

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

proteins.100MB, LAQt(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

sources.100MB, LAQs(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

 0.1

 1

 10

 100

 1000

 10000

 4 8 16 32 64

T
im

e
pe

r
op

er
at

io
n

(m
ic

ro
se

co
nd

s)

parameter d

sources.100MB, LAQt(d)

Our CST with Sad-Gon
Our CST with FMN-RRR

Our CST with DAC
Our CST with DAC-Var

Figure 8. Space/time trade-off performance for operation LAQS(d) and LAQT (d). Note the logscale.

Algorithms 2013, 2 22

We remark that, for many operations, our “fast and large” variant takes half the space of CST-
Sadakane and is many times faster. Exceptions are Parent and TDepth, where CST-Sadakane stores
the explicit tree topology, and thus takes a fraction of a microsecond. On the other hand, our CST carries
out LAQS in the same time of Parent, whereas this is much more complicated for the alternatives (they do
not even implement it). For Child, where we descend by a random letter from the current node, the times
are higher than for other operations, as expected, yet the same happens to all the implementations. We
note that FCST is more efficient on operations LCA and SDepth, which are its kernel operations, yet it is
still slower than our “small and slow” variant. Finally, TDepth is an operation where all but Sadakane’s
CST are relatively slow, yet on most suffix tree algorithms the string depth is much more relevant than
the tree depth. Our LAQT (v, d) costs about d times the time of our TDepth.

7. A Repetition-Aware CST

We now develop a variant of our RMM representation that is suitable for highly repetitive text collec-
tions, and upgrade it to a fully-functional CST for this case. Recall that we need three components: a
CSA, an LCP representation, and fast PSV/NSV/RMQ queries on that LCP sequence.

We use the RLCSA [26] as the base CSA of our repetition-aware CST. We also use the compressed
representation of PLCP (i.e., bitmap H) [19]. Since now we assume r � n, we use a compressed
bitmap representation that is useful for very sparse bitmaps [25]: We δ-encode the runs of 0s between
consecutive 1s, and store absolute pointers to the representation of every sth 1. This is very efficient in
space and solves select1 queries in time O(s), which is the operation needed to compute a PLCP value.

The main issue is how to support fast operations using the RLCSA and our LCP representation.
Directly using the RMM tree structure requires at least 1 bpc (see Figure 3), which is too much when
indexing repetitive collections. Our main idea is to replace the regular structure of tree Tm by the parsing
tree obtained by a Re-Pair compression of the sequence LCP. We now explain this idea in detail.

7.1. Grammar-Compressing the LCP Array

To solve the queries on top of the LCP array, we represent a part of it in grammar-compressed form.
This will be redundant with our compressed representation of array H , which was already explained.

Following the idea in Fischer et al. [19], we grammar-compress the differential LCP array, defined
as LCP′[i] = LCP[i] − LCP[i − 1] if i > 1, and LCP′[1] = LCP[1]. This differential LCP array
contains now O(r) areas that are exact repetitions of others, and a RePair-based compression of it yields
|R| + |C| = O(r log n

r
) words [19, 34]. We note, however, that the compression achieved in this way

is modest [34]: we guarantee O(r log n
r
) words, whereas the RLCSA and PLCP representations require

basically O(r log n
r
) bits. Indeed, the poor performance of variant RP in Section 3. shows that the idea

should not be applied directly.
To overcome this problem, we take advantage of the fact that this representation is redundant with H .

We truncate the parsing tree of the grammar, and use it as a device to speed up computations that would
otherwise require expensive accesses to PLCP (i.e., to bitmap H).

Let R and C be the results of compressing LCP′ with RePair. Every nonterminal i of R expands to a
substring S[1, t] of LCP′. No matter where S appears in LCP′ (indeed, it must appear more than once),

Algorithms 2013, 2 23

we can store some values that are intrinsic to S. Let us define a relative sequence of values associated to
S, as follows: S ′[0] = 0 and S ′[j] = S[j] +S ′[j− 1]. Then, we define the following variables associated
to the nonterminal:

• mini = min1≤j≤t S
′[j] is the minimum value in S ′.

