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Abstract

Prefix-free parsing (PFP) was introduced by Boucher et

al. (2019) as a preprocessing step to ease the computa-

tion of Burrows-Wheeler Transforms (BWTs) of genomic

databases. Given a string S, it produces a dictionary D

and a parse P of overlapping phrases such that BWT(S)

can be computed from D and P in time and workspace

bounded in terms of their combined size |PFP(S)|. In prac-

tice D and P are significantly smaller than S and comput-

ing BWT(S) from them is more efficient than computing

it from S directly, at least when S is the concatenation of

many genomes. In this paper, we consider PFP(S) as a

data structure and show how it can be augmented to sup-

port full suffix tree functionality, still built and fitting within

O(|PFP(S)|) space. This entails the efficient computation of

various primitives to simulate the suffix tree: computing a

longest common extension (LCE) of two positions in S; read-

ing any cell of its suffix array (SA), of its inverse (ISA), of its

BWT, and of its longest common prefix array (LCP); and

computing minima over ranges and next/previous smaller

value queries over the LCP. Our experimental results show

that the PFP suffix tree can be efficiently constructed for

very large repetitive datasets and that its operations per-
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form competitively with other compressed suffix trees that

can only handle much smaller datasets.

1 Introduction

The emergence of large genome repositories offers a new
world of opportunities for research and development in
biology and medicine, but they also pose serious perfor-
mance challenges to the computational infrastructure,
not only in terms of the time complexity of the sequence
searching and mining problems to solve, but also in
terms of the sheer memory space needed to simply store
the data. Computer memories are getting larger every
day, of course, but not as quickly as genomic databases:
the 1000 Genomes Project Consortium announced the
sequencing of 1092 human genomes in 2012 and Ge-
nomics England announced the sequencing of 100K hu-
man genomes in 2018, significantly outpacing Moore’s
Law. Indeed, storing the raw data is not as challenging
as storing the appropriate data structures that allow us
solving complex problems on the sequences within rea-
sonable time.

Suppose we want to index a thousand human
genomes in such a way that we can support standard
bioinformatics tasks such as DNA sequence read align-
ment (see [36]). For example, given a sequence read,
we might want to determine which of its substrings oc-
cur in the database, and where. Finding the maximal
substrings of the read that occur in the database is an
important step in the seed-and-extend approach to se-
quence read alignment. This is only one of the wealth of
problems that can be solved with suffix trees [39], one of
the most powerful data structures in stringology [2, 8]
and bioinformatics [15, 22].

Suffix trees can be built in linear time and space [39,
25, 38]. In practice, however, they require more than the
compacted sequence itself. One human genome, which
is easily encoded in less than 800 MB, requires about
60 GB to store a classical implementation of its suffix
tree. This is already challenging because interesting
suffix tree algorithms require a lot of random access to
the data structure, and becomes totally infeasible if we
aim to handle thousands of genomes.

This limitation has been sidestepped by various
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compressed suffix tree (CST) representations, which
simulate the suffix tree functionality within a space close
to that of the sequence [33, 12, 10, 32, 28, 14]. Some re-
cent variants are aimed at exploiting the repetitiveness
that arises in repositories of genomes of the same species
[1, 27, 7, 13]. Such representations make it feasible to
maintain and operate in main memory the suffix tree of
large genome collections.

Even these compressed representations, however,
do not really solve the problem of handling very large
repositories. As Ferragina et al. [9] pointed out, “to use
[an index] one must first build it!” The construction of
the current CSTs still requires a lot of main memory
space — at least 34 times the input sequence, on
our experiments —, even if the final product is much
smaller. This inability to be built within small space is
the key limitation to scale up the power of this versatile
data structure to the large sequence repositories where
they should be used.

Significant progress towards solving the construc-
tion problem was made by Boucher et al. [5] and
Kuhnle et al. [20], who introduced a preprocessing step
called prefix-free parsing (PFP). PFP compresses the
sequence collection in such a way that its Burrows-
Wheeler Transform (BWT) [6] can be computed di-
rectly in run-length compressed form, which is known
to be a very compact representation on highly repetitive
genome collections [23]. Recent compressed indexes like
the r-index [13] can then be built from the run-length
compressed BWT.

The r-index simulates part of the functionality of a
suffix array [24], which is a key component of the suffix
tree. It can, for example, determine whether the whole
read appears in the sequence collection, but cannot
efficiently find which of its maximal substrings occur.
A suffix tree requires some additional components in
order to be fully functional. In fact, Gagie et al. [13]
showed how to add such components to the r-index,
increasing its size by a factor logarithmic in the length
of the sequence, but their design is complex and has not
been implemented.

Fischer et al. [12] show that a CST can be simulated
if we implement the following primitives: access to the
suffix array (SA), to its inverse permutation (ISA), to
the BWT, to the longest common prefix array (LCP),
and some sophisticated operations on the LCP array.
In this paper we show that PFP can be viewed as a
data structure by itself, which supports the required
primitives. Although the resulting CST is not as small
as others, its construction time and peak memory are
much smaller and thus can be built for very large
datasets. For example, the PFP data structures can be
built for 1000 distinct variants of human chromosome

19 in slightly more than 1 hour using 54 GB of internal
memory, which is almost the size of the raw data. With
the same amount of internal memory, the other CSTs
cannot be built for more than 32 distinct variants. In
the scenarios where others can be built, we show that
our CST performs competitively in practice.

2 PFP

To compute a PFP of S[0..n−1], conceptually we choose
a subset of all possible strings of some length w, with
the chosen strings called trigger strings, and then divide
S into overlapping phrases such that each starts with a
trigger string (except possibly the first), ends with a
trigger string (except possibly the last), and contains
no other trigger string.