• lmini and rmini are the leftmost and rightmost positions j where S ′[j] = mini, respectively.

• sumi = S ′[t] =
∑

1≤j≤t S[j] is the sum of the values S[j].

• coveri = t is the number of values in S ′.

As most of these values are small, we encode them with DACs [42], which use less space for short
numbers while providing fast access (rmin is stored as the difference with lmin).

To reduce space, we prune the grammar by deleting the nonterminals i such that coveri < t, where t
will be a space/time tradeoff parameter. However, “short” nonterminals that are mentioned in sequence
C are not deleted.

This ensures that we can skip Ω(t) symbols of LCP with a single access to the corresponding non-
terminal in C, except for the short nonterminals (and terminals) that are retained in C. To speed up
traversals on C, we join together maximal consecutive subsequences of nonterminals and terminals in
C that sum up a total cover < t: we create a new nonterminal rule in R (for which we precompute the
variables above) and replace it in C, deleting those nonterminals that formed the new rule and do not
appear anymore in C. This will also guarantee that no more than O(t) accesses to LCP are needed to
solve queries. Note that we could have built a hierarchy of new nonterminals by recursively grouping t
consecutive symbols of C, achieving logarithmic operation times just as with tree Tm [1], but this turned
out to be counterproductive in practice. Figure 9 gives an example.

Finally, sampled pointers are stored to every c-th cell of C. Each sample for position C[c · j], stores:

• Pos[j] = 1 +
∑

1≤k≤cj−1 coverC[k], that is, the first position LCP[i] corresponding to C[c · j].

• Val[j] =
∑

1≤k≤cj−1 sumC[k], that is, the value LCP[i].

7.2. Computing NSV, PSV, and RMQ

To answer NSV(i), we first look for the rule C[j] that contains LCP[i + 1]: we binary search Pos
for the largest j′ such that Pos[j′] ≤ i + 1 and then sequentially advance on C[cj′..j] until finding
the largest j such that pos = Pos[j] +

∑
cj′≤k<j coverC[k] ≤ i + 1. At the same time, we compute

` = Val[j′] +
∑

cj′≤k<j sumC[k].
Now, if ` + minC[j] < LCP[i], it is possible that NSV(i) is within the same C[j]. In this case, we

search recursively the tree expansion with root C[j] for the leftmost value to the right of i and smaller
than LCP[i]: Let C[j] → ab in the grammar. We recursively visit child a if ` + mina < LCP[i] and
pos + covera ≥ i + 1. If we find no answer there, or we had decided not to visit a, then we set
` = ` + suma and pos = pos + covera and recursively visit child b if ` + minb < LCP[i]. Note that if
pos ≥ i + 1 we do not need to enter b, but can simply use the value minb and the position pos + lminb

for the minimum. If we also find no answer inside b, or we had decided not to visit b, we return with

Algorithms 2013, 2 24

LCP = 0 1 0 3 2 3 3 2 2 3 2 5 4 5 5 5 4 5 4 5 5 5 4 5 4 5 5
T= LCP’ = 0 1 -1 3 -1 1 0 -1 0 1 -1 3 -1 1 0 0 -1 1 -1 1 0 0 -1 1 -1 1 0

R =

a→ (−1, 1)
b→ (a, 0)

c→ (1,−1)
d→ (0, a)

e→ (3, b)

f → (d, b)

g → (0, c)

h→ (g, e)

e

30

g

-1

c

1 0

b

1

a

-1

h

0

d

1

a

-1

0

b

1

a

-1

f

C = h -1 h f f

RePair RP-NPR

Rule cover min lmin sum

b 3 -1 1 0

d 3 -1 2 0

e 4 2 2 3

f 6 -1 2 0

g 3 0 1 0

h 7 0 1 3

-1 f

e

3 b

C = h fh

d bg

Figure 9. On the left, example of the Re-Pair compression of a sequence T = LCP′. We show R in
array form and also in tree form. On the right, our RP-NPR construction over T , pruning with t = 4. We
show how deep can the symbols of C be expanded after the pruning.

no value. On the other hand, if we reach a leaf l during the recursion, we sequentially scan the array
LCP[pos, pos + coverl − 1], updating ` = ` + LCP[k] and increasing pos. If at some position we find a
value smaller than LCP[i], we report the position pos.

If we return with no value from the first recursive call at C[j], it was because the only values smaller
than LCP[i] were to the left of i. In this case, or if we had decided not to enter into C[j] because
` + minC[j] ≥ LCP[i], we sequentially scan C[j + 1, n], while updating ` = ` + sumC[k] and pos =

pos + coverC[k], until finding the first k such that ` + minC[k] < LCP[i]. Once we find such k, we are
sure that the answer is inside C[k]. Thus we enter into C[k] with a procedure very similar to the one for
C[j] (albeit slightly simpler as we know that all the positions are larger than i). In this case, as the LCP
values are discrete, we know that if `+minC[k] = LCP[i]− 1, there is no smaller value to the left of the
min value, so in this case we directly answer the corresponding lmin value, without accessing the LCP
array. The solution to PSV(i) is symmetric.

To answer RMQ(x, y), we find the rules C[i] and C[j] containing x and y, respectively. We sequen-
tially scan C[i + 1, j − 1] and store the smallest ` + minC[k] value found (in case of ties, the leftmost).
If the minimum is smaller than the corresponding values `+minC[i] and `+minC[j], we directly return
the value pos + lminC[k] corresponding to position C[k]. Else, if the global minimum in C[i] is equal
to or less than the minimum for i < k < j, we must examine C[i] to find the smallest value to the right
of x − 1. Assume C[i] → ab. We recursively enter into a if pos + covera ≥ x, otherwise we skip it.
Then, we update ` = ` + suma and pos = pos + covera, and enter into b if pos < x, otherwise we
directly consider `+minb as a candidate for the minimum sought. Finally, if we arrive at a leaf we scan
it, updating ` and pos, and consider all the values ` where pos ≥ x as candidates to the minimum. The
minimum for C[i] is the smallest among all candidates to minimum considered, and with pos + lminb

Algorithms 2013, 2 25

or the leaf scanning process we know its global position. This new minimum is compared with the min-
imum of C[k] for i < k < j. Symmetrically, in case k = j contains a value smaller than the minimum
for i ≤ j < j, we have to examine C[j] for the smallest value to the left of y + 1.

7.3. Analysis

For the analysis we will assume that we hierarchically group the terminals and nonterminals of con-
secutive symbols in C (by extending the grammar) using a grouping factor of g, although, as explained,
it turned out to be faster in practice not to do so. We will call h the height of the grammar, which can
be made O(log n) by generating balanced grammars [46] (we experiment with balanced and unbalanced
grammars in the next section). We also use sampling steps c to access C and s for the PLCP repre-
sentation. We also assume s is the sampling step of the RLCSA, thus accessing one PLCP cell takes
O(s log n) time.

Let us first consider operation NSV (and PSV). We spend O(log n+ c) time to binary search Pos and
move from C[cj′] to C[j]. If we have to expand C[j], the cost increases by O(h): note that if we had
entered a, and obtained no answer inside it, then we can directly use minb and thus do not enter b, so
we only enter one of the two. At the leaf of the grammar tree of C[j], we may scan O(t) symbols of
LCP using PLCP, which costs O(ts log n). Further, the scanning of C[j + 1, n] takes time O(g log n)

assuming the hierarchical grouping, and the final expansion of C[k] takes again O(h+ ts log n) time.
Now consider operation RMQ. Again, we spend O(c + log n) time to find C[i] and C[j], and then

expand them as before: only one of the two branches is expanded in each case, so the time is O(h +

ts log n). Finally, we need time O(g log n) to traverse the area C[i+ 1, j − 1].
Thus, for all the operations, the cost is O(c+ h+ (ts+ g) log n).
Let r′ = |R| + |C|, and recall that r is the number of runs, so n′ = O(r log n

r
) if using RePair. The

sampling parameters involve O((n′/c) log n′) bits for the sampling of C, plus O((r/s) log n) for the
sampling of PLCP, plus O((n/s) log n) for the sampling of the RLCSA, plus O((n′/g) log n′) for the
new rules created in the hierarchy for C. Parameter t involves in practice an important reduction in |R|,
the set of rules, but this cannot be upper bounded in the worst case unless the grammar is balanced, in
which case it is reduced to O(|R|/t) rules.