In practice we choose the trigger strings implicitly,
by choosing a Karp-Rabin hash function and a param-
eter p and passing a sliding window of length w over S,
putting a phrase break wherever the hash of the con-
tents of the window is congruent to 0 modulo p (with
the contents of the window there becoming the last w
characters of the previous phrase and the first w char-
acter of the next one).

PFP is inspired by rsync [37] and spamsum

(https://www.samba.org/ftp/unpacked/junkcode/
spamsum/README ; see also [19]), which have been in
popular use for about twenty years. In some cases it
works badly — e.g., if S is unary then either we split it
into n−w+ 1 phrases or we do not split it at all — but
we usually end up with a parse consisting of roughly
n/p phrases of length roughly p.

It is plausible that PFP can be adapted to have
good worst-case bounds, possibly by combining it either
with string synchronizing sets [18] or locally consistent
parsing [4]. As it is, the parsing uses only sequential
access and small workspace, so it runs well even in
external memory, and it can easily be parallelized.
When S consists of genomes from individuals of the
same species, then the genomes are parsed roughly the
same way, so the total length of the strings in the
dictionary of distinct phrases can be significantly less
than the total length of the genome.

In this paper we assume we have already computed
for S a PFP parse P with dictionary D, using Boucher
et al.’s implementation [5], and we now restrict ourselves
to using memory proportional to their combined size
|PFP(S)|. We say a phrase S[i..j] contains a character
S[k] if i ≤ k ≤ j − w. Notice that, since consecutive
phrases overlap by w characters, each character of S
is contained in this sense in exactly one phrase, except
the last w characters of S. To simplify the presentation,
assume S is cyclic and starts with a trigger string — if
need be, we can prepend one — so each character of S
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is contained in exactly one phrase, with no exceptions.
For example, consider the string

GATTACAT#GATACAT#GATTAGATA containing the trigger
strings AC, AG and T# of length w = 2. We append
w = 2 copies of # and consider the string as cyclic,

S = GATTACAT#GATACAT#GATTAGATA##GATTACAT#

GATACAT#GATTAGATA## . . .

of length n = 28, and treat ## as a trigger string as
well. Therefore, the parse and dictionary are

P = ##GATTAC, ACAT#, T#GATAC, ACAT#,

T#GATTAG, AGATA##

= D[0], D[1], D[3], D[1], D[4], D[2] ,

D = {##GATTAC, ACAT#, AGATA##, T#GATAC,

T#GATTAG} .

Notice that phrase D[1] = ACAT# occurs twice in P .
The most important property of a prefix-free parse

is, as one would expect, that it is prefix-free. In
particular, no proper phrase suffix of length at least w
is a prefix of any other proper phrase suffix of length at
least w. To see why, consider that each proper phrase
suffix (i.e., a phrase suffix that is not a complete phrase)
of length at least w ends with a trigger string and
contains no other complete trigger string. Therefore, if
a proper phrase suffix α of length at least w is a prefix
of another such phrase suffix β, then α = β.

Lemma 2.1. ([5]) The distinct proper phrase suffixes of
length at least w are a prefix-free set of strings.

A useful corollary of this is that each character S[i]
immediately precedes in S an occurrence of exactly one
proper phrase suffix of length at least w, which is the
suffix following S[i] in the phrase containing it.

Corollary 2.1. ([5]) We can partition S into sub-
sequences such that the characters in the ith subse-
quence precede in S occurrences of the lexicographically
ith proper phrase suffix of length at least w.

Boucher et al. used this corollary as a starting point
for building the BWT of S: for each proper phrase
suffix α of length at least w that is preceded by only
one distinct character c in D, they found the beginning
of the interval for α in the BWT by summing up the
frequencies in P of phrases ending with proper phrase
suffixes of length at least w lexicographically less than

α, then filled in the interval for α with as many copies
of c as there are phrases in P ending with α.

To fill in the BWT intervals for a proper phrase
suffix β of length at least w preceded by more than one
distinct character in D, Boucher et al. used the following
lemma, which is easily proven by induction. Essentially,
they considered the phrases ending with β in the order
they appear in the BWT of P (viewed as a sequence
of lexicographically-sorted phrase identifiers), since the
lemma means they are sorted by the suffixes that follow
them in S.

Lemma 2.2. ([5]) Let S[i..] and S[j..] be suffixes of
S starting at the beginning of occurrences of trigger
strings, and let Pi and Pj be the parses of those suffixes
with each phrase represented by its lexicographic rank in
D. Then S[i..] is lexicographically less than S[j..n] if
and only if Pi is lexicographically less than Pj.

3 Our Compressed Suffix Tree

A suffix tree on S[0..n− 1] is a compact trie containing
all the suffixes of S; each internal node v represents
a distinct repeated string s(v) in S and each leaf
represents a suffix of S. The children of a node
are sorted lexicographically by the next symbol, and
thus the concatenation of all the labels on the leaves
is equivalent to the suffix array SA[0..n − 1], where
SA[i] represents the suffix S[SA[i]..]. This is simply a
permutation of the suffixes of S in lexicographic order,
and its inverse permutation is called inverse suffix array,
ISA[0..n−1]. The other relevant structure is the longest
common prefix array, LCP[0..n− 1], where LCP[0] = 0
and LCP[i] is the length of the longest common prefix
of S[SA[i − 1]..] and S[SA[i]..]. The BWT of S is the
string BWT[0..n−1] with BWT[i] = S[SA[i]−1 mod n].