By choosing c = g = log3 n, s = log2 n, t = log n, and assuming a balanced grammar, the cost of the
operations simplifies to O(log4 n) and the extra space incurred by the samplings is o(r) + O(n/ log n)

bits. This can be reduced to any o(r) +O(n/ logk n), for any constant k, by raising the time complexity
to O(logk+3 n).

8. Experimental Evaluation on Repetitive Collections

We used various DNA collections from the Repetitive Corpus of Pizza&Chili‖. We took DNA collec-
tions Influenza and Para, which are the most repetitive ones, and Escherichia, a less repetitive
one. These are collections of genomes of various bacteria of those species. We also use Plain DNA,
which is plain DNA from PizzaChili, as a non-repetitive baseline. On the other hand, in order to show
how results scale with repetitiveness, and although it is not a biological collection, we also included

‖http://pizzachili.dcc.uchile.cl/repcorpus

Algorithms 2013, 2 26

Collection Text Size Runs (r/n) CST size RLCSA (P)LCP NPR Total

Influenza 148 0.019 27 0.77 0.21 0.42 1.40
Para 410 0.036 67 1.28 0.26 0.36 1.90
Escherichia 108 0.134 48 2.46 0.92 0.39 3.77
Plain DNA 50 0.632 61 5.91 3.62 0.29 9.82
Einstein 89 0.001 3 0.48 0.01 0.14 0.63

Table 4. Text size and size of our CST (which replaces the text), both in MB, and number of runs in Ψ.
On the right, bpc for the different components, and total bpc of the different collections considered. The
NPR structure is the smallest setting between RP-NPR and RPBal-NPR for that particular text.

Einstein, corresponding to the Wikipedia versions of the article about Einstein in German. Table 4
(left) gives some basic information on the collections, including the number of runs in Ψ (much lower
than those for general sequences; see Table 2).

For the RLCSA we used a fixed sampling that gave reasonable performance: one absolute value out
of 32 is stored to access Ψ(i), and one text position every 128 is sampled to compute A[i]. Similarly, we
used sampling step 32 for the δ-encoding of the bitmaps Z and O that encode H .

Table 4 (right) shows the resulting sizes. The bpc of the CST is partitioned into those for the RLCSA,
for the PLCP (H), and for NPR, which stands for the data structure that solves NSV/PSV/RMQ queries.
For the latter we used t = 256, which offered answers within 2 milliseconds (msec). Note that Fischer
et al.’s [19] compression of bitmap H does work in repetitive sequences, unlike what happened in the
general case: We reduce the space from 2 bpc to 0.21–0.26 bpc on the more repetitive DNA sequences,
for example. Similarly, the regular RMM-tree uses 1–5 bpc, whereas our version adapted to repetitive
sequences uses as little as 0.3–0.4 bpc. The good space performance of the RLCSA, compared to a
regular CSA for general sequences, also contributes to obtain a remarkable final space of 1.4–1.9 bpc for
the more repetitive DNA sequences. This value deteriorates until approaching, for plain (non-repetitive)
DNA, the same 10 bpc that we obtained before. Thus our data structure adapts smoothly to the repeti-
tiveness (or lack of it) of the collection.