Table 1 lists the key suffix tree operations that
can be efficiently simulated with the CST of Fischer et
al. [12]. Since the suffix tree has no unary nodes, Fischer
et al. [12] identify a suffix tree node with the range of
the suffix array covered by its descendant leaves. This
makes operations like Root, Anc and Count trivial.
They then show that all the other listed operations
can be efficiently simulated with a data structure that
supports the following primitives:

1. Access to individual cells SA[i], ISA[i], and LCP[i].

2. Operations range-minimum-query (RMQ), next-
smaller-value (NSV), and previous-smaller-value
(PSV) on LCP: RMQ(i, j) gives the position k
of the minimum in LCP[i..j]; NSV(i) and PSV(i)
give the closest position following and preceding i,
respectively, with value less than LCP[i].
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Operation Definition Our simulation
Root() The root of the suffix tree. Return [0, n− 1].
Locate(v) The suffix position i s.t. v is the leaf Return SA[vl] (vl = vr as v is a leaf).

of suffix S[i..].
Anc(v, w) True iff v is an ancestor of w. Return vl ≤ wl ≤ wr ≤ vr.
SDepth(v) The length of s(v). Return Min(vl, vr).
Count(v) The number of leaves in the subtree Return vr − vl + 1.

rooted at v.
Parent(v) The parent node of v. Compute h = max(LCP[vl],LCP[vr+1]);

return [Prev(vl+1, h),Next(vr, h)−1].
FChild(v) The alphabetically first child of v. Return [vl,Next(vl,SDepth(v)+1)−1].
NSibling(v) The alphabetically next sibling of v. If LCP[vr + 1] < LCP[vl], v is the last child,

else return [vr + 1,Next(vr + 1,LCP[vr + 1] + 1)− 1].
SLink(v) The suffix link of v, i.e., the node w Compute x = ψ(vl) and y = ψ(vr), h = Min(x, y);

s.t. s(v) = a · s(w) for a symbol a. return [Prev(x+ 1, h),Next(y, h)− 1].
Here ψ(p) = ISA[SA[p] + 1 mod n].

SLinki(v) The suffix link of v iterated i times. Same as above, using ψi(p) = ISA[SA[p] + i mod n]
instead of ψ(p).

LCA(v, w) The lowest common ancestor If one is ancestor of the other, return the ancestor.
node of v and w. Else, let vl < wl. Compute h = Min(vl, wr);

return [Prev(vl+1, h),Next(vr, h)−1].
Child(v, a) The node w s.t. the first letter Traverse the children w with FChild and NSibling;

on edge (v, w) is a. choose w s.t. Letter(w,SDepth(v)+1) = a.
Letter(v, i) The letter s(v)[i]. Compute p = SA[vl]+i−1; return S[p].
LAQ(v, d) Level ancestor query, i.e., the highest Return [Prev(vl+1, d),Next(vr, d)−1].

ancestor w of v with SDepth(w) ≥ d.

Table 1: The suffix tree operations we simulate with our CST, where v and w are tree nodes.

We will not use exactly the same primitives in our
PFP-CST, but the following alternative ones:

1. Access to individual entries SA[i], ISA[i], and S[i].

2. LCE(p, q), the length of the longest common prefix
of S[p..] and S[q..]. This is used to implement

• LCP[i] = LCE(SA[i],SA[i− 1]).

• Min(i, j) = LCE(SA[i],SA[j]), the smallest
value in LCP[i+ 1..j].

3. Prev(i, h) and Next(i, h), the closest positions pre-
ceding and following i, respectively, with LCP value
less than h.

The operations are then solved as shown on the
right of Table 1 (we note that Abeliuk et al. [1] al-
ready solved some of the CST operations using Prev
and Next, which they call PSV’ and NSV’). Nodes
v are represented by suffix array ranges [vl, vr]. The
correctness of our version is immediate by comparison
with the original solutions [12, 1]; typically they answer
[PSV(k),NSV(k)] with k = RMQ(i, j), whereas we use
[Prev(i, h),Next(j, h)] with h = LCP[RMQ(i, j)]. In the
sequel, we show how we compute our primitives.

4 Data Structures

Our PFP-CST stores the following components. We
also describe how to build them efficiently within
O(|PFP(S)|) space.

P and D. We store the structures P andD, coming
from the PFP, compactly but such that we can support
fast random access to them. That is, each entry of P
uses dlog2 |D|e bits and each entry of D uses dlog2 σe
bits, where [0, σ − 1] is the alphabet of S.

Bitvector BP . We store a cyclic bitvector
BP [0..n − 1] with a 1 marking the position of the
first character in each trigger string in S. We can
find the index of the phrase containing a character
S[i] with a rank query, modulo the number of phrases
in P , and then find the offset of S[i] in that phrase
with a select query and a subtraction. Symmetri-
cally, if we know the index of the phrase contain-
ing a character and its offset in that phrase, we can
find the character’s position in S. For our example
. . .##GATTACAT#GATACAT#GATTAGATA## . . . we store

BP = 0000100100001001000001000010 .

Notice that, because the bitvector is cyclic and it is
convenient for the bits to align with the corresponding
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characters, the 1 marking the first character of the
trigger string at the beginning of the first phrase is the
penultimate bit.

Since BP has P 1s, it can be represented in O(|P |)
space [30], while efficiently supporting the queries
rank(BP , i), which gives the number of 1s in BP [0..i]
and select(BP , j), which gives the position of the jth 1
in BP .

Bitvector BBWT. We store a bitvector
BBWT[0..n − 1] that, for each distinct proper phrase
suffix of length at least w, has a 1 marking the first
position in SA that points to that phrase suffix. Recall
that, by Corollary 2.1, every character of S precedes an
occurrence of exactly one such phrase suffix. Figure 1
shows that for our example

BBWT = 1111110110111110111110110111 .

We do not need to build the BWT of S in order to
build BBWT. Instead, we append a unique terminator
symbol to each phrase in D; build the suffix array and
LCP array for D with those terminators; tag each suffix
with the frequency in P of the phrase containing that
suffix; and then scan the arrays, ignoring the suffixes
that are whole phrases or shorter than w (ignoring
the terminators) and aggregating the frequencies of the
suffixes that differ only by their terminators. Figure 2
shows how we build BBWT for our example.

Bitvector BBWT has at most D 1s, so it can also be
represented in O(|D|) space [30].

Grid W . We store a two-dimensional discrete grid
W over the BWT of the phrase identifiers in P , with
the y-coordinates corresponding to the set of phrase
identifiers in increasing co-lexicographic order. This
implies that coordinates corresponding to identifiers of
phrases ending with the same suffix α are consecutive.
Figure 3 shows W for our example, both as a grid and
illustrating its implementation as a wavelet tree [26].

We use W for orthogonal range queries, in partic-
ular counting the number of points that fall within a
rectangle, or reporting one of those in some coordinate
order [3]. For example, given j and r, we can say how
many of the first j phrases in the BWT of P have co-
lexicographic rank at least r, or, given a co-lexicographic
range and a value j, we can return the index of the jth
phrase in that interval to appear in the BWT of P .

Table and Grid M . We build a table M such that
M [r] tells us

1. the length ` of the lexicographically rth proper
phrase suffix α of length at least w,

2. the lexicographic range of the reversed phrases
starting with α reversed, starting with 0.

We compute the lengths while building BBWT, and the
lexicographic range by reversing the phrases and sorting
them. Figure 4 shows M for our example, for which
the reversed phrases are ##ATAGA, #TACA, CATAG#T,
CATTAG## and GATTAG#T. The lexicographic range of
CA in Figure 4 is [2, 3] since the two reversed phrases
starting with CA are in positions 2 and 3 in this sorted
list (counting from 0).

We also store longest common prefix data of M in
grid form: for each r, we store a point at row r and
column c, where c is the longest common prefix of the
phrase suffixes represented by M [r] and M [r − 1]. We
use the same wavelet tree implementation as for the grid
W . Those values c can be computed as longest common
prefixes inside D, by brute force or building appropriate
structures on D.

Suffix ranks on D We store a structure of size
D that, for each position in D, which starts the proper
suffix α, records the rank r of α among the distinct
proper suffixes of length at least w. Abusing the
notation a little, we call this structure ISAD. This
structure can be built from the actual inverse suffix
array of D, replacing every value j by BBWT.rank(j).

Suffix tree data structures on P We regard
P as a sequence of symbols, with their lexicographic
order defined according to the dictionary strings they
represent. We then store the suffix array SAP , inverse
suffix array ISAP , and longest common prefix array
LCPP , of this sequence, with the only twist that longest
common prefixes are measured in terms of original
characters, not symbols of P , and that trigger strings
are not counted (because they are duplicated across
consecutive entries of P ). In our example,

SAP = [0, 1, 3, 5, 2, 4]

ISAP = [0, 1, 4, 2, 5, 3]

LCPP = [0, 6, 0, 0, 3].

We also build the succinct RMQ data structure on
top of LCPP . All those structures can be computed
within space O(|PFP(S)|) using classical linear-space
constructions [16, 17, 11], or slightly adapting them.

Finally, we build a geometric data structure storing
points at row LCPP [i] and column i, for every position
i in P . We use the same implementation as our other
geometric structures. Note that this structure can
be used as a replacement for the array LCPP , since
LCPP [i] is the row of the only point at column i in the
grid.

5 Implementing the Primitives

5.1 Access to S The simplest query we consider is
random access to S. To find S[i] when given i, we use
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Figure 1: BBWT for our example, with the BWT of S and the suffixes of S in lexicographic order. We have
highlighted in red the unique proper phrase suffix of length at least w following each character, to clarify how
BBWT is defined. (We show S[n − 1] = # and the empty suffix as #GATTACAT#GATACAT#GATTAGATA## and
GATTACAT#GATACAT#GATTAGATA## instead, because we consider S to be cyclic and this should make clearer how
the characters in the BWT are sorted.)

1 ##2 1 0 AC3 1 - C0 1 - T#GATAC3 1
- ##GATTAC0 1 - ACAT#1 2 - C3 1 - T#GATTAG4 1
- #1 2 1 AG4 1 10 CAT#1 2 1 TA##2 1
- #2 1 - AGATA##2 1 - G4 1 1 TAC0 1
1 #GATAC3 1 10 AT#1 2 1 GATA##2 1 0 TAC3 1
1 #GATTAC0 1 1 ATA##2 1 1 GATAC3 1 1 TAG4 1
1 #GATTAG4 1 1 ATAC3 1 1 GATTAC0 1 1 TTAC0 1
1 A##2 1 1 ATTAC0 1 1 GATTAG4 1 1 TTAG4 1
1 AC0 1 1 ATTAG4 1 10 T#1 2

Figure 2: Suppose we append a unique terminator symbol to each phrase in D; sort the phrase suffixes (center
column); tag each suffix with the frequency in P of the phrase containing that suffix (right column); mark
with copies of - the suffixes which are whole phrases or shorter than w (ignoring the terminators), with 1 the first
copy of each suffix (ignoring terminators) and with 0s the other copies (left column); and then append to each
1 and 0 as many copies of 0 as the phrase frequency, minus 1 (right column). Then the concatenation of the 0s
and 1s is BBWT, which is 1111110110111110111110110111 in this example.

BP to find the index p of the phrase containing S[i] and
S[i]’s offset o in that phrase. More precisely, we compute
p = BP .rank(i) and o = i − BP .select(p). We then
use random access to P [p] to identify that phrase, and
random access to D to return the appropriate character.

We can return BWT[i] by computing SA[i] and then
returning S[SA[i]−1], but we can do better: since, once
we find the index of the phrase containing BWT[i] in the
BWT of P , we can extract BWT[i] directly from D.