On the other hand, on Einstein, which is much more repetitive, the total space gets as low as 0.6
bpc. This is a good indication of what we can expect on future databases with thousands of individuals
of the same species, as opposed to these testbeds with a few tens of individuals, or with more genetic
variation. To give more insight on how the space of our structures evolve as the repetitiveness increases,
Figure 10 shows the space used by each component of the index on increasing prefixes of collections
Influenza and Einstein. It can be seen that, as the we index more of the collection, the space of
the different components decreases until reaching a stable point that depends on the intrinsic repetitive-
ness of the collection (this is reached earlier for Influenza). Note, however, that even in the more
repetitive Einstein, the RLCSA stabilizes very early at a fixed space. This space is that of the suffix
array sampling, which is related to the speed of computing the contents of suffix array cells (and hence
computing LCP values). It is interesting that Mäkinen et al. [26] proposed a solution to compress this
array that proved impractical for the small databases we are experimenting with, but whose asymptotic
properties ensure that will become practical for sufficiently large and repetitive collections.

Algorithms 2013, 2 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16

b
p

c

prefix size (1/16th)

Prefixes of Influenza

RLCSA
PLCP
NPR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16

b
p

c

prefix size (1/16th)

Prefixes of Einstein

RLCSA
PLCP
NPR

Figure 10. Evolution of the space, in bpc, of our structures for increasing prefixes of collections
Influenza and Einstein.

Let us discuss the NPR operations now. We used a public Re-Pair compressor by ourselves∗∗, which
offers two alternatives when dealing with symbols of the same frequencies. The basic one, that we will
call RP-NPR, stacks the pairs of the same frequency, whereas the second one, RPBal-NPR, enqueues
them and obtains much more balanced grammars in practice. For our structure we tested values t =

c = 64, 128, 256, 512. We also include the basic regular RMM-tree of the previous sections (but running
over our RLCSA and PLCP representations), to show that on repetitive collections our grammar-based
version offers better space/time tradeoffs than the regular tree Tm. For this version, RP-RMM, we used
values L = 36, 64, 128, 256, 512.

We measure the times of operations NSV (as PSV is symmetric) and RMQ following the method-
ology of Section 6.: We choose 10,000 random suffix tree leaves (corresponding to uniformly ran-
dom suffix array intervals [vl, vr] = [v, v], v ∈ [1, n]) and navigate towards the root using opera-
tion Parent(vl, vr) = [PSV(vl),NSV(vr) − 1]. At each such node, we also measure the string depth,
SDepth(vl, vr) = LCP[RMQ(vl + 1, vr)]. We average the times of the NSV and RMQ queries involved.

Figure 11 shows the space/time performance of RMM-NPR, RP-NPR, and RPBal-NPR on the repeti-
tive collections. In addition, it shows the number of explicit accesses to LCP made per NPR operation.

In general the curves for total time and number of LCP accesses have the same shape, showing that
in practice the main cost of the NPR operations lies in retrieving the LCP values. In some cases, and
most noticeably for RMQ queries on Para using RP-NPR, using more space yields fewer LCP accesses
but higher time. This is because the Re-Pair grammars may be very unbalanced, and giving more space
to them results in less tree pruning. Thus deeper trees, whose nodes have to be traversed one by one
to cover short LCP passages, are generated. RPBal-NPR largely corrects this effect by generating more
balanced grammar trees.

Clearly, RP-NPR and RPBal-NPR dominate the space/time map for all queries. They always make
better use of the space than the regular tree of RMM-NPR. RPBal-NPR is usually better than RP-NPR,
except on some particular cases, like NSV on Escherichia, where RP-NPR is faster.