5.2 LCE queries A longest common extension
(LCE) query LCE(i, j) returns the length of the
longest common prefix of S[i..] and S[j..]. In our
example, LCE(3, 11) = 9 because the longest com-
mon prefix of TACAT#GATACAT#GATTAGATA## and
TACAT#GATTAGATA## is TACAT#GAT.

Given i and j, we use the bitvector BP as before
to find the phrase indices p and q containing S[i] and
S[j] and their offsets in those phrases. Let α and β be
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Figure 3: The grid W for our example (left) and its implementation as a wavelet tree (right).

## 2 [0] GA 2 [4] #TAC 4 [1] ##AT 4 [0]
CATAG# 6 [2] #TA 3 [1] ##ATAG 6 [0] CAT 3 [2, 3]
CATTAG# 7 [3] ##ATA 5 [0] CATAG 5 [2] GAT 3 [4]
GATTAG# 7 [4] CATA 4 [2] CATTAG 6 [3] CATT 4 [3]
##A 3 [0] CATTA 5 [3] GATTAG 6 [4] GATT 4 [4]
CA 2 [2, 3] GATTA 5 [4] #T 2 [1]

Figure 4: The reversed proper phrase suffixes of length at least w (left column), their lengths (center column),
and the lexicographic range of the reversed suffixes starting with those reversed proper phrase suffixes (right
column).

the suffixes of those phrases starting at S[i] and S[j], so
|α|, |β| > w. In our example, the phrases containing S[3]
and S[11] are S[0..5] = GATTAC and S[9..13] = GATAC.

By Lemma 2.1, neither α nor β is a proper prefix of
the other, so there are only the following two possibili-
ties: first, α[k] 6= β[k] for some k < |α|, |β|, so LCE(i, j)
is the length of the longest common prefix of α and β;
second, α = β, so LCE(i, j) = |α|+LCE(i+ |α|, j+ |α|),
where S[i+ |α|..] and S[j + |α|..] are both suffixes of S
starting immediately after trigger strings. In our exam-
ple, α = β = TAC, so LCE(3, 11) = 3 + LCE(6, 14).

Since LCE(i, j) = LCP(RMQ(ISA[i] + 1, ISA[j]))
(assuming ISA[i] < ISA[j]), there are several ways we
can find the length of the longest common prefix of
phrase suffixes quickly using O(|PFP(S)|) space. One is
to take the dictionary D of distinct phrases as a text and
store its corresponding arrays ISAD, LCPD, and RMQ
structure on LCPD. To reduce space in practice, we can
map i and j to the suffix array of S using ISA queries,
and use BBWT.rank(ISA[i]) and BBWT.rank(ISA[j]) to
find the index of α and β among the distinct phrase
suffixes in D, in lexicographic order. We can then build
LCP and RMQ data structures on this set, which is of
size at most D but usually smaller. We opt, in practice,
for the simplest and least space-consuming alternative:

we compare the phrase suffixes machine-word-wise on
our plain representation of D, until finding a mismatch
or until both phrases end.

To find the length of the longest common prefix of
two suffixes of S starting immediately after the phrase
indices p and q, we use the inverse suffix array ISAP to
find the positions ip = ISAP [p+1] and iq = ISA[q+1] in
the suffix array of P . Assume ip < iq, otherwise switch
them. We then find k = RMQ(ip+1, iq), and the answer
is LCPP (k); recall that this array is twisted to return
the longest common prefix measured in characters.

In our example query, having reduced computing
LCE(3, 11) to computing LCE(6, 14), and knowing that
3 and 11 belong to the phrases P [0] and P [2], we map
ip = ISAP [0 + 1] = 1 and iq = ISA[2 + 1] = 2,
so the range is LCPP [1 + 1, 2] and the minimum is
LCPP [2] = 6, the length of the longest common prefix of
AT#GATACAT#GATTAGATA## and AT#GATTAGATA##.
This finally yields LCE(3, 11) = 3 + 6 = 9.

5.3 SA and ISA queries A suffix array (SA) query
SA[i] returns the starting position in S (counting from
0) of its lexicographically ith suffix. In our exam-
ple, SA[24] = 11 because the suffix of S with lex-
icographic rank 24 (counting from 0) is S[11..27] =
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TACAT#GATTAGATA##.
Given i, we use r = BBWT.rank(i) − 1 and j =

i−BBWT.select(BBWT.rank(i)) to find the lexicographic
rank r (counting from 0) of the proper phrase suffix
α of length at least w that starts at SA[i], and the
lexicographic rank j (counting from 0) of S[SA[i]..]
among the suffixes of S starting with α. In our
example, r = BBWT.rank(24) − 1 = 19 and j =
24−BBWT.select(20) = 1.

We access M [r] to find the length ` of α and the lex-
icographic range [c1, c2] of the reversed phrases starting
with α reversed or, equivalently, the co-lexicographic
range of the phrases ending with α. We then use
W to find the index k of the jth phrase in that co-
lexicographic interval to appear in the BWT of P , that
is, the leftmost point in rows [c1, c2]. In our example,
M [19] = (3, [2, 3]) and so k = 2.

Since α has length ` ≥ w, all of its occurrences in
S are phrase suffixes. By Lemma 2.2, the lexicographic
order of the suffixes of S starting with α, is the same
as the lexicographic order of the parses starting at the
trigger strings that are the last w characters of each of
those occurrences of α.

Since the lexicographic order of those parses is what
determines the order in which the phrases ending with
α appear in the BWT of P , mapping the kth phrase of
the BWT of P to its position in P tells us which phrase
in P contains the starting point of the lexicographically
jth suffix of S starting with α. Since we know the length
of α from M , we can use BP to find SA[i].

Concretely, the phrase index containing α is p =
SAP [k]−1 and the position of α is SA[i] = BP .select(p+
1) − ` + w. In our example, since SAP [2] = 3 and
M [19].` = 3, we know S[SA[24]] is the third-to-last
character in P [3 − 1]. Since w = 2, the corresponding
bit of BP precedes the third 1 (which marks the start
of the trigger string at the beginning of P [3]). Indeed,
we compute p = 2 and SA[24] = 12− 3 + 2 = 11.

Inverse suffix array (ISA) queries can be imple-
mented as follows. Given a position i in S, we find
the phrase p = BP .rank(i) it belongs and its offset
o = i − BP .select(p) within the phrase. We then can
map α inside D as for access queries. Given a posi-
tion d of α in D, r = ISAD[d] yields its lexicographic
rank r among the distinct phrases, so its range in ISA
starts at BBWT.select(r).To determine the offset of our
suffix among those starting with α, we find the column
k = SAP [p+1] where the next phrase is at W , and with
M we obtain the range [c1, c2] of the rows correspond-
ing to α reversed. We then count with W the number j
of points within rows [c1, c2] and column before k. The
answer is then j +BBWT.select(r).

5.4 Prev and Next queries Let us focus on Prev
queries; Next queries are analogous. A query Prev(i, h)
returns the largest i′ < i such that LCP[i′] < h.
To solve this query, we first compute r and j as for
the SA queries, where r identifies the distinct phrase
suffix α starting at SA[i− 1]. The situation is different
depending on whether |α| = M [r].` ≥ h or not.

In the positive case, we know that the answer is
the first entry in a block of distinct phrase suffixes. We
use the geometric data structure associated with M to
find the largest row r′ ≤ r with a point in column less
than h. The answer is then the first entry of block r′,
Prev(i, h) = BBWT.select(r′).

Otherwise, the answer could be in the same block of
i. We then look for the largest i−j < i′ < i such that the
longest common prefix between the phrases following α
in SA[i′] and SA[i′− 1] is less than h′ = h−M [r].`+w.

We note that the phrase-aligned suffixes that follow
α in SA[i − j + 1], . . . ,SA[i − 1] appear interspersed,
though in the same order, in SAP . We can then find
the position p in SAP of the suffix following α after
SA[i] by looking for the jth left-to-right point in the
range [c1, c2] of rows of W stored in M [r]. Let k be the
column of this point; then we want the largest k′ < k
such that the longest common prefix between P [k..] and
P [k′..] (measured in characters) is less than h′. This is
obtained with a range query on the geometric structure
we associate with LCPP . Since k′ could correspond not
to a suffix following α, we look at the first point in W
within rows [c1, c2] after or at column k′. If such point
is k, we look backward, for the rightmost point in W
within rows [c1, c2] before column k′. If such a point
exists, and its rank is j′, then we have that i′ = i−j+j′.

Note that this procedure may fail if we do not find
a proper k′ or j′. In such a case, the answer is not in
[i − j + 1, i − 1], so we revert to the first case where
M [r].` ≥ h.

6 Experiments

We implemented the data structures and measured their
performance on real-world datasets. Experiments were
performed on a server with Intel(R) Xeon(R) CPU E5-
2640 v4 @ 2.40GHz with 40 cores and 756 gigabytes
of RAM running Ubuntu 16.04 (64bit, kernel 4.4.0).
The compiler was g++ version 5.4.0 with -O3 -DNDEBUG

-funroll-loops -msse4.2 options. Runtimes were
recorded with the C++11 high resolution clock

facility and memory usage with the malloc count

tool (https://github.com/bingmann/malloc_count).
The source code is available online at: url removed for
double blind purposes.

Data We used real-world datasets from the
Pizza&Chili repetitive corpus [31], Salmonella genomes
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taken from the GenomeTrakr project [34], and hu-
man chromosome 19 genomes from the 1000 Genomes
Project [35]; see Table 2. The Pizza&Chili repetitive
corpus is a collection of repetitive texts characterized
by different lengths and alphabet sizes. GenomeTrakr
is an international project dedicated to isolating and se-
quencing foodbourne pathogens, including Salmonella.
Hence, we used 6 collections of 50, 100, 500, 1000, 5000,
and 10000 Salmonella genomes taken from Genome-
Trakr. Lastly, we used 10 sets of variants of human
chromosome 19 (chr19), containing 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, and 1000 distinct variants respec-
tively. Each collection is a superset of the previous.

Data structures We compared the PFP data
structures implementation (pfp); the compressed suf-
fix tree implementation (sdsl) from the sdsl-lite li-
brary [14]; and the block tree compressed suffix tree
implementation (bt) of Cáceres and Navarro [7]. The
latter is shown to be the best CST for repetitive col-
lections, whereas the former is a well-established CST
implementation for regular sequence collections.

Implementation We implemented the PFP data
structures using sdsl-lite library [14] bitvectors and
their rank and select supports. We used wavelet matri-
ces, which are a variant of wavelet trees better suited for
point grids. We used SACA-K [29] to sort the parse lex-
icographically, and gSACA-K [21] to compute the SA,
LCP array and document array of the dictionary. Using
gSACA-K to sort the dictionary, we can use the same
phrase terminator to concatenate each phrase. The re-
sult of gSACA-K is equivalent to the result obtained
if we concatenate unique terminators in a lexicographi-
cally increasing order, as required for the computation
of BBWT.

Construction test setup We tested the running
time and peak memory usage of the data structures
during the construction. For building the PFP data
structures, we first computed the prefix free parsing
of the dataset using BigBWT [5] with 32 threads, a
window size w = 10, and parameter p = 100. The
resulting output is loaded in memory and used to build
the PFP data structures. The running time for the
construction of the PFP data structures includes the
time to build the parse as well as the time to store the
parse to disk.