∗∗http://www.dcc.uchile.cl/gnavarro/software

Algorithms 2013, 2 28

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

NSV on Para

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

RMQ on Para

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4
 0

 50

 100

 150

 200

 250

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

NSV on Influenza

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4
 0

 50

 100

 150

 200

 250

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

RMQ on Influenza

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
 0

 50

 100

 150

 200

 250

 300

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

NSV on Escherichia

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
 0

 50

 100

 150

 200

 250

 300

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

RMQ on Escherichia

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
 0

 50

 100

 150

 200

 250

 300

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

NSV on Einstein

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
 0

 50

 100

 150

 200

 250

 300

T
im

e
 p

e
r

o
p
e
ra

tio
n
 (

m
ill

is
e
co

n
d
s)

#
 o

f
L
C

P
 a

cc
e
ss

e
s

RMQ on Einstein

RP-NPR
RMM-NPR

RPBal-NPR
RP-NPR

RMM-NPR
RPBal-NPR

Figure 11. Space/time performance of NPR operations. The x-axis shows the size of the NPR structure.
On the left y-axis the average time per operation (solid lines), and on the right y-axis the average number
of LCP accesses per operation (dashed lines). Note the logscale on y for Einstein.

Algorithms 2013, 2 29

The times of our best variants are in the range of a few milliseconds per operation. This is high
compared to the times obtained on general sequences. The closest comparison point is Russo et al.’s
CST [15], whose times are very similar but it uses 4–6 bpc, compared to our 1.4–1.9 bpc. As discussed,
we can expect our bpc value to decrease even more on larger databases. Such a representation, even if
taking milliseconds per operation, is very convenient if it saves us from using a disk-based suffix tree.
Note also that, on very repetitive collections, we could avoid pruning the grammar at all. In this case the
grammar itself would give access to the LCP array much faster than by accessing bitmap H .

9. Conclusions

We have presented new practical compressed suffix tree implementations that offer very relevant
space/time tradeoffs. This opens the door to a number of practical suffix tree applications, particularly
relevant to bioinformatics. We have left the code publicly available at the Pizza&Chili site, to foster its
widest dissemination.††

Our main idea is to adapt range min-max trees [23] to the problem of solving queries on the LCP
array. This has proved to offer an attractive combination of time and space. Moreover, it offers stronger
functionality, allowing us to easily implement complex operations like string-level ancestors (LAQS),
which are seldom implemented in other CSTs. The second key idea is that, on repetitive collections, one
can grammar-compress the differential LCP array and use the grammar tree as a (non-regular) variant of
the range min-max tree, whose size depends on the repetitiveness of the text collection. This has yielded
the first compressed suffix tree that takes full advantage of repetitive collections, offering spaces well
below 2 bits per character.

This is an active and lively research topic, and there has been interesting advances since our first
publication [1]. Gog [22] developed another LCP representation that falls between DAC/DAC-Var
and Sad-Gon/FMN-RRR (recall Section 3.). Ohlebusch et al. [22, 29] developed a data structure us-
ing 3n + o(n) bits that answers the three queries NSV/PSV/RMQ efficiently (recall Section 4.). Both
techniques were combined to build an alternative CST implementing Fischer et al.’s [19] idea, which
outperforms our “large and fast” variant based on DAC/DAC-Var. Our “small and slow” variant, in-
stead, still requires less space, and in this aspect is only outperformed by Russo et al.’s [15] CST, which
is orders of magnitude slower. Furthermore, our technique is unbeaten when adapted to repetitive collec-
tions, which none of the other existing CSTs exploits well. As an example, our adapted range min-max
tree uses 0.2–0.3 bpc on these collections, which is at least 10-15 times smaller than the new 3n + o(n)

NSV/PSV/RMQ structure of Ohlebusch et al. [29].

Acknowledgements. We thank Francisco Claude, Johannes Fischer, Rodrigo González, Juha Kärkkäinen,
Roberto Konow, Susana Ladra, Veli Mäkinen, Simon Puglisi, Luı́s Russo, and Kunihiko Sadakane for
code, help to use it, and discussions. This work was partially funded by the Millennium Institute for Cell
Dynamics and Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan, Chile. NICTA is funded by
the Australian Government as represented by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

††http://pizzachili.dcc.uchile.cl/cst

Algorithms 2013, 2 30

References and Notes

[1] Cánovas, R.; Navarro, G. Practical compressed suffix trees. In Proc. 9th International Symposium
on Experimental Algorithms (SEA), 2010, LNCS 6049, pp. 94–105.