We built each data structure 5 times for the
Pizza&Chili corpus datasets, for the sets of chromo-
some 19 up to 64 distinct variants, and for Salmonella
up to 1000 sequences. The remaining experiments have
been tested only once. The experiments that exceeded
15 hours were omitted from further consideration, e.g.
chr19.1000 and salmonella.10000 for sdsl. Further-
more, bt failed to successfully build for the sets of chro-

mosome 19 greater than 16 distinct variants, and for
Salmonella with more than 100 sequences due to inte-
ger overflows causing segmentation fault errors.

Querying test setup We implemented and tested
all the queries reported on Table 1 on each data struc-
ture. Due to lack of space, we report the comparison of
only five of them: Parent, NSibling, LCA, SLink,
and Child. We also tested the data structures on a full
task, that is, given two parameters k and t, count the
number of substrings of the text of length at most k
that occur at least t times. We used Google bench-
marks (https://github.com/google/benchmark) for
query testing.

For the suffix tree operations, we generated 1000
randomly distributed queries as in previous work [1, 7,
27]. For Parent and NSibling we randomly select a
set of leaves and collect the nodes on their leaf-to-root
paths; for LCA we randomly sample pairs of leaves; For
SLink we randomly select a set of leaves and collect the
nodes in their path to the root obtained by following
the suffix links; finally, for the Child operation, we
randomly sample a set of leaves, collect the nodes in
their leaf-to-root path that have at least three children,
and select the initial character of a randomly selected
child. For the full task, we set k to 5 and t to 20.

Time Figures 5, 6, and 8 illustrate the construc-
tion time for all the data structures for Pizza&Chili,
Chromosome 19, and Salmonella, respectively. From
the reported data, we observe that the construction of
pfp is always faster than sdsl and bt, except for the
cases chr19.1 and chr19.2, in which sdsl is the fastest
to build. The maximum speedup of pfp with respect
to sdsl is 21x (einstein.en.txt), 34.4x (chr19.512),
and 9.2x (salmonella.5000). The speedup of pfp

with respect to bt is 1329x (einstein.en.txt), 201x
(chr19.8), and 203x (salmonella.100).

From Figure 6 we observe that doubling the length
of the dataset, the running time of pfp increases by a
factor of 1.9 when moving from 256 variants to 512, and
a factor of 2 when moving from 512 variants to 1000.
On the other hand, sdsl running time increases by a
factor of 2.6 when moving from 256 variants to 512.

From Figure 8 we observe that increasing the length
of the dataset by a factor of 10, when moving from 500
to 5000, increases the running time of pfp by a factor
of 12, while for sdsl it increases by a factor of 24.

Space Figures 5, 7, and 9 illustrate the memory
peak usage and the size of the data structure for
all the data structures for Pizza&Chili, chr19, and
salmonella, respectively. We observe that the peak
memory usage of pfp is almost always less than both
sdsl and bt. Yet, the size of pfp is larger than
both sdsl and bt, except for chr19.64, chr19.128,
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Name Description σ n/106 n/r Dict. (MB) Parse (MB)
cere Baking yeast genomes 5 461.29 157.19 90.34 16.99
einstein.de.txt Wikipedia articles in German 117 92.21 5216.14 1.06 3.57
einstein.en.txt Wikipedia articles in English 139 465.25 8961.42 3.16 17.82
Escherichia Coli Bacteria genomes 15 112.69 32.83 52.57 4.48
influenza Virus genomes 15 154.81 251.30 49.10 6.27
kernel Linux Kernel sources 160 249.51 499.82 14.78 9.94
para Yeast genomes 5 429.27 111.78 84.87 16.34
world leaders CIA world leaders files 89 46.91 634.90 10.71 1.01
chr19.1000 Human chromosome 19 5 60 110.55 1287.38 274.63 2219.08
Salmonella.10000 Salmonella genomes database 4 51 820.38 36.61 4483.43 2039.16

Table 2: Datasets used in the experiments. We give the names and descriptions of the datasets in the first two
columns. In column 3 we give the alphabet size. In columns 4 and 5 we report the length of the file and the
ratio of the length to the number of runs in the BWT. Lastly, we give the size of the dictionary and the parse in
columns 6 and 7, respectively.

chr19.256, and chr19.512, where pfp is the smallest
one. We note that this is precisely the case of very large
repetitive datasets (those in Pizza&Chili are not large,
and salmonella is not that repetitive).

The difference between the memory peak usage
and the data structure size is very small in pfp. Its
maximum ratio is attained at chr.8 where the memory
peak is 4.2x larger than the data structure size. For the
Pizza&Chili dataset the maximum is 3.1x for kernel,
while for the salmonella dataset the maximum is 3.7x
for salmonella.100.

The change of trend in the memory usage of pfp

from salmonella.1000 to salmonella.5000 occurs be-
cause we switched from gSACA-K 32 bit version to
gSAKA-K 64 bit version, since the 32 bit version can
sort text of length up to 2GB and the length of the
dictionary is larger than 2GB.

Queries Figures 10, reports the time of each data
structure to perform the operations Parent, NSib-
ling, LCA, SLink, and Child, as well as the time to
complete the full task. We observe that pfp is always
slower than sdsl and bt on all queries. The main rea-
son resides in the computation of LCP values, which has
a central role in most of the suffix tree operations. We
compute the LCP value using two SA queries, which
perform a range select query on the wavelet tree W .
This introduces a log(|P |) factor slowdown [3].

On the other hand, on the full task, the maxi-
mum speedup of sdsl with respect to pfp is 9.8x on
chr19.512 and 16.1x salmonella.5000, with a maxi-
mum time gap of 4 seconds. Hence, considering also the
construction time, the pfp is much faster than sdsl to
perform the full task.