[2] Abeliuk, A.; Navarro, G. Compressed suffix trees for repetitive texts. In Proc. 19th International
Symposium on String Processing and Information Retrieval (SPIRE), 2012, LNCS 7608, pp. 30–41.

[3] McCreight, E. A space-economical suffix tree construction algorithm. Journal of the ACM 1976,
32, 262–272.

[4] Weiner, P. Linear pattern matching algorithms. In IEEE Symposium on Switching and Automata
Theory, 1973, pp. 1–11.

[5] Apostolico, A., The myriad virtues of subword trees, pp. 85–96. Combinatorial Algorithms on
Words. NATO ISI Series. Springer-Verlag, 1985.

[6] Gusfield, D. Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[7] Kurtz, S. Reducing the space requirements of suffix trees. Software Practice and Experience 1999,
29, 1149–1171.

[8] Manber, U.; Myers, E. Suffix arrays: a new method for on-line string searches. SIAM Journal on
Computing 1993, pp. 935–948.

[9] Abouelhoda, M.; Kurtz, S.; Ohlebusch, E. Replacing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms 2004, 2, 53–86.

[10] Munro, I.; Raman, V.; Rao, S. Space efficient suffix trees. Journal of Algorithms 2001, 39, 205–
222.

[11] Sadakane, K. Succinct representations of lcp information and improvements in the compressed
suffix arrays. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002,
pp. 225–232.

[12] Sadakane, K. Compressed suffix trees with full functionality. Theory of Computing Systems 2007,
41, 589–607.

[13] Sadakane, K. New text indexing functionalities of the compressed suffix arrays. Journal of Algo-
rithms 2003, 48, 294–313.

[14] Russo, L.; Navarro, G.; Oliveira, A. Fully-Compressed Suffix Trees. In Proc. 8th Latin American
Symposium on Theoretical Informatics (LATIN), 2008, LNCS 4957, pp. 362–373.

[15] Russo, L.; Navarro, G.; Oliveira, A. Fully-compressed suffix trees. ACM Transactions on Algo-
rithms 2011, 7, article 53.

[16] Ferragina, P.; Manzini, G.; Mäkinen, V.; Navarro, G. Compressed representations of sequences and
full-text indexes. ACM Transactions on Algorithms 2007, 3, article 20.

[17] Manzini, G. An analysis of the Burrows-Wheeler transform. Journal of the ACM 2001, 48, 407–
430.

[18] Fischer, J.; Mäkinen, V.; Navarro, G. An(other) entropy-bounded compressed suffix tree. In
Proc. 19th Annual Symposium on Combinatorial Pattern Matching (CPM), 2008, LNCS 5029, pp.
152–165.

[19] Fischer, J.; Mäkinen, V.; Navarro, G. Faster entropy-bounded compressed suffix trees. Theoretical

Algorithms 2013, 2 31

Computer Science 2009, 410, 5354–5364.
[20] Fischer, J. Wee LCP. Information Processing Letters 2010, 110, 317–320.
[21] Välimäki, N.; Gerlach, W.; Dixit, K.; Mäkinen, V. Engineering a compressed suffix tree implemen-

tation. In Proc. 6th Workshop on Experimental Algorithms (WEA), 2007, pp. 217–228.
[22] Gog, S. Compressed Suffix Trees: Design, Construction, and Applications. PhD thesis, University

of Ulm, Germany, 2011.
[23] Sadakane, K.; Navarro, G. Fully-functional succinct trees. In Proc. 21st Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), 2010, pp. 134–149.
[24] Arroyuelo, D.; Cánovas, R.; Navarro, G.; Sadakane, K. Succinct trees in practice. In Proc. 11th

Workshop on Algorithm Engineering and Experiments (ALENEX), 2010, pp. 84–97.
[25] Kreft, S.; Navarro, G. Self-indexing based on LZ77. In Proc. 22nd Annual Symposium on

Combinatorial Pattern Matching (CPM), 2011, LNCS 6661, pp. 41–54.
[26] Mäkinen, V.; Navarro, G.; Sirén, J.; Välimäki, N. Storage and retrieval of highly repetitive sequence

collections. Journal of Computational Biology 2010, 17, 281–308.
[27] Claude, F.; Navarro, G. Self-indexed text compression using straight-line programs. In Proc. 34th

International Symposium on Mathematical Foundations of Computer Science (MFCS), 2009, LNCS
5734, pp. 235–246.

[28] Claude, F.; Fariña, A.; Martı́nez-Prieto, M.; Navarro, G. Compressed q-gram indexing for highly
repetitive biological sequences. In Proc. 10th IEEE Conference on Bioinformatics and Bioengi-
neering (BIBE), 2010, pp. 86–91.

[29] Ohlebusch, E.; Fischer, J.; Gog, S. CST++. In Proc. 17th International Symposium on String
Processing and Information Retrieval (SPIRE), 2010, LNCS 6393, pp. 322–333.

[30] Navarro, G.; Mäkinen, V. Compressed full-text indexes. ACM Computing Surveys 2007, 39, article
2.

[31] Ferragina, P.; González, R.; Navarro, G.; Venturini, R. Compressed text indexes: From theory to
practice. ACM Journal of Experimental Algorithmics 2009, 13, article 12.

[32] Munro, I. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 1996, LNCS 1180, pp. 37–42.

[33] Larsson, J.; Moffat, A. Off-line dictionary-based compression. Proc. of the IEEE 2000, 88, 1722–
1732.

[34] González, R.; Navarro, G. Compressed text indexes with fast locate. In Proc. 18th Annual
Symposium on Combinatorial Pattern Matching (CPM), 2007, LNCS 4580, pp. 216–227.

[35] Mäkinen, V.; Navarro, G. Succinct suffix arrays based on run-length encoding. Nordic Journal of
Computing 2005, 12, 40–66.

[36] Raman, R.; Raman, V.; Rao, S. Succinct indexable dictionaries with applications to encoding k-ary
trees and multisets. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2002, pp. 233–242.

[37] Okanohara, D.; Sadakane, K. Practical entropy-compressed rank/select dictionary. In Proc. 9th
Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

[38] González, R.; Grabowski, S.; Mäkinen, V.; Navarro, G. Practical implementation of rank and select
queries. In Proc. posters 4th Workshop on Experimental Algorithms (WEA), 2005, pp. 27–38.

Algorithms 2013, 2 32

[39] Claude, F.; Navarro, G. Practical rank/select queries over arbitrary sequences. In Proc. 15th
International Symposium on String Processing and Information Retrieval (SPIRE), 2008, LNCS
5280, pp. 176–187.

[40] Puglisi, S.; Turpin, A. Space-time tradeoffs for longest-common-prefix array computation. In
Proc. 19th International Symposium on Algorithms and Computation (ISAAC), 2008, pp. 124–135.

[41] Kärkkäinen, J.; Manzini, G.; Puglisi, S. Permuted longest-common-prefix array. In Proc. 20th
Annual Symposium on Combinatorial Pattern Matching (CPM), 2009, LNCS 5577, pp. 181–192.

[42] Brisaboa, N.; Ladra, S.; Navarro, G. Directly addressable variable-length codes. In Proc. 16th
International Symposium on String Processing and Information Retrieval (SPIRE), 2009, LNCS
5721, pp. 122–130.

[43] Geary, R.; Rahman, N.; Raman, R.; Raman, V. A simple optimal representation for balanced
parentheses. Theoretical Computer Science 2006, 368, 231–246.

[44] Fischer, J.; Heun, V. Space-efficient preprocessing schemes for range minimum queries on static
arrays. SIAM Journal on Computing 2011, 40, 465–492.

[45] Konow, R.; Navarro, G. Faster compact top-k document retrieval. In Proc. 23rd Data Compression
Conference (DCC), 2013, pp. 351–360.

[46] Sakamoto, H. A fully linear-time approximation algorithm for grammar-based compression. Jour-
nal of Discrete Algorithms 2005, 3, 416–430.