7 Conclusion

We have presented the first usage of PFP(S) as a
data structure, augmenting it to support full suffix tree
functionality (which involves LCE, SA, ISA, LCP, and

BWT queries, among others) within O(|PFP(S)|) space,
which is small in practice when S is repetitive. We
implemented this data structure and compared it to
state-of-the-art compressed suffix trees on real-world
datasets. Our experiments show that our PFP CST
is almost always built more efficiently (both in time
and space) than its competitors, allowing us to handle
larger datasets. Although our PFP CST structure is
somewhat larger than the compressed suffix trees and
its query times are orders of magnitude slower, it is the
only one whose construction can be scaled up within
memory close to that of the final compressed suffix tree.

In particular, the PFP CST is faster than the alter-
natives (and can handle larger instances) on problems
that, starting from the text collection, require the con-
struction of the suffix tree and then some processing on
it. Many tasks in bioinformatics, for example, become
easily linear-time once we have suffix tree functional-
ity [15]. Therefore, we expect the PFP CST to be use-
ful when prototyping new solutions, even if eventually
it can be replaced by more direct constructions.

References

[1] A. Abeliuk, R. Cánovas, and G. Navarro, Prac-
tical compressed suffix trees, Algorithms, 6 (2013),
pp. 319–351.

[2] A. Apostolico, The myriad virtues of subword trees,
in Combinatorial Algorithms on Words, NATO ISI
Series, Springer-Verlag, 1985, pp. 85–96.

[3] J. Barbay, F. Claude, and G. Navarro, Compact
binary relation representations with rich functionality,
Information and Computation, 232 (2013), pp. 19–37.

[4] O. Birenzwige, S. Golan, and E. Porat, Locally
consistent parsing for text indexing in small space, in
Proc. ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2020, pp. 607–626.

[5] C. Boucher, T. Gagie, A. Kuhnle, B. Langmead,
G. Manzini, and T. Mun, Prefix-free parsing for

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



cer
e

ein
ste

in.
de

.tx
t

ein
ste

in.
en

.tx
t

Esc
he

ric
hia

_Coli

inf
lue

nza
ker

ne
l

pa
ra

worl
d_l

ea
de

rs

101

102

103

104
Ti

m
e 

[s
ec

]

sdsl
pfp
bt

cer
e

ein
ste

in.
de

.tx
t

ein
ste

in.
en

.tx
t

Esc
he

ric
hia

_Coli

inf
lue

nza
ker

ne
l

pa
ra

worl
d_l

ea
de

rs
107

108

109

1010

Si
ze

 [b
yt

e]

Figure 5: Pizza&Chili dataset construction running time (left) and peak memory usage (right; light bars) and
data structure size (right; dark bars).
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108 109 1010

Length [characters]

108

109

1010

1011

1012

Si
ze

 [b
yt

e]

Peak memory

sdsl
pfp
bt

DS size

sdsl
pfp
bt

1 2 4 8 16 32 64 12
8

25
6

51
2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
00

1 2 4 8

Number of sequences in collection

Figure 7: Peak memory and size for Chromosome 19.
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Figure 9: Peak memory and size for Salmonella.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



100

102

Ch
r1

9 
Ti

m
e 

[
s]

PARENT queries N_SIBLING queries LCA queries

108 109 1010

Length [characters]

100

101

102

Sa
lm

on
el

la
 T

im
e 

[
s]

108 109 1010

Length [characters]
108 109 1010

Length [characters]

12
8

161 25
6

2 324 51
2

648 12
8

161 25
6

2 324 51
2

6481 2 4 8

No. seqs in collection

12
8

161 25
6

2 324 51
2

648 12
8

161 25
6

2 324 51
2

6481 2 4 8

No. seqs in collection

12
8

161 25
6

2 324 51
2

648 12
8

161 25
6

2 324 51
2

6481 2 4 8

No. seqs in collection

10
00

10
0

50
00

50
0

50 10
00

10
0

50
00

50
0

50 10
0

50 10
00

10
0

50
00

50
0

50 10
00

10
0

50
00

50
0

50 10
0

50 10
00

10
0

50
00

50
0

50 10
00

10
0

50
00

50
0

50 10
0

50

sdsl
pfp
bt

101

103

105

107

Ch
r1

9 
Ti

m
e 

[
s]

SLINK queries CHILD queries FULL_TASK queries

108 109 1010

Length [characters]

101

103

105

107

Sa
lm

on
el

la
 T

im
e 

[
s]

108 109 1010

Length [characters]
108 109 1010

Length [characters]

12
8

161 25
6

2 324 51
2

648 12
8

161 25
6

2 324 51
2

6481 2 4 8

No. seqs in collection

12
8

161 25
6

2 324 51
2

648 12
8

161 25
6

2 324 51
2

6481 2 4 8

No. seqs in collection

12
8

161 25
6

2 324 51
2

648 12
8

161 25
6

2 324 51
2

6481 2 4 8

No. seqs in collection

10
00

10
0

50
00

50
0

50 10
00

10
0

50
00

50
0

50 10
0

50 10
00

10
0

50
00

50
0

50 10
00

10
0

50
00

50
0

50 10
0

50 10
00

10
0

50
00

50
0

50 10
00

10
0

50
00

50
0

50 10
0

50

Figure 10: Running time for Parent, NSibling, LCA, SLink, Child, and Full-task queries for the
chromosome 19 datasets and the salmonella datasets.
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N. Välimäki, Storage and retrieval of highly repeti-
tive sequence collections, Journal of Computational Bi-
ology, 17 (2010), pp. 281–308.

[24] U. Manber and G. Myers, Suffix arrays: a new
method for on-line string searches, SIAM Journal on
Computing, 22 (1993), pp. 935–948.

[25] E. M. McCreight, Priority search trees, SIAM Jour-
nal on Computing, 14 (1985), pp. 257–276.

[26] G. Navarro, Wavelet trees for all, Journal of Discrete
Algorithms, 25 (2014), pp. 2–20.

[27] G. Navarro and A. Ordóñez, Faster compressed
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